Trees as net sinks for methane (CH4 ) and nitrous oxide (N2 O) in the lowland tropical rain forest on volcanic Réunion Island
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33058184
PubMed Central
PMC7894294
DOI
10.1111/nph.17002
Knihovny.cz E-zdroje
- Klíčová slova
- basaltic lava flows, cryptogams, methane flux, nitrous oxide flux, soil, tree stem, tropical lowland rain forest, uptake,
- MeSH
- deštný prales MeSH
- lesy MeSH
- methan MeSH
- oxid dusný * MeSH
- oxid uhličitý MeSH
- půda MeSH
- stromy * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Réunion MeSH
- Názvy látek
- methan MeSH
- oxid dusný * MeSH
- oxid uhličitý MeSH
- půda MeSH
Trees are known to emit methane (CH4 ) and nitrous oxide (N2 O), with tropical wetland trees being considerable CH4 sources. Little is known about CH4 and especially N2 O exchange of trees growing in tropical rain forests under nonflooded conditions. We determined CH4 and N2 O exchange of stems of six dominant tree species, cryptogamic stem covers, soils and volcanic surfaces at the start of the rainy season in a 400-yr-old tropical lowland rain forest situated on a basaltic lava flow (Réunion Island). We aimed to understand the unknown role in greenhouse gas fluxes of these atypical tropical rain forests on basaltic lava flows. The stems studied were net sinks for atmospheric CH4 and N2 O, as were cryptogams, which seemed to be co-responsible for the stem uptake. In contrast with more commonly studied rain forests, the soil and previously unexplored volcanic surfaces consumed CH4 . Their N2 O fluxes were negligible. Greenhouse gas uptake potential by trees and cryptogams constitutes a novel and unique finding, thus showing that plants can serve not only as emitters, but also as consumers of CH4 and N2 O. The volcanic tropical lowland rain forest appears to be an important CH4 sink, as well as a possible N2 O sink.
Zobrazit více v PubMed
Aubrey DP, Teskey RO. 2009. Root‐derived CO2 efflux via xylem stream rivals soil CO2 efflux. New Phytologist 184: 35–40. PubMed
Barba J, Bradford MA, Brewer PE, Bruhn D, Covey K, van Haren J, Megonigal JP, Mikkelsen TN, Pangala SR, Pihlatie M et al 2019. Methane emissions from tree stems: a new frontier in the global carbon cycle. New Phytologist 222: 18–28. PubMed
Bennici A. 2015. Modélisation de la dynamique d’une forêt tropicale humide insulaire: Mare‐Longue, La Réunion. MSc thesis, Université de la Réunion, Réunion, France.
Bloemen J, McGuire MA, Aubrey DP, Teskey RO, Steppe K. 2013. Transport of root‐respired CO2 via the transpiration stream affects aboveground carbon assimilation and CO2 efflux in trees. New Phytologist 197: 555–565. PubMed
Byloos B, Monsieurs P, Mysara M, Leys N, Boon N, Van Houdt R. 2018. Characterization of the bacterial communities on recent Icelandic volcanic deposits of different ages. BMC Microbiology 18: 122. PubMed PMC
Corlett RT. 2011. Impacts of warming on tropical lowland rainforests. Trends in Ecology and Evolution 26: 606–613. PubMed
Corlett RT, Primack RB. 2011. Tropical rain forests: an ecological and biogeographical comparison. Hoboken, NJ, USA: Wiley‐Blackwell.
Covey KR, Megonigal JP. 2019. Methane production and emissions in trees and forests. New Phytologist 222: 35–51. PubMed
D’Annunzio R, Lindquist EJ, MacDicken KG, eds. 2017. Global forest land‐use change from 1990 to 2010: an update to a global remote sensing survey of forests. Forest Resource Assessment Working Paper 187. Rome, Italy: Food and Agriculture Organization of the United Nations.
Dalal RC, Allen DE. 2008. Turner review no. 18: Greenhouse gas fluxes from natural ecosystems. Australian Journal of Botany 56: 369–407.
Díaz‐Pinés E, Heras P, Gasche R, Rubio A, Rennenberg H, Butterbach‐Bahl K, Kiese R. 2016. Nitrous oxide emissions from stems of ash (Fraxinus angustifolia Vahl) and European beech (Fagus sylvatica L.). Plant and Soil 398: 35–45.
Espenberg M, Truu M, Mander Ü, Kasak K, Nõlvak H, Ligi T, Oopkaup K, Maddison M, Truu J. 2018. Differences in microbial community structure and nitrogen cycling in natural and drained tropical peatland soils. Scientific Reports 8: 4742. PubMed PMC
Gomez‐Alvarez V, King GM, Nüsslein K. 2007. Comparative bacterial diversity in recent Hawaiian volcanic deposits of different ages. FEMS Microbiology Ecology 60: 60–73. PubMed
Hölttä T, Kolari P. 2009. Interpretation of stem CO2 efflux measurements. Tree Physiology 29: 1447–1456. PubMed
Jeffrey LC, Reithmaier G, Sippo JZ, Johnston SG, Tait DR, Harada Y, Maher DT. 2019. Are methane emissions from mangrove stems a cryptic carbon loss pathway? Insights from a catastrophic forest mortality. New Phytologist 224: 146–154. PubMed
Keppler F, Hamilton JTG, Brass M, Röckmann T. 2006. Methane emissions from terrestrial plants under aerobic conditions. Nature 439: 187–191. PubMed
King GM. 2003. Contributions of atmospheric CO and hydrogen uptake to microbial dynamics on recent Hawaiian volcanic deposits. Applied and Environmental Microbiology 69: 4067–4075. PubMed PMC
King GM, Nanba K. 2008. Distribution of atmospheric methane oxidation and methanotrophic communities on Hawaiian volcanic deposits and soils. Microbes and Environments 23: 326–330. PubMed
Kirman S. 2003. Cycles biogéochimiques et biodiversité en forêt tropicale humide: étude ďune succession primaire sur coulées basaltiques (La Réunion, Ocean Indien). PhD thesis, Aix‐Marseille University, Marseille, France.
Kirman S, Strasberg D, Grondin V, Colin F, Gilles J, Meunier JD. 2007. Biomass and litterfall in a native lowland rainforest: Mare Longue Reserve, La Réunion Island, Indian Ocean. Forest Ecology and Management 252: 257–266.
Kreft H, Jetz W, Mutke J, Kier G, Barthlott W. 2008. Global diversity of island floras from a macroecological perspective. Ecology Letters 11: 116–127. PubMed
Lenhart K, Behrendt T, Greiner S, Steinkamp J, Well R, Giesemann A, Keppler F. 2019. Nitrous oxide effluxes from plants as a potentially important source to the atmosphere. New Phytologist 221: 1398–1408. PubMed
Lenhart K, Weber B, Elbert W, Steinkamp J, Clough T, Crutzen P, Pöschl U, Keppler F. 2015. Nitrous oxide and methane emissions from cryptogamic covers. Global Change Biology 21: 3889–3900. PubMed
Machacova K, Bäck J, Vanhatalo A, Halmeenmäki E, Kolari P, Mammarella I, Pumpanen J, Acosta M, Urban O, Pihlatie M. 2016a. Pinus sylvestris as a missing source of nitrous oxide and methane in boreal forest. Scientific Reports 6: 23410. PubMed PMC
Machacova K, Halmeenmäki E, Pihlatie M, Urban O. 2016b. Seasonal courses of methane fluxes in boreal trees. Report Series in Aerosol Science 189: 308–311.
Machacova K, Maier M, Svobodova K, Lang F, Urban O. 2017. Cryptogamic stem covers may contribute to nitrous oxide consumption by mature beech trees. Scientific Reports 7: 13243. PubMed PMC
Machacova K, Papen H, Kreuzwieser J, Rennenberg H. 2013. Inundation strongly stimulates nitrous oxide emissions from stems of the upland tree Fagus sylvatica and the riparian tree Alnus glutinosa . Plant and Soil 364: 287–301.
Machacova K, Pihlatie M, Halmeenmäki E, Pavelka M, Dušek J, Bäck J, Urban O. 2015. Summer fluxes of nitrous oxide from boreal forest In: Urban O, Šprtová M, Klem K, eds. Global change: a complex challenge, conference proceedings. Brno, Czech Republic: Global Change Research Center, 78–81.
Machacova K, Vainio E, Urban O, Pihlatie M. 2019. Seasonal dynamics of stem N2O exchange follow the physiological activity of boreal trees. Nature Communications 10: 4989. PubMed PMC
Maier M, Machacova K, Lang F, Svobodova K, Urban O. 2018. Combining soil and tree‐stem flux measurements and soil gas profiles to understand CH4 pathways in Fagus sylvatica forests. Journal of Plant Nutrition and Soil Science 181: 31–35.
Menyailo OV, Hungate BA. 2005. Tree species effects on potential production and consumption of carbon dioxide, methane, and nitrous oxide: the Siberian afforestation experiment In: Binkley D, Menyailo OV, eds. Tree species effects on soils: implications for global change. NATO Science Series. Dordrecht, the Netherlands: Kluwer Academic, 293–305.
Meunier JD, Kirman S, Strasberg D, Nicolini E, Delcher E, Keller C. 2010. The output and bio‐cycling of Si in a tropical rain forest developed on young basalt flows (La Reunion Island). Geoderma 159: 431–439.
Myhre G, Shindell D, Bréon F‐M, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque J‐F, Lee D, Mendoza B et al 2013. Anthropogenic and natural radiative forcing In: Stocker TF, Qin D, Plattner G‐K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge, UK & New York, NY, USA: Cambridge University Press, 659–740.
Pangala SR, Enrich‐Prast A, Basso LS, Peixoto RB, Bastviken D, Hornibrook ERC, Gatti LV, Ribeiro H, Calazans LSB, Sakuragui CM et al 2017. Large emissions from floodplain trees close the Amazon methane budget. Nature 552: 230–234. PubMed
Pangala SR, Moore S, Hornibrook ERC, Gauci V. 2013. Trees are major conduits for methane egress from tropical forested wetlands. New Phytologist 197: 524–531. PubMed
Potgieter LJ, Wilson JRU, Strasberg D, Richardson DM. 2014. Casuarina invasion alters primary succession on lava flows on La Réunion Island. Biotropica 46: 268–275.
Richards PW. 1996. The tropical rain forest. Cambridge, UK: Cambridge University Press.
Rusch H, Rennenberg H. 1998. Black alder (Alnus glutinosa (L.) Gaertn.) trees mediate methane and nitrous oxide emission from the soil to the atmosphere. Plant and Soil 201: 1–7.
Saunois M, Bousquet P, Poulter B, Peregon A, Ciais P, Canadell JG, Dlugokencky EJ, Etiope G, Bastviken D, Houweling S et al 2016. The global methane budget 2000–2012. Earth System Science Data 8: 697–751.
Schindler T, Mander Ü, Machacova K, Espenberg M, Krasnov D, Escuer‐Gatius J, Veber G, Pärn J, Soosaar K. 2020. Short‐term flooding increases CH4 and N2O emissions from trees in a riparian forest soil–stem continuum. Scientific Reports 10: 3204. PubMed PMC
Shvidenko A, Barber CV, Persson R, Gonzalez P, Hassan R, Lakyda P, McCallum I, Nilsson S, Pulhin J, van Rosenburg B et al 2005. Forest and woodland systems In: Hassan R, Scholes R, Ash N, eds. Ecosystems and human well‐being: current state and trends. Washington, DC, USA: Island Press, 585–621.
Sjögersten S, Siegenthaler A, Lopez OR, Aplin P, Turner B, Gauci V. 2020. Methane emissions from tree stems in neotropical peatlands. New Phytologist 225: 769–781. PubMed PMC
Smart DR, Bloom AJ. 2001. Wheat leaves emit nitrous oxide during nitrate assimilation. Proceedings of the National Academy of Sciences, USA 98: 7875–7878. PubMed PMC
Smith KA, Ball T, Conen F, Dobbie KE, Massheder J, Rey A. 2003. Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. European Journal of Soil Science 54: 779–791.
Sundqvist E, Crill P, Mölder M, Vestin P, Lindroth A. 2012. Atmospheric methane removal by boreal plants. Geophysical Research Letters 39: L21806.
Turner IM, Corlett RT. 1996. The conservation value of small, isolated fragments of lowland tropical rain forest. Tree 11: 330–333. PubMed
Warlo H, Machacova K, Nordstrom N, Maier M, Laemmel T, Roos A, Schack‐Kirchner H. 2018. Comparison of portable devices for sub‐ambient concentration measurements of methane (CH4) and nitrous oxide (N2O) in soil research. International Journal of Environmental Analytical Chemistry 98: 1030–1037.
Welch B, Gauci V, Sayer EJ. 2018. Tree stem bases are sources of CH4 and N2O in a tropical forest on upland soil during the dry to wet season transition. Global Change Biology 25: 361–372. PubMed
Wen Y, Corre MD, Rachow C, Chen L, Veldkamp E. 2017. Nitrous oxide emissions from stems of alder, beech and spruce in a temperate forest. Plant and Soil 420: 423–434.
Yu K, Chen G. 2009. Nitrous oxide emissions from terrestrial plants: observations, mechanisms and implications In: Sheldon AI, Barnhart EP, eds. Nitrous oxide emissions research progress. Hauppauge, NY, USA: Nova Science Publishers, 85–104.