Short-term flooding increases CH4 and N2O emissions from trees in a riparian forest soil-stem continuum

. 2020 Feb 21 ; 10 (1) : 3204. [epub] 20200221

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32081925
Odkazy

PubMed 32081925
PubMed Central PMC7035275
DOI 10.1038/s41598-020-60058-7
PII: 10.1038/s41598-020-60058-7
Knihovny.cz E-zdroje

One of the characteristics of global climate change is the increase in extreme climate events, e.g., droughts and floods. Forest adaptation strategies to extreme climate events are the key to predict ecosystem responses to global change. Severe floods alter the hydrological regime of an ecosystem which influences biochemical processes that control greenhouse gas fluxes. We conducted a flooding experiment in a mature grey alder (Alnus incana (L.) Moench) forest to understand flux dynamics in the soil-tree-atmosphere continuum related to ecosystem N2O and CH4 turn-over. The gas exchange was determined at adjacent soil-tree-pairs: stem fluxes were measured in vertical profiles using manual static chambers and gas chromatography; soil fluxes were measured with automated chambers connected to a gas analyser. The tree stems and soil surface were net sources of N2O and CH4 during the flooding. Contrary to N2O, the increase in CH4 fluxes delayed in response to flooding. Stem N2O fluxes were lower although stem CH4 emissions were significantly higher than from soil after the flooding. Stem fluxes decreased with stem height. Our flooding experiment indicated soil water and nitrogen content as the main controlling factors of stem and soil N2O fluxes. The stems contributed up to 88% of CH4 emissions to the stem-soil continuum during the investigated period but soil N2O fluxes dominated (up to 16 times the stem fluxes) during all periods. Conclusively, stem fluxes of CH4 and N2O are essential elements in forest carbon and nitrogen cycles and must be included in relevant models.

Zobrazit více v PubMed

Intergovernmental Panel on Climate Change. Climate Change 2014: Mitigation of Climate Change: Working Group III Contribution to the IPCC Fifth Assessment Report. Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 10.1017/CBO9781107415416 (2014).

Saikawa E, et al. Global and regional emissions estimates for N2O. Atmos. Chem. Phys. 2014;14:4617–4641. doi: 10.5194/acp-14-4617-2014. DOI

Tian H, et al. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature. 2016;531:225–228. doi: 10.1038/nature16946. PubMed DOI

Dalal RC, Allen DE. Greenhouse gas fluxes from natural ecosystems. Aust. J. Bot. 2008;56:369. doi: 10.1071/BT07128. DOI

Covey Kristofer R., Megonigal J. Patrick. Methane production and emissions in trees and forests. New Phytologist. 2019;222(1):35–51. doi: 10.1111/nph.15624. PubMed DOI

Barba Josep, Bradford Mark A., Brewer Paul E., Bruhn Dan, Covey Kristofer, Haren Joost, Megonigal J. Patrick, Mikkelsen Teis Nørgaard, Pangala Sunitha R., Pihlatie Mari, Poulter Ben, Rivas‐Ubach Albert, Schadt Christopher W., Terazawa Kazuhiko, Warner Daniel L., Zhang Zhen, Vargas Rodrigo. Methane emissions from tree stems: a new frontier in the global carbon cycle. New Phytologist. 2018;222(1):18–28. doi: 10.1111/nph.15582. PubMed DOI

Megonigal JP, Guenther AB. Methane emissions from upland forest soils and vegetation. Tree Physiol. 2008;28:491–498. doi: 10.1093/treephys/28.4.491. PubMed DOI

Gauci V, Gowing DJG, Hornibrook ERC, Davis JM, Dise NB. Woody stem methane emission in mature wetland alder trees. Atmos. Environ. 2010;44:2157–2160. doi: 10.1016/j.atmosenv.2010.02.034. DOI

Pangala SR, Moore S, Hornibrook ERC, Gauci V. Trees are major conduits for methane egress from tropical forested wetlands. New Phytol. 2013;197:524–531. doi: 10.1111/nph.12031. PubMed DOI

Smith Ka, et al. Exchange of greenhousegases between soil and atmosphere: interactions of soil physical factors and biological processes. Eur. J. Soil Sci. 2003;54:779–791. doi: 10.1046/j.1351-0754.2003.0567.x. DOI

Rusch H, Rennenberg H. Black alder (Alnus glutinosa (L.) Gaertn.) trees mediate methane and nitrous oxide emission from the soil to the atmosphere. Plant Soil. 1998;201:1–7. doi: 10.1023/A:1004331521059. DOI

Machacova, K., Papen, H., Kreuzwieser, J. & Rennenberg, H. Inundation strongly stimulates nitrous oxide emissions from stems of the upland tree Fagus sylvatica and the riparian tree Alnus glutinosa. Plant and Soil vol. 364 (2013).

Pangala SR, Hornibrook ERC, Gowing DJ, Gauci V. The contribution of trees to ecosystem methane emissions in a temperate forested wetland. Glob. Chang. Biol. 2015;21:2642–2654. doi: 10.1111/gcb.12891. PubMed DOI

Terazawa K, Ishizuka S, Sakata T, Yamada K, Takahashi M. Methane emissions from stems of Fraxinus mandshurica var. japonica trees in a floodplain forest. Soil Biol. Biochem. 2007;39:2689–2692. doi: 10.1016/j.soilbio.2007.05.013. DOI

Aosaar J, Varik M, Uri V. Biomass production potential of grey alder (Alnus incana (L.) Moench.) in Scandinavia and Eastern Europe: A review. Biomass and Bioenergy. 2012;45:11–26. doi: 10.1016/j.biombioe.2012.05.013. DOI

Uri V, Lõhmus K, Kiviste A, Aosaar J. The dynamics of biomass production in relation to foliar and root traits in a grey alder (Alnus incana (L.) Moench) plantation on abandoned agricultural land. Forestry. 2009;82:61–74. doi: 10.1093/forestry/cpn040. DOI

Uri, V., Tullus, H. & Lo, K. Uri (2001) Biomass production and nutrien accumulation in short-rotation grey alder.pdf. 161, 169–179 (2002).

Rytter L, Rytter RM. Growth and carbon capture of grey alder (Alnus incana (L.) Moench.) under north European conditions - Estimates based on reported research. For. Ecol. Manage. 2016;373:56–65. doi: 10.1016/j.foreco.2016.04.034. DOI

Evans J. Silviculture of Broadleaved Woodland. J. Appl. Ecol. 2006;22:610.

Vogel CS, Curtis PS, Thomas RB. Growth and nitrogen accretion of dinitrogen-fixing Alnus glutinosa (L.) Gaertn. under elevated carbon dioxide. Plant Ecol. 1997;130:63–70. doi: 10.1023/A:1009783625188. DOI

Krzaklewski W, Pietrzykowski M, WoŚ B. Survival and growth of alders (Alnus glutinosa (L.) Gaertn. and Alnus incana (L.) Moench) on fly ash technosols at different substrate improvement. Ecol. Eng. 2012;49:35–40. doi: 10.1016/j.ecoleng.2012.08.026. DOI

Rosenvald K, et al. Rhizosphere effect and fine-root morphological adaptations in a chronosequence of silver birch stands on reclaimed oil shale post-mining areas. Ecol. Eng. 2011;37:1027–1034. doi: 10.1016/j.ecoleng.2010.05.011. DOI

Šourková M, Frouz J, Šantrůčková H. Accumulation of carbon, nitrogen and phosphorus during soil formation on alder spoil heaps after brown-coal mining, near Sokolov (Czech Republic) Geoderma. 2005;124:203–214. doi: 10.1016/j.geoderma.2004.05.001. DOI

Roy S, Khasa DP, Greer CW. Combining alders, frankiae, and mycorrhizae for the revegetation and remediation of contaminated ecosystems. Can. J. Bot. 2007;85:237–251. doi: 10.1139/B07-017. DOI

Huth, V. et al. The climate warming effect of a fen peat meadow with fluctuating water table is reduced by young alder trees. 21, 1–18 (2018).

Biology, Controls and Models of Tree Volatile Organic Compound Emissions. vol. 5 (Springer Netherlands, (2013).

Maier M, Machacova K, Lang F, Svobodova K, Urban O. Combining soil and tree-stem flux measurements and soil gas profiles to understand CH4 pathways in Fagus sylvatica forests. J. Plant Nutr. Soil Sci. 2018;181:31–35. doi: 10.1002/jpln.201600405. DOI

Machacova K, Maier M, Svobodova K, Lang F, Urban O. Cryptogamic stem covers may contribute to nitrous oxide consumption by mature beech trees. Sci. Rep. 2017;7:1–7. doi: 10.1038/s41598-017-13781-7. PubMed DOI PMC

Niinemets Ü, et al. Environmental feedbacks in temperate aquatic ecosystems under global change: why do we need to consider chemical stressors? Reg. Environ. Chang. 2017;17:2079–2096. doi: 10.1007/s10113-017-1197-2. DOI

Unger IM, Kennedy AC, Muzika R-M. Flooding effects on soil microbial communities. Appl. Soil Ecol. 2009;42:1–8. doi: 10.1016/j.apsoil.2009.01.007. DOI

Unger IM, Motavalli PP, Muzika R-M. Changes in soil chemical properties with flooding: A field laboratory approach. Agric. Ecosyst. Environ. 2009;131:105–110. doi: 10.1016/j.agee.2008.09.013. DOI

Lohila A, et al. Responses of N2O fluxes to temperature, water table and N deposition in a northern boreal fen. Eur. J. Soil Sci. 2010;61:651–661. doi: 10.1111/j.1365-2389.2010.01265.x. DOI

Maljanen M, et al. The emissions of nitrous oxide and methane from natural soil temperature gradients in a volcanic area in southwest Iceland. Soil Biol. Biochem. 2017;109:70–80. doi: 10.1016/j.soilbio.2017.01.021. DOI

Mer JL, Roger P, Provence D, Luminy D. of methane by soils: A review. Archaea. 2001;37:25–50.

Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R. & Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philos. Trans. R. Soc. B Biol. Sci. 368 (2013). PubMed PMC

Pärn J, et al. Nitrogen-rich organic soils under warm well-drained conditions are global nitrous oxide emission hotspots. Nat. Commun. 2018;9:1–8. doi: 10.1038/s41467-017-02088-w. PubMed DOI PMC

Klemedtsson L, Svensson BH, Rosswall T. Relationships between soil moisture content and nitrous oxide production during nitrification and denitrification. Biol. Fertil. Soils. 1988;6:106–111.

Bateman EJ, Baggs EM. Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol. Fertil. Soils. 2005;41:379–388. doi: 10.1007/s00374-005-0858-3. DOI

Klemedtsson L, Svensson BH, Rosswall T. A method of selective inhibition to distinguish between nitrification and denitrification as sources of nitrous oxide in soil. Biol. Fertil. Soils. 1988;6:112–119.

Davidson EA, Swank WT. Environmental parameters regulating gaseous nitrogen losses from two forested ecosystems via nitrification and denitrification. Appl. Environ. Microbiol. 1986;52:1287–1292. doi: 10.1128/AEM.52.6.1287-1292.1986. PubMed DOI PMC

Keppler F, Hamilton JTG, Braß M, Röckmann T. Methane emissions from terrestrial plants under aerobic conditions. Nature. 2006;439:187–191. doi: 10.1038/nature04420. PubMed DOI

Terazawa K, Yamada K, Ohno Y, Sakata T, Ishizuka S. Spatial and temporal variability in methane emissions from tree stems of Fraxinus mandshurica in a cool-temperate floodplain forest. Biogeochemistry. 2015;123:349–362. doi: 10.1007/s10533-015-0070-y. DOI

Mander Ü, et al. The impact of a pulsing groundwater table on greenhouse gas emissions in riparian grey alder stands. Environ. Sci. Pollut. Res. 2015;22:2360–2371. doi: 10.1007/s11356-014-3427-1. PubMed DOI

Rice AL, et al. Emissions of anaerobically produced methane by trees. Geophys. Res. Lett. 2010;37:n/a–n/a. doi: 10.1029/2009GL041565. DOI

Pitz SL, Megonigal JP, Chang CH, Szlavecz K. Methane fluxes from tree stems and soils along a habitat gradient. Biogeochemistry. 2018;137:307–320. doi: 10.1007/s10533-017-0400-3. DOI

Machacova K, et al. Pinus sylvestris as a missing source of nitrous oxide and methane in boreal forest. Sci. Rep. 2016;6:1–8. doi: 10.1038/srep23410. PubMed DOI PMC

Machacova K, Vainio E, Urban O, Pihlatie M. Seasonal dynamics of stem N2O exchange follow the physiological activity of boreal trees. Nat. Commun. 2019;10:1–13. doi: 10.1038/s41467-019-12976-y. PubMed DOI PMC

Trenberth KE. Changes in precipitation with climate change. Clim. Res. 2011;47:123–138. doi: 10.3354/cr00953. DOI

Nicholls, R. J., Hoozemans, F. M. J. & Marchand, M. Increasing flood risk and wetland losses due to global sea-level rise: Regional and global analyses. Glob. Environ. Chang. 9 (1999).

Semmler T, Jacob D. Modeling extreme precipitation events - A climate change simulation for. Europe. Glob. Planet. Change. 2004;44:119–127. doi: 10.1016/j.gloplacha.2004.06.008. DOI

Blöschl G, et al. Changing climate both increases and decreases European river floods. Nature. 2019;573:108–111. doi: 10.1038/s41586-019-1495-6. PubMed DOI

Vargas R. & Barba. J. Greenhouse Gas Fluxes From Tree Stems. Trends Plant Sci. 2019;24:296–299. PubMed

Kupper P, et al. An experimental facility for free air humidity manipulation (FAHM) can alter water flux through deciduous tree canopy. Environ. Exp. Bot. 2011;72:432–438. doi: 10.1016/j.envexpbot.2010.09.003. DOI

Soosaar K, et al. Dynamics of gaseous nitrogen and carbon fluxes in riparian alder forests. Ecol. Eng. 2011;37:40–53. doi: 10.1016/j.ecoleng.2010.07.025. DOI

Livingston, G. P. & Hutchinson, G. L. Enclosure-based measurement of trace gas exchange: Applications and sources of error. in Biogenic Trace Gases: Measuring Emissions from Soil and Water (eds. Matson, P. A. & R.C., H.) 14–51 (Ed. Blackwell Publishing: Oxford, Unitel Kingdom (1995).

Collier, S. M., Ruark, M. D., Oates, L. G., Jokela, W. E. & Dell, C. J. Measurement of greenhouse gas flux from agricultural soils using static chambers. J. Vis. Exp. 10.3791/52110 (2014). PubMed PMC

Sjögersten Sofie, Siegenthaler Andy, Lopez Omar R., Aplin Paul, Turner Benjamin, Gauci Vincent. Methane emissions from tree stems in neotropical peatlands. New Phytologist. 2019;225(2):769–781. doi: 10.1111/nph.16178. PubMed DOI PMC

Apha, Water Environment Federation & American Water Works Association. Standard Methods for the Examination of Water and Wastewater (Part 1000–3000). Stand. Methods Exam. Water Wastewater 733, doi: ISBN 9780875532356 (1999).

Dray, S., Dufour, A. Ade4: Analysis of Ecological Data. Explor. Euclidean Methods Environ. Sci. 22 (2007).

Tierney, N. et al. Package ‘ naniar’ R topics documented: (2019).

Kowarik, A. & Templ, M. Imputation with the R package VIM. J. Stat. Softw. 74 (2016).

Josse, J. & Husson, F. missMDA: A Package for Handling Missing Values in Multivariate Data Analysis. J. Stat. Softw. 70 (2016).

Oksanen, J. et al. Package ‘ vegan’. 0–291 (2019).

Wang Y, Naumann U, Wright ST, Warton DI. Mvabund- an R package for model-based analysis of multivariate abundance data. Methods Ecol. Evol. 2012;3:471–474. doi: 10.1111/j.2041-210X.2012.00190.x. DOI

Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67 (2015).

Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 82 (2017).

Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ2018, 1–32 (2018). PubMed PMC

Quian, S. S. Environmental and Ecological Statistics with R. (ISBN9781315370262). 10.1201/9781315370262 2016.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...