Cryptogamic stem covers may contribute to nitrous oxide consumption by mature beech trees

. 2017 Oct 16 ; 7 (1) : 13243. [epub] 20171016

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29038453
Odkazy

PubMed 29038453
PubMed Central PMC5643534
DOI 10.1038/s41598-017-13781-7
PII: 10.1038/s41598-017-13781-7
Knihovny.cz E-zdroje

Naturally produced by microbial processes in soil, nitrous oxide (N2O) is an important greenhouse gas contributing to climate change. Accordingly, there is a need to accurately quantify the capability of forest ecosystems to exchange N2O with the atmosphere. While N2O emissions from soils have been well studied, trees have so far been overlooked in N2O inventories. Here, we show that stems of mature beech trees (Fagus sylvatica) may act as a substantial sink of N2O from the atmosphere under conditions of soils consuming N2O. Consistent consumption of N2O by all stems investigated (ranging between -2.4 and -3.8 µg m-2 h-1) is a novel finding in contrast to current studies presenting trees as N2O emitters. To understand these fluxes, N2O exchange of photoautotrophic organisms associated with beech bark (lichens, mosses and algae) was quantified under laboratory conditions. All these organisms were net N2O sinks at full rehydration and temperature of 25 °C. The consumption rates were comparable to stem consumption rates measured under field conditions. Cryptogamic stem covers could be a relevant sink of N2O in European beech forests.

Zobrazit více v PubMed

IPCC. Climate Change 2013: The Physical Science Basis. (eds Stocker, T. F. et al.) (IPCC(Intergovernmental Panel on Climate Change), Cambridge University Press, 2013).

EPA. Methane and Nitrous Oxide Emissions from Natural Sources. (eds Anderson, B. et al.) (Office of Atmospheric Programs, EPA (United States Environmental Protection Agency), 2010).

Wrage N, Velthof GL, van Beusichem ML, Oenema O. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol. Biochem. 2001;33:1723–1732. doi: 10.1016/S0038-0717(01)00096-7. DOI

Smith KA, et al. Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. Eur. J. Soil Sci. 2003;54:779–791. doi: 10.1046/j.1351-0754.2003.0567.x. DOI

Blagodatsky SA, Kesik M, Papen H, Butterbach-Bahl K. Production of NO and N2O by the heterotrophic nitrifier Alcaligenes faecalis parafaecalis under varying conditions of oxygen saturation. Geomicrobiol. J. 2006;23:165–176. doi: 10.1080/01490450600599221. DOI

Chapuis-Lardy L, Wrage N, Metay A, Chotte JL, Bernoux M. Soils, a sink for N2O? A review. Glob. Change Biol. 2007;13:1–17. doi: 10.1111/j.1365-2486.2006.01280.x. DOI

Davidson EA, Keller M, Erickson HE, Verchot LV, Veldkamp E. Testing a conceptual model of soil emissions of nitrous and nitric oxides. BioScience. 2000;50:667–680. doi: 10.1641/0006-3568(2000)050[0667:TACMOS]2.0.CO;2. DOI

Dalal RC, Allen DE. Turner Review No. 18: Greenhouse gas fluxes from natural ecosystems. Aust. J. Bot. 2008;56:369–407. doi: 10.1071/BT07128. DOI

Papen H, Daum M, Steinkamp R, Butterbach-Bahl K. N2O and CH4-fluxes from soils of a N-limited and N-fertilized spruce forest ecosystem of the temperate zone. J. Appl. Bot.-Angew. Bot. 2001;75:159–163.

Rosenkranz P, et al. N2O, NO and CH4 exchange, and microbial N turnover over a Mediterranean pine forest soil. Biogeosciences. 2006;3:121–133. doi: 10.5194/bg-3-121-2006. DOI

Rusch H, Rennenberg H. Black alder (Alnus glutinosa (L.) Gaertn.) trees mediate methane and nitrous oxide emission from the soil to the atmosphere. Plant Soil. 1998;201:1–7. doi: 10.1023/A:1004331521059. DOI

Pihlatie M, Ambus P, Rinne J, Pilegaard K, Vesala T. Plant-mediated nitrous oxide emissions from beech (Fagus sylvatica) leaves. New Phytol. 2005;168:93–98. doi: 10.1111/j.1469-8137.2005.01542.x. PubMed DOI

Machacova K, Papen H, Kreuzwieser J, Rennenberg H. Inundation strongly stimulates nitrous oxide emissions from stems of the upland tree Fagus sylvatica and the riparian tree Alnus glutinosa. Plant Soil. 2013;364:287–301. doi: 10.1007/s11104-012-1359-4. DOI

Díaz-Pinés E, et al. Nitrous oxide emissions from stems of ash (Fraxinus angustifolia Vahl) and European beech (Fagus sylvatica L.) Plant Soil. 2015;398:35–45. doi: 10.1007/s11104-015-2629-8. DOI

Smart DR, Bloom AJ. Wheat leaves emit nitrous oxide during nitrate assimilation. P. Natl. Acad. Sci. USA. 2001;98:7875–7878. doi: 10.1073/pnas.131572798. PubMed DOI PMC

Hakata M, Takahashi M, Zumft W, Sakamoto A, Morikawa H. Conversion of the nitrate nitrogen and nitrogen dioxide to nitrous oxides in plants. Acta Biotechnol. 2003;23:249–257. doi: 10.1002/abio.200390032. DOI

McBain MC, Warland JS, McBride RA, Wagner-Riddle C. Laboratory-scale measurements of N2O and CH4 emissions from hybrid poplars (Populus deltoides x Populus nigra) Waste Manage. Res. 2004;22:454–465. doi: 10.1177/0734242X04048832. PubMed DOI

Machacova, K. et al. Summer fluxes of nitrous oxide from boreal forest. Global Change: A Complex Challenge, conference proceedings (conference 4th Annual Global Change - A Complex Challenge, Brno, Czech Republic), 78–81 (2015).

Machacova, K. et al. Pinus sylvestris as a missing source of nitrous oxide and methane in boreal forest. Sci. Rep. 6, doi: 10.1038/srep23410 (2016). PubMed PMC

Chang C, Janzen HH, Cho CM, Nakonechny EM. Nitrous oxide emission through plants. Soil Sci. Soc. Am. J. 1998;62:35–38. doi: 10.2136/sssaj1998.03615995006200010005x. DOI

Ussiri, D. & Lal, R. Soil Emissions of Nitrous Oxide and Its Mitigation (eds Ussiri, D. & Lal, R.) (Springer Science and Business Media Dordrecht, 2013).

Elbert W, et al. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat. Geosci. 2012;5:459–462. doi: 10.1038/ngeo1486. DOI

Lenhart K, et al. Nitrous oxide and methane emissions from cryptogamic covers. Glob. Change Biol. 2015;21:3889–3900. doi: 10.1111/gcb.12995. PubMed DOI

Cornelissen JHC, Lang SI, Soudzilovskaia NA, During HJ. Comparative cryptogam ecology: a review of bryophyte and lichen traits that drive biogeochemistry. Ann. Bot. 2007;99:987–1001. doi: 10.1093/aob/mcm030. PubMed DOI PMC

Kuzyakov Y, Blagodatskaya E. Microbial hotspots and hot moments in soil: Concept & review. Soil Biol. Biochem. 2015;83:184–199. doi: 10.1016/j.soilbio.2015.01.025. DOI

Braker, G. & Conrad, R. Diversity, structure, and size of N2O-producing microbial communities in soils - What matters for their functioning? in Advances in Applied Microbiology, Vol. 75 (eds Laskin, A. I., Sariaslani, S. & Gadd, G. M.) 33–70 (Academic Press, 2011). PubMed

Weber B, Graf T, Bass M. Ecophysiological analysis of moss-dominated biological soil crusts and their separate components from the Succulent Karoo, South Africa. Planta. 2012;236:129–139. doi: 10.1007/s00425-012-1595-0. PubMed DOI

Farquhar GD, von Caemmerer S, Berry JA. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta. 1980;149:78–90. doi: 10.1007/BF00386231. PubMed DOI

Albert KR, Bruhn A, Ambus P. Nitrous oxide emission from Ulva lactuca incubated in batch cultures is stimulated by nitrite, nitrate and light. J. Exp. Mar. Biol. Ecol. 2013;448:37–45. doi: 10.1016/j.jembe.2013.06.010. DOI

Goshima N, et al. Emission of nitrous oxide (N2O) from transgenic tobacco expressing antisense NiR mRNA. Plant J. 1999;19:75–80. doi: 10.1046/j.1365-313X.1999.00494.x. PubMed DOI

Stewart KJ, Brummell ME, Farrell RE, Siciliano SD. N2O flux from plant-soil systems in polar deserts switch between sources and sinks under different light conditions. Soil Biol. Biochem. 2012;48:69–77. doi: 10.1016/j.soilbio.2012.01.016. DOI

Pentecost, W. & Whitton, B. A. Subaerial cyanobacteria in Ecology of Cyanobacteria II: Their Diversity in Space and Time (eds Whitton, B. A.) 291–316 (Springer, 2012).

Baumgärtner M, Koschorreck M, Conrad R. Oxidative consumption of nitric oxide by heterotrophic bacteria in soil. FEMS Microbiol. Ecol. 1996;19:165–170. doi: 10.1111/j.1574-6941.1996.tb00209.x. DOI

Bücking, W. An Overview - The strictly protected forest reserve “Conventwald” in Bannwald “Conventwald” (eds Bücking, W.) 191–192 (Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg, 2004).

Dong F, et al. Environmental effects on soil NO concentrations and root N uptake in beech and spruce forests. J. Plant Nutr. Soil Sci. 2016;179:244–256. doi: 10.1002/jpln.201500191. DOI

Darenova E, Pavelka M, Macalkova L. Spatial heterogeneity of CO2 efflux and optimization of the number of measurement positions. Eur. J. Soil Biol. 2016;75:123–134. doi: 10.1016/j.ejsobi.2016.05.004. DOI

FAO. World reference base for soil resources 2006 in World Soil Resources Reports, 103. (FAO (Food and Agriculture Organization of the United Nations), 2006).

Maier, M., Machacova, K., Lang, F., Svobodova, K. & Urban, O. Combining soil and tree-stem flux measurements and soil gas profiles to understand CH4 pathways in Fagus sylvatica forests. J. Plant Nutr. Soil Sci., doi: 10.1002/jpln.201600405 (2017).

Schack-Kirchner H, Gaertig T, Wilpert K, Hildebrand EE. A modified McIntyre and Phillip approach to measure top-soil gas diffusivity in-situ. J. Plant Nutr. Soil Sci. 2001;164:253–258. doi: 10.1002/1522-2624(200106)164:3<253::AID-JPLN253>3.0.CO;2-G. DOI

Laemmel, T., Maier, M., Schack-Kirchner, H. & Lang, F. An in situ method for real-time measurement of gas transport in soil. Eur. J. Soil Sci., doi:10.1111/ejss.12412 (2017).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...