Drivers of future alien species impacts: An expert-based assessment

. 2020 Sep ; 26 (9) : 4880-4893. [epub] 20200714

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32663906

Grantová podpora
I 3757-B29 Austrian Science Fund
I 4011-B32 Austrian Science Fund
COST
I 4011-B32 BiodivERsA-Belmont Forum Project
PCI2018-092939 BiodivERsA-Belmont Forum Project
CEECIND/ Fundação para a Ciência e a Tecnologia
02037 Fundação para a Ciência e a Tecnologia
/2017 Fundação para a Ciência e a Tecnologia
UIDB/ Fundação para a Ciência e a Tecnologia
00295/2020 Fundação para a Ciência e a Tecnologia
UIDP/00295/2020 Fundação para a Ciência e a Tecnologia
89967 National Research Foundation
FKZ 01LC1807A BMBF
01LC1807B BMBF
01LC1807C BMBF
FKZ 01LC1803A BMBF
19-28807X Czech Science Foundation
RVO 67985939 Czech Academy of Sciences
Fisheries and Oceans Canada
Transport Canada
NSERC
NE/ Natural Environment Research Council
R016429/1 Natural Environment Research Council
AFB-170008 CONICYT
DSI-NRF Centre of Excellence for Invasion Biology
(grant 18576/03) Oppenheimer Memorial Trust
1241932 National Science Foundation
1638702 National Science Foundation
CZ.02.1.01/0.0/0.0/16_019/0000803 OP RDE
31003A_179491 Swiss National Science Foundation - Switzerland
31BD30_184114 Swiss National Science Foundation - Switzerland

Understanding the likely future impacts of biological invasions is crucial yet highly challenging given the multiple relevant environmental, socio-economic and societal contexts and drivers. In the absence of quantitative models, methods based on expert knowledge are the best option for assessing future invasion trajectories. Here, we present an expert assessment of the drivers of potential alien species impacts under contrasting scenarios and socioecological contexts through the mid-21st century. Based on responses from 36 experts in biological invasions, moderate (20%-30%) increases in invasions, compared to the current conditions, are expected to cause major impacts on biodiversity in most socioecological contexts. Three main drivers of biological invasions-transport, climate change and socio-economic change-were predicted to significantly affect future impacts of alien species on biodiversity even under a best-case scenario. Other drivers (e.g. human demography and migration in tropical and subtropical regions) were also of high importance in specific global contexts (e.g. for individual taxonomic groups or biomes). We show that some best-case scenarios can substantially reduce potential future impacts of biological invasions. However, rapid and comprehensive actions are necessary to use this potential and achieve the goals of the Post-2020 Framework of the Convention on Biological Diversity.

Berlin Brandenburg Institute of Advanced Biodiversity Research Berlin Germany

Biodiversity Informatics Group African Institute for Mathematical Sciences Cape Town South Africa

CAS Key Laboratory of Marine Ecology and Environmental Sciences Institute of Oceanology Chinese Academy of Sciences Qingdao China

Centre for Geographical Studies Institute of Geography and Spatial Planning IGOT University of Lisbon Lisbon Portugal

Centre for Invasion Biology Department of Botany and Zoology Stellenbosch University Matieland South Africa

Centre for Invasion Biology Department of Mathematical Sciences Stellenbosch University Matieland South Africa

Departament de Ciències Ambientals Universitat de Girona Girona Spain

Department of Biodiversity and Nature Conservation Environment Agency Austria Vienna Austria

Department of Biology Federal University of Lavras Lavras Brazil

Department of Biology McGill University Montreal QC Canada

Department of Biology University of Fribourg Fribourg Switzerland

Department of Botany and Biodiversity Research University of Vienna Vienna Austria

Department of Community Ecology Helmholtz Centre for Environmental Research UFZ Halle Germany

Department of Ecology and Evolutionary Biology and Institute at Brown for Environment and Society Brown University Providence RI USA

Department of Ecology Faculty of Science Charles University Prague Czech Republic

Department of Environmental Science and Policy University of California Davis Davis CA USA

Department of Geography King's College London London UK

Department of Marine Sciences University of the Aegean Mytilene Greece

Department of Natural Resources Sciences The University of Rhode Island Kingston RI USA

Division of Environmental Biology National Science Foundation Alexandria VA USA

Ecologie Systématique Evolution AgroParisTech CNRS Université Paris Saclay Orsay France

Ecology Department of Biology University of Konstanz Konstanz Germany

Environmental Program Rubenstein School of Environment and Natural Resources University of Vermont Burlington VT USA

Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Czech Republic

Geobotany and Botanical Garden Martin Luther University Halle Wittenberg Halle Germany

German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany

Great Lakes Institute for Environmental Research University of Windsor Windsor ON Canada

Great Lakes Laboratory for Fisheries and Aquatic Sciences Fisheries and Oceans Canada Burlington ON Canada

Grupo de Ecología de Invasiones INIBIOMA CONICET Universidad Nacional del Comahue Bariloche Argentina

Institute for Environmental Protection and Research ISPRA Rome Italy

Institute of Biology Freie Universität Berlin Berlin Germany

Institute of Botany Department of Invasion Ecology Czech Academy of Sciences Průhonice Czech Republic

Institute of Ecology and Biodiversity Santiago Chile

Institute of Wildlife Biology and Game Management University of Natural Resources and Life Sciences Vienna Austria

International Initiative for Theoretical Ecology London UK

IUCN SSC Invasive Species Specialist Group Rome Italy

Laboratorio de Invasiones Biológicas Facultad de Ciencias Forestales Universidad de Concepción Concepción Chile

Leibniz Institute of Freshwater Ecology and Inland Fisheries Berlin Germany

School of Biological Sciences University of Auckland Auckland New Zealand

School of Environment McGill University Montreal QC Canada

School of Life Sciences University of Hawaii at Manoa Honolulu HI USA

Senckenberg Biodiversity and Climate Research Centre Frankfurt Germany

Smithsonian Environmental Research Center Edgewater MD USA

The Bio Protection Research Centre Lincoln University Christchurch New Zealand

UK Centre for Ecology and Hydrology Wallingford UK

US Forest Service Northern Research Station Morgantown WV USA

Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation Taizhou University Taizhou China

Zobrazit více v PubMed

Anderson, L. G. , Rocliffe, S. , Haddaway, N. R. , & Dunn, A. M. (2015). The role of tourism and recreation in the spread of non‐native species: A systematic review and meta‐analysis. PLoS One, 10, e0140833 10.1371/journal.pone.0140833 PubMed DOI PMC

Aukema, J. E. , Cullough, D. G. M. , Holle, B. V. , Liebhold, A. M. , Britton, K. , & Frankel, S. J. (2010). Historical accumulation of nonindigenous forest pests in the continental United States. BioScience, 60, 886–897. 10.1525/bio.2010.60.11.5 DOI

Bacher, S. , Blackburn, T. M. , Essl, F. , Genovesi, P. , Heikkilä, J. , Jeschke, J. M. , … Kumschick, S. (2018). Socio‐economic impact classification of alien taxa (SEICAT). Methods in Ecology and Evolution, 9, 159–168. 10.1111/2041-210X.12844 DOI

Bates, D. (2014). lme4: linear mixed‐effects models using S4 classes. R‐package version 1.1‐7. Retrieved from http://cran.r‐project.org/web/packages/lme4/index.html

Bellard, C. , Jeschke, J. M. , Leroy, B. , & Mace, G. M. (2018). Insights from modeling studies on how climate change affects invasive alien species geography. Ecology and Evolution, 8, 5688–5700. 10.1002/ece3.4098 PubMed DOI PMC

Bellard, C. , Thuiller, W. , Leroy, B. , Genovesi, P. , Bakkenes, M. , & Courchamp, F. (2013). Will climate change promote future invasions? Global Change Biology, 19, 3740–3748. 10.1111/gcb.12344 PubMed DOI PMC

Blackburn, T. M. , Dyer, E. E. , Su, S. , & Cassey, P. (2015). Long after the event, or four things we (should) know about bird invasions. Journal of Ornithology, 156, 15–25. 10.1007/s10336-015-1155-z DOI

Blackburn, T. M. , Essl, F. , Evans, T. , Hulme, P. E. , Jeschke, J. M. , Kühn, I. , … Bacher, S. (2014). A unified classification of alien species based on the magnitude of their environmental impacts. PLoS Biology, 12, e1001850 10.1371/journal.pbio.1001850 PubMed DOI PMC

Bobbink, R. , Hicks, K. , Galloway, J. , Spranger, T. , Alkemade, R. , Ashmore, M. , … De Vries, W. (2010). Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis. Ecological Applications, 20, 30–59. 10.1890/08-1140.1 PubMed DOI

Burgman, M. A. (2016). Trusting judgements: how to get the best out of experts. Cambridge, United Kingdom: Cambridge University Press.

Bush, E. R. , Baker, S. E. , & Macdonald, D. W. (2014). Global trade in exotic pets 2006–2012. Conservation Biology, 28, 663–676. 10.1111/cobi.12240 PubMed DOI

Caffrey, J. M. , Baars, J.‐R. , Barbour, J. H. , Boets, P. , Boon, P. , Davenport, K. , … Caffrey, J. M. (2014). Tackling invasive alien species in Europe: The top 20 issues. Management of Biological Invasions, 5, 1–20. 10.3391/mbi.2014.5.1.01 DOI

Carlton, J. T. , Chapman, J. W. , Geller, J. B. , Miller, J. A. , Carlton, D. A. , McCuller, M. I. , … Ruiz, G. M. (2017). Tsunami‐driven rafting: Transoceanic species dispersal and implications for marine biogeography. Science, 357, 1402–1406. 10.1126/science.aao1498 PubMed DOI

CBD . (2020). Zero draft of the post‐2020 global biodiversity framework. Retrieved from https://www.cbd.int/doc/c/efb0/1f84/a892b98d2982a829962b6371/wg2020‐02‐03‐en.pdf

Crooks, J. A. , Chang, A. L. , & Ruiz, G. M. (2011). Aquatic pollution increases the relative success of invasive species. Biological Invasions, 13, 165–176. 10.1007/s10530-010-9799-3 DOI

Crowley, S. L. , Hinchliffe, S. , & MacDonald, R. A. (2017). Conflict in invasive species management. Frontiers in Ecology and the Environment, 15, 133–141. 10.1002/fee.1471 DOI

Dawson, W. , Moser, D. , van Kleunen, M. , Kreft, H. , Pergl, J. , Pyšek, P. , … Essl, F. (2017). Global hotspots and correlates of alien species richness across taxonomic groups. Nature Ecology & Evolution, 1, 186 10.1038/s41559-017-0186 DOI

Dehnen‐Schmutz, K. , Boivin, T. , Essl, F. , Groom, Q. J. , Harrison, L. , Touza, J. M. , & Bayliss, H. (2018). Alien futures: What is on the horizon for biological invasions? Diversity and Distributions, 24, 1149–1157. 10.1111/ddi.12755 DOI

Dehnen‐Schmutz, K. , Touza, J. , Perrings, C. , & Williamson, M. (2007). A century of the ornamental plant trade and its impact on invasion success. Diversity and Distributions, 13, 527–534. 10.1111/j.1472-4642.2007.00359.x DOI

Di Castri, F. (1989). History of biological invasions with special emphasis on the old world In Drake J. A., Mooney H. A., Di Castri F., Groves R. H., Rejmanek M., & Williamson M. (Eds.), Biological invasions. A global perspective. Scope (Vol. 37, pp. 1–26). New York, NY: Wiley.

Drescher, M. , Perera, A. H. , Johnson, C. J. , Buse, L. J. , Drew, C. A. , & Burgman, M. A. (2013). Toward rigorous use of expert knowledge in ecological research. Ecosphere, 4, art83 10.1890/ES12-00415.1 DOI

Dullinger, I. , Wessely, J. , Bossdorf, O. , Dawson, W. , Essl, F. , Gattringer, A. , … Dullinger, S. (2017). Climate change will increase the naturalization risk from garden plants in Europe. Global Ecology and Biogeography, 26, 43–53. 10.1111/geb.12512 PubMed DOI PMC

Dyer, E. E. , Cassey, P. , Redding, D. W. , Collen, B. , Franks, V. , Gaston, K. J. , … Blackburn, T. M. (2017). The global distribution and drivers of alien bird species richness. PLoS Biology, 15, e2000942 10.1371/journal.pbio.2000942 PubMed DOI PMC

Eguíluz, V. M. , Fernández‐Gracia, J. , Irigoien, X. , & Duarte, C. M. (2016). A quantitative assessment of Arctic shipping in 2010–2014. Scientific Reports, 6(1), 2010–2014. 10.1038/srep30682 PubMed DOI PMC

Epanchin‐Niell, R. S. , Hufford, M. B. , Aslan, C. E. , Sexton, J. P. , Port, J. D. , & Waring, T. M. (2010). Controlling invasive species in complex social landscapes. Frontiers in Ecology and the Environment, 8, 210–216. 10.1890/090029 DOI

Essl, F. , Dullinger, S. , Rabitsch, W. , Hulme, P. E. , Hülber, K. , Jarošík, V. , … Pyšek, P. (2011). Socioeconomic legacy yields an invasion debt. Proceedings of the National Academy of Sciences of the United States of America, 108, 203–207. 10.1073/pnas.1011728108 PubMed DOI PMC

Essl, F. , Hulme, P. E. , Jeschke, J. M. , Keller, R. , Pyšek, P. , Richardson, D. M. , … Rabitsch, W. (2017). Scientific and normative foundations for the valuation of alien‐species impacts: Thirteen core principles. BioScience, 67, 166–178. 10.1093/biosci/biw160 DOI

Essl, F. , Lenzner, B. , Courchamp, F. , Dullinger, S. , Jeschke, J. M. , Kühn, I. , … Seebens, H. (2019). Introducing AlienScenarios: A project to develop scenarios and models of biological invasions for the 21st century. NeoBiota, 45, 1–17. 10.3897/neobiota.45.33366 DOI

Frick, G. , Boschung, H. , Schulz‐Schroeder, G. , Russ, G. , Ujcič‐Vrhovnik, I. , Jakovac‐Strajn, B. , … Jørgensen, J. S. (2011). Ragweed (Ambrosia sp.) seeds in bird feed. Biotechnologie, Agronomie, Societe et Environnement, 15, 39–44.

Gallardo, B. , & Aldridge, D. C. (2013). The ‘dirty dozen’: Socio‐economic factors amplify the invasion potential of 12 high‐risk aquatic invasive species in Great Britain and Ireland’. Journal of Applied Ecology, 50, 757–766. 10.1111/1365-2664.12079 DOI

Guisan, A. , & Harrell, F. E. (2000). Ordinal response regression models in ecology. Journal of Vegetation Science, 11, 617–626. 10.2307/3236568 DOI

Hannagan, R. J. , & Larimer, C. W. (2010). Does gender composition affect group decision outcomes? Evidence from a laboratory experiment. Political Behavior, 32, 51–67. 10.1007/s11109-009-9087-z DOI

Heinze, G. , & Schemper, M. (2002). A solution to the problem of separation in logistic regression. Statistics in Medicine, 21, 2409–2419. 10.1002/sim.1047 PubMed DOI

Huang, D. , Haack, R. A. , & Zhang, R. (2011). Does global warming increase establishment rates of invasive alien species? A centurial time series analysis. PLoS One, 6, e24733 10.1371/journal.pone.0024733 PubMed DOI PMC

Hui, C. , & Richardson, D. M. (2019). How to invade an ecological network. Trends in Ecology & Evolution, 34, 121–131. 10.1016/j.tree.2018.11.003 PubMed DOI

Hulme, P. E. (2009). Trade, transport and trouble: Managing invasive species pathways in an era of globalization. Journal of Applied Ecology, 46, 10–18. 10.1111/j.1365-2664.2008.01600.x DOI

Hulme, P. E. (2015). Invasion pathways at a crossroad: Policy and research challenges for managing alien species introductions. Journal of Applied Ecology, 52, 1418–1424. 10.1111/1365-2664.12470 DOI

Hulme, P. E. , Pauchard, A. , Pyšek, P. , Vilà, M. , Alba, C. , Blackburn, T. M. , … Winter, M. (2015). Challenging the view that invasive non‐native plants are not a significant threat to the floristic diversity of Great Britain. Proceedings of the National Academy of Sciences of the United States of America, 112 10.1073/pnas.1506517112 PubMed DOI PMC

Humair, F. , Humair, L. , Kühn, F. , & Kueffer, C. (2015). E‐commerce trade in invasive plants. Conservation Biology, 29, 1658–1665. 10.1111/cobi.12579 PubMed DOI

Hurtt, G. C. , Chini, L. P. , Frolking, S. , Betts, R. A. , Feddema, J. , Fischer, G. , … Wang, Y. P. (2011). Harmonization of land‐use scenarios for the period 1500–2100: 600 years of global gridded annual land‐use transitions, wood harvest, and resulting secondary lands. Climatic Change, 109, 117–161. 10.1007/s10584-011-0153-2 DOI

IPBES . (2016). Summary for policymakers of the methodological assessment of scenarios and models of biodiversity and ecosystem services of the Intergovernmental Science‐Policy Platform on Biodiversity and Ecosystem Services. Bonn, Germany: Secretariat of the Intergovernmental Science‐Policy Platform on Biodiversity and Ecosystem Services.

IPBES . (2019). Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science‐Policy Platform on Biodiversity and Ecosystem Services. In Brondizio E. S., Settele J., Díaz S. & Ngo H. T. (Eds.), Bonn, Germany: IPBES Secretariat.

IPCC . (2014). Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland: Author.

IRP ; Bringezu, S. , Ramaswami, A. , Schandl, H. , O’Brien, M. , Pelton, R. , Acquatella, J. , … Zivy, R. (2017). A report of the International Resource Panel. Nairobi, Kenya: United Nations Environment Programme.

Jeschke, J. M. , & Starzer, J. (2018). Propagule Pressure Hypothesis In Jeschke J. M., & Heger T. (Eds.), Invasion Biology ‐ Hypothesis and Evidence. CABI Invasives Series, Oxfordshire, UK: CABI, Wallingford.

Katsanevakis, S. , Coll, M. , Piroddi, C. , Steenbeek, J. , Ben Rais Lasram, F. , Zenetos, A , & Cardoso, A. C. , (2014). Invading the Mediterranean Sea: biodiversity patterns shaped by human activities. Frontiers in Marine Science, 1, 1–11. https://doi:10.3389/fmars.2014.00032 DOI

Krueger, T. , Page, T. , Hubacek, K. , Smith, L. , & Hiscock, K. (2012). The role of expert opinion in environmental modelling. Environmental Modelling & Software, 36, 4–18. 10.1016/j.envsoft.2012.01.011 DOI

Latombe, G. , Canavan, S. , Hirsch, H. , Hui, C. , Kumschick, S. , Nsikani, M. M. , … Richardson, D. M. (2019). A four‐component classification of uncertainties in biological invasions: Implications for management. Ecosphere, 10, e02669 10.1002/ecs2.2669 DOI

Lenzner, B. , Leclère, D. , Franklin, O. , Seebens, H. , Roura‐Pascual, N. , Obersteiner, M. , … Essl, F. (2019). A framework for global twenty‐first century scenarios and models of biological invasions. BioScience, 69, 697–710. 10.1093/biosci/biz070 PubMed DOI PMC

Lutz, W. , Butz, W. P. , & Samir, K. C. (2014). World population & human capital in the twenty‐first century. Oxford, UK: Oxford University Press.

MacMillan, D. C. , & Marshall, K. (2006). The Delphi process – An expert‐based approach to ecological modelling in data‐poor environments. Animal Conservation, 9, 11–19. 10.1111/j.1469-1795.2005.00001.x DOI

Mastrandrea, M. D. , Mach, K. J. , Plattner, G. K. , Edenhofer, O. , Stocker, T. F. , Field, C. B. , … Matschoss, P. R. (2011). The IPCC AR5 guidance note on consistent treatment of uncertainties: A common approach across the working groups. Climatic Change, 108, 675–691. 10.1007/s10584-011-0178-6 DOI

Melia, N. , Haines, K. , & Hawkins, E. (2016). Sea ice decline and 21st century trans‐Arctic shipping routes. Geophysical Research Letters, 43, 9720–9728. 10.1002/2016GL069315 DOI

Miller, A. W. , & Ruiz, G. M. (2014). Arctic shipping and marine invaders. Nature Climate Change, 4, 413–416. https://doi‐org/10.1038/nclimate2244 DOI

Moss, R. H. , Edmonds, J. A. , Hibbard, K. A. , Manning, M. R. , Rose, S. K. , Van Vuuren, D. P. , … Wilbanks, T. J. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463, 747–756. 10.1038/nature08823 PubMed DOI

Nuñez, M. A. , Barlow, J. , Cadotte, M. , Lucas, K. , Newton, E. , Pettorelli, N. , & Stephens, P. A. (2019). Assessing the uneven global distribution of readership, submissions and publications in applied ecology: Obvious problems without obvious solutions. Journal of Applied Ecology, 56, 4–9. 10.1111/1365-2664.13319 DOI

Pergl, J. , Pyšek, P. , Bacher, S. , Essl, F. , Genovesi, P. , Harrower, C. A. , … Nentwig, W. (2017). Troubling travellers: Are ecologically harmful alien species associated with particular introduction pathways? NeoBiota, 32, 1–20. 10.3897/neobiota.32.10199 DOI

Pickering, C. M. , Bear, R. , & Hill, W. (2007). Indirect impacts of nature based tourism and recreation: The association between infrastructure and the diversity of exotic plants in Kosciuszko National Park, Australia. Journal of Ecotourism, 6, 146–157. 10.2167/joe162.0 DOI

Preston, D. L. , Hedman, H. D. , & Johnson, P. T. J. (2018). Nutrient availability and invasive fish jointly drive community dynamics in an experimental aquatic system. Ecosphere, 9, e02153 10.1002/ecs2.2153 DOI

Pyšek, P. , Jarošík, V. , Hulme, P. E. , Kühn, I. , Wild, J. , Arianoutsou, M. , … Winter, M. (2010). Disentangling the role of environmental and human pressures on biological invasions across Europe. Proceedings of the National Academy of Sciences of the United States of America, 107, 12157–12162. 10.1073/pnas.1002314107 PubMed DOI PMC

Pyšek, P. , Manceur, A. M. , Alba, C. , McGregor, K. F. , Pergl, J. , Štajerová, K. , … Kühn, I. (2015). Naturalization of central European plants in North America: Species traits, habitats, propagule pressure, residence time. Ecology, 96, 762–774. 10.1890/14-1005.1 PubMed DOI

Reaser, J. K. , Meyerson, L. A. , & von Holle, B. (2008). Saving camels from straws: How propagule pressure‐based prevention policies can reduce the risk of biological invasion. Biological Invasions, 10, 1085–1098. 10.1007/s10530-007-9186-x DOI

Rech, S. , Borrell, Y. , & García‐Vazquez, E. (2016). Marine litter as a vector for non‐native species: What we need to know. Marine Pollution Bulletin, 113, 40–43. 10.1016/j.marpolbul.2016.08.032 PubMed DOI

Reino, L. , Figueira, R. , Beja, P. , Araújo, M. B. , Capinha, C. , & Strubbe, D. (2017). Networks of global bird invasion altered by regional trade ban. Science Advances, 3, 1–9. 10.1126/sciadv.1700783 PubMed DOI PMC

Ricciardi, A. , Blackburn, T. M. , Carlton, J. T. , Dick, J. T. A. , Hulme, P. E. , Iacarella, J. C. , … Aldridge, D. C. (2017). Invasion science: A horizon scan of emerging challenges and opportunities. Trends in Ecology & Evolution, 32, 464–474. 10.1016/j.tree.2017.03.007 PubMed DOI

Rigaud, K. K. , Sherbinin, A. D. , Jones, B. , Bergmann, J. , Clement, V. , Ober, K. , … Midgley, A. (2018). Groundswell – Preparing for internal climate migration. Washington, DC: World Bank.

Rodda, G. H. , Fritts, T. H. , & Conry, P. J. (1992). Origin and population growth of the brown tree snake, Boiga irregularis, on Guam. Pacific Science, 46, 46–57.

Roura‐Pascual, N. , Richardson, D. M. , Chapman, R. A. , Hichert, T. , & Krug, R. M. (2011). Managing biological invasions: Charting courses to desirable futures in the Cape Floristic Region. Regional Environmental Change, 11, 311–320. 10.1007/s10113-010-0133-5 DOI

Rowland, E. R. , Cross, M. S. , & Hartmann, H. (2014). Considering multiple futures: Scenario planning to address uncertainty in natural resource conservation. The United States Fish and Wildlife Service Washington, DC Retrieved from https://www.fws.gov/home/feature/2014/pdf/FinalScenarioPlanningDocument.pdf

Roy, H. E. , Bacher, S. , Essl, F. , Adriaens, T. , Aldridge, D. C. , Bishop, J. D. D. , … Rabitsch, W. (2018). Developing a list of invasive alien species likely to threaten biodiversity and ecosystems in the European Union. Global Change Biology, 25, 1032–1048. 10.1111/gcb.14527 PubMed DOI PMC

Sala, O. E. , Chapin, F. S. III , Armesto, J. J. , Berlow, E. , Bloomfield, J. , Dirzo, R. , … Hall, D. H. (2000). Global biodiversity scenarios for the year 2100. Science, 287, 1770–1774. 10.1126/science.287.5459.1770 PubMed DOI

Sardain, A. , Sardain, E. , & Leung, B. (2019). Global forecasts of shipping traffic and biological invasions to 2050. Nature Sustainability, 2, 274–282. 10.1038/s41893-019-0245-y DOI

Seebens, H. (2019). Invasion ecology: Expanding trade and the dispersal of alien species. Current Biology, 29, R120–R122. 10.1016/j.cub.2018.12.047 PubMed DOI

Seebens, H. , Blackburn, T. M. , Dyer, E. E. , Genovesi, P. , Hulme, P. E. , Jeschke, J. M. , … Essl, F. (2017). No saturation in the accumulation of alien species worldwide. Nature Communications, 8, 14435 10.1038/ncomms14435 PubMed DOI PMC

Seebens, H. , Blackburn, T. M. , Dyer, E. E. , Genovesi, P. , Hulme, P. E. , Jeschke, J. M. , … Essl, F. (2018). Global rise in emerging alien species results from increased accessibility of new source pools. Proceedings of the National Academy of Sciences of the United States of America, 115, E2264–E2273. 10.1073/pnas.1719429115 PubMed DOI PMC

Seebens, H. , Essl, F. , Dawson, W. , Fuentes, N. , Moser, D. , Pergl, J. , … Blasius, B. (2015). Global trade will accelerate plant invasions in emerging economies under climate change. Global Change Biology, 21, 4128–4140. 10.1111/gcb.13021 PubMed DOI

Shackleton, R. T. , Shackleton, C. M. , & Kull, C. A. (2019). The role of invasive alien species in shaping local livelihoods and human well‐being: A review. Journal of Environmental Management, 229, 145–157. 10.1016/j.jenvman.2018.05.007 PubMed DOI

Simberloff, D. , Martin, J.‐L. , Genovesi, P. , Maris, V. , Wardle, D. A. , Aronson, J. , … Vilà, M. (2013). Impacts of biological invasions: What’s what and the way forward. Trends in Ecology & Evolution, 28, 58–66. 10.1016/j.tree.2012.07.013 PubMed DOI

Sutherland, W. J. , Butchart, S. H. M. , Connor, B. , Culshaw, C. , Dicks, L. V. , Dinsdale, J. , … Gleave, R. A. (2018). A 2018 horizon scan of emerging issues for global conservation and biological diversity. Trends in Ecology & Evolution, 33, 47–58. 10.1016/j.tree.2017.11.006 PubMed DOI

United Nations . (2016). Transforming our world: The 2030 agenda for sustainable development. New York. Retrieved from https://sustainabledevelopment.un.org/content/documents/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf

UNWTO . (2018). UNWTO tourism highlights: 2018 edition. World Tourism Organization (UNWTO). Retrieved from https://www.e‐unwto.org/doi/pdf/10.18111/9789284419876 DOI

Uusitalo, L. (2007). Advantages and challenges of Bayesian networks in environmental modelling. Ecological Modelling, 203, 312–318. 10.1016/j.ecolmodel.2006.11.033 DOI

van Kleunen, M. , Dawson, W. , Essl, F. , Pergl, J. , Winter, M. , Weber, E. , … Pyšek, P. (2015). Global exchange and accumulation of non‐native plants. Nature, 525, 100–103. 10.1038/nature14910 PubMed DOI

van Kleunen, M. , Essl, F. , Pergl, J. , Brundu, G. , Carboni, M. , Dullinger, S. , … Dehnen‐Schmutz, K. (2018). The changing role of ornamental horticulture in alien plant invasions. Biological Reviews, 93, 1421–1437. 10.1111/brv.12402 PubMed DOI

Vilà, M. , Espinar, J. L. , Hejda, M. , Hulme, P. E. , Jarošík, V. , Maron, J. L. , … Pyšek, P. (2011). Ecological impacts of invasive alien plants: A meta‐analysis of their effects on species, communities and ecosystems. Ecology Letters, 14, 702–708. 10.1111/j.1461-0248.2011.01628.x PubMed DOI

Walther, G.‐R. , Roques, A. , Hulme, P. E. , Sykes, M. T. , Pyšek, P. , Kühn, I. , & Zobel, M. (2009). Alien species in a warmer world: risks and opportunities. Trends in Ecology and Evolution, 24, 686–693. 10.1016/j.tree.2009.06.008 PubMed DOI

Winter, M. , Schweiger, O. , Klotz, S. , Nentwig, W. , Andriopoulos, P. , Arianoutsou, M. , … Kühn, I. (2009). Plant extinctions and introductions lead to phylogenetic and taxonomic homogenization of the European flora. Proceedings of the National Academy of Sciences of the United States of America, 106, 21721–21725. 10.1073/pnas.0907088106 PubMed DOI PMC

Wonham, M. J. , Byers, J. E. , Grosholz, E. D. , & Leung, B. (2013). Modeling the relationship between propagule pressure and invasion risk to inform policy and management. Ecological Applications, 23, 1691–1706. 10.1890/12-1985.1 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace