• This record comes from PubMed

Drug-Drug Interactions of Cannabidiol with Standard-of-Care Chemotherapeutics

. 2023 Feb 02 ; 24 (3) : . [epub] 20230202

Language English Country Switzerland Media electronic

Document type Journal Article, Review

Grant support
CZ.02.1.01/0.0/0.0/16_019/0000868 ENOCH
20-28685S Czech Science Foundation
IGA_LF_2022_038 Internal grant of the University of Palacky
project CARD, DNRF 125 Danish National Research Foundation
Programme EXCELES, ID Project No. LX22NPO5102 European Union - Next Generation EU, National Institute for Cancer Research

Cannabidiol (CBD) is an easily accessible and affordable Marijuana (Cannabis sativa L.) plant derivative with an extensive history of medical use spanning thousands of years. Interest in the therapeutic potential of CBD has increased in recent years, including its anti-tumour properties in various cancer models. In addition to the direct anticancer effects of CBD, preclinical research on numerous cannabinoids, including CBD, has highlighted their potential use in: (i) attenuating chemotherapy-induced adverse effects and (ii) enhancing the efficacy of some anticancer drugs. Therefore, CBD is gaining popularity as a supportive therapy during cancer treatment, often in combination with standard-of-care cancer chemotherapeutics. However, CBD is a biologically active substance that modulates various cellular targets, thereby possibly resulting in unpredictable outcomes, especially in combinations with other medications and therapeutic modalities. In this review, we summarize the current knowledge of CBD interactions with selected anticancer chemotherapeutics, discuss the emerging mechanistic basis for the observed biological effects, and highlight both the potential benefits and risks of such combined treatments. Apart from the experimental and preclinical results, we also indicate the planned or ongoing clinical trials aiming to evaluate the impact of CBD combinations in oncology. The results of these and future trials are essential to provide better guidance for oncologists to judge the benefit-versus-risk ratio of these exciting treatment strategies. We hope that our present overview of this rapidly advancing field of biomedicine will inspire more preclinical and clinical studies to further our understanding of the underlying biology and optimize the benefits for cancer patients.

See more in PubMed

Scripture C.D., Figg W.D. Drug Interactions in Cancer Therapy. Nat. Rev. Cancer. 2006;6:546–558. doi: 10.1038/nrc1887. PubMed DOI

Pergam S.A., Woodfield M.C., Lee C.M., Cheng G.-S., Baker K.K., Marquis S.R., Fann J.R. Cannabis Use among Patients at a Comprehensive Cancer Center in a State with Legalized Medicinal and Recreational Use. Cancer. 2017;123:4488–4497. doi: 10.1002/cncr.30879. PubMed DOI PMC

Weiss M.C., Hibbs J.E., Buckley M.E., Danese S.R., Leitenberger A., Bollmann-Jenkins M., Meske S.W., Aliano-Ruiz K.E., McHugh T.W., Larson S.L., et al. A Coala-T-Cannabis Survey Study of Breast Cancer Patients’ Use of Cannabis before, during, and after Treatment. Cancer. 2022;128:160–168. doi: 10.1002/cncr.33906. PubMed DOI PMC

Aizpurua-Olaizola O., Soydaner U., Öztürk E., Schibano D., Simsir Y., Navarro P., Etxebarria N., Usobiaga A. Evolution of the Cannabinoid and Terpene Content during the Growth of Cannabis Sativa Plants from Different Chemotypes. J. Nat. Prod. 2016;79:324–331. doi: 10.1021/acs.jnatprod.5b00949. PubMed DOI

ElSohly M.A., Radwan M.M., Gul W., Chandra S., Galal A. Phytochemistry of Cannabis Sativa L. Prog. Chem. Org. Nat. Prod. 2017;103:1–36. doi: 10.1007/978-3-319-45541-9_1. PubMed DOI

Brown J.D., Winterstein A.G. Potential Adverse Drug Events and Drug-Drug Interactions with Medical and Consumer Cannabidiol (CBD) Use. J. Clin. Med. 2019;8:989. doi: 10.3390/jcm8070989. PubMed DOI PMC

Devinsky O., Patel A.D., Cross J.H., Villanueva V., Wirrell E.C., Privitera M., Greenwood S.M., Roberts C., Checketts D., VanLandingham K.E., et al. Effect of Cannabidiol on Drop Seizures in the Lennox-Gastaut Syndrome. N. Engl. J. Med. 2018;378:1888–1897. doi: 10.1056/NEJMoa1714631. PubMed DOI

Devinsky O., Cross J.H., Wright S. Trial of Cannabidiol for Drug-Resistant Seizures in the Dravet Syndrome. N. Engl. J. Med. 2017;377:699–700. doi: 10.1056/NEJMoa1611618. PubMed DOI

Hess E.J., Moody K.A., Geffrey A.L., Pollack S.F., Skirvin L.A., Bruno P.L., Paolini J.L., Thiele E.A. Cannabidiol as a New Treatment for Drug-Resistant Epilepsy in Tuberous Sclerosis Complex. Epilepsia. 2016;57:1617–1624. doi: 10.1111/epi.13499. PubMed DOI

Thiele E.A., Marsh E.D., French J.A., Mazurkiewicz-Beldzinska M., Benbadis S.R., Joshi C., Lyons P.D., Taylor A., Roberts C., Sommerville K., et al. Cannabidiol in Patients with Seizures Associated with Lennox-Gastaut Syndrome (GWPCARE4): A Randomised, Double-Blind, Placebo-Controlled Phase 3 Trial. Lancet. 2018;391:1085–1096. doi: 10.1016/S0140-6736(18)30136-3. PubMed DOI

Epidiolex: Highlights of Prescribing Information. [(accessed on 1 February 2023)]. Available online: https://www.epidiolex.com/sites/default/files/pdfs/0222/0222-epidiolex_(cannabidiol)_uspi.pdf.

Leweke F.M., Piomelli D., Pahlisch F., Muhl D., Gerth C.W., Hoyer C., Klosterkötter J., Hellmich M., Koethe D. Cannabidiol Enhances Anandamide Signaling and Alleviates Psychotic Symptoms of Schizophrenia. Transl. Psychiatry. 2012;2:e94. doi: 10.1038/tp.2012.15. PubMed DOI PMC

Chagas M.H.N., Zuardi A.W., Tumas V., Pena-Pereira M.A., Sobreira E.T., Bergamaschi M.M., dos Santos A.C., Teixeira A.L., Hallak J.E.C., Crippa J.A.S. Effects of Cannabidiol in the Treatment of Patients with Parkinson’s Disease: An Exploratory Double-Blind Trial. J. Psychopharmacol. 2014;28:1088–1098. doi: 10.1177/0269881114550355. PubMed DOI

Naftali T., Mechulam R., Marii A., Gabay G., Stein A., Bronshtain M., Laish I., Benjaminov F., Konikoff F.M. Low-Dose Cannabidiol Is Safe but Not Effective in the Treatment for Crohn’s Disease, a Randomized Controlled Trial. Dig. Dis. Sci. 2017;62:1615–1620. doi: 10.1007/s10620-017-4540-z. PubMed DOI

Crippa J.A.S., Derenusson G.N., Ferrari T.B., Wichert-Ana L., Duran F.L.S., Martin-Santos R., Simões M.V., Bhattacharyya S., Fusar-Poli P., Atakan Z., et al. Neural Basis of Anxiolytic Effects of Cannabidiol (CBD) in Generalized Social Anxiety Disorder: A Preliminary Report. J. Psychopharmacol. 2011;25:121–130. doi: 10.1177/0269881110379283. PubMed DOI

Larsen C., Shahinas J. Dosage, Efficacy and Safety of Cannabidiol Administration in Adults: A Systematic Review of Human Trials. J. Clin. Med. Res. 2020;12:129–141. doi: 10.14740/jocmr4090. PubMed DOI PMC

Thomas A., Baillie G.L., Phillips A.M., Razdan R.K., Ross R.A., Pertwee R.G. Cannabidiol Displays Unexpectedly High Potency as an Antagonist of CB1 and CB2 Receptor Agonists in Vitro. Br. J. Pharmacol. 2007;150:613–623. doi: 10.1038/sj.bjp.0707133. PubMed DOI PMC

Bisogno T., Hanuš L., De Petrocellis L., Tchilibon S., Ponde D.E., Brandi I., Moriello A.S., Davis J.B., Mechoulam R., Di Marzo V. Molecular Targets for Cannabidiol and Its Synthetic Analogues: Effect on Vanilloid VR1 Receptors and on the Cellular Uptake and Enzymatic Hydrolysis of Anandamide. Br. J. Pharmacol. 2001;134:845–852. doi: 10.1038/sj.bjp.0704327. PubMed DOI PMC

Qin N., Neeper M.P., Liu Y., Hutchinson T.L., Lubin M.L., Flores C.M. TRPV2 Is Activated by Cannabidiol and Mediates CGRP Release in Cultured Rat Dorsal Root Ganglion Neurons. J. Neurosci. 2008;28:6231–6238. doi: 10.1523/JNEUROSCI.0504-08.2008. PubMed DOI PMC

O’Sullivan S.E., Sun Y., Bennett A.J., Randall M.D., Kendall D.A. Time-Dependent Vascular Actions of Cannabidiol in the Rat Aorta. Eur. J. Pharmacol. 2009;612:61–68. doi: 10.1016/j.ejphar.2009.03.010. PubMed DOI

Russo E.B., Burnett A., Hall B., Parker K.K. Agonistic Properties of Cannabidiol at 5-HT1a Receptors. Neurochem. Res. 2005;30:1037–1043. doi: 10.1007/s11064-005-6978-1. PubMed DOI

Ryberg E., Larsson N., Sjögren S., Hjorth S., Hermansson N.-O., Leonova J., Elebring T., Nilsson K., Drmota T., Greasley P.J. The Orphan Receptor GPR55 Is a Novel Cannabinoid Receptor. Br. J. Pharmacol. 2007;152:1092–1101. doi: 10.1038/sj.bjp.0707460. PubMed DOI PMC

Carrier E.J., Auchampach J.A., Hillard C.J. Inhibition of an Equilibrative Nucleoside Transporter by Cannabidiol: A Mechanism of Cannabinoid Immunosuppression. Proc. Natl. Acad. Sci. USA. 2006;103:7895–7900. doi: 10.1073/pnas.0511232103. PubMed DOI PMC

Holland M.L., Lau D.T.T., Allen J.D., Arnold J.C. The Multidrug Transporter ABCG2 (BCRP) Is Inhibited by Plant-Derived Cannabinoids. Br. J. Pharmacol. 2007;152:815–824. doi: 10.1038/sj.bjp.0707467. PubMed DOI PMC

Holland M.L., Panetta J.A., Hoskins J.M., Bebawy M., Roufogalis B.D., Allen J.D., Arnold J.C. The Effects of Cannabinoids on P-Glycoprotein Transport and Expression in Multidrug Resistant Cells. Biochem. Pharmacol. 2006;71:1146–1154. doi: 10.1016/j.bcp.2005.12.033. PubMed DOI

Zhu H.-J., Wang J.-S., Markowitz J.S., Donovan J.L., Gibson B.B., Gefroh H.A., Devane C.L. Characterization of P-Glycoprotein Inhibition by Major Cannabinoids from Marijuana. J. Pharmacol. Exp. Ther. 2006;317:850–857. doi: 10.1124/jpet.105.098541. PubMed DOI

Borges R.S., Batista J., Viana R.B., Baetas A.C., Orestes E., Andrade M.A., Honório K.M., da Silva A.B.F. Understanding the Molecular Aspects of Tetrahydrocannabinol and Cannabidiol as Antioxidants. Molecules. 2013;18:12663–12674. doi: 10.3390/molecules181012663. PubMed DOI PMC

Wu H.-Y., Chu R.-M., Wang C.-C., Lee C.-Y., Lin S.-H., Jan T.-R. Cannabidiol-Induced Apoptosis in Primary Lymphocytes Is Associated with Oxidative Stress-Dependent Activation of Caspase-8. Toxicol. Appl. Pharmacol. 2008;226:260–270. doi: 10.1016/j.taap.2007.09.012. PubMed DOI

Mortimer T.L., Mabin T., Engelbrecht A.-M. Cannabinoids: The Lows and the Highs of Chemotherapy-Induced Nausea and Vomiting. Future Oncol. 2019;15:1035–1049. doi: 10.2217/fon-2018-0530. PubMed DOI

Pisanti S., Malfitano A.M., Ciaglia E., Lamberti A., Ranieri R., Cuomo G., Abate M., Faggiana G., Proto M.C., Fiore D., et al. Cannabidiol: State of the Art and New Challenges for Therapeutic Applications. Pharmacol. Ther. 2017;175:133–150. doi: 10.1016/j.pharmthera.2017.02.041. PubMed DOI

Farber S., Diamond L.K. Temporary Remissions in Acute Leukemia in Children Produced by Folic Acid Antagonist, 4-Aminopteroyl-Glutamic Acid. N. Engl. J. Med. 1948;238:787–793. doi: 10.1056/NEJM194806032382301. PubMed DOI

Luengo A., Gui D.Y., Vander Heiden M.G. Targeting Metabolism for Cancer Therapy. Cell Chem. Biol. 2017;24:1161–1180. doi: 10.1016/j.chembiol.2017.08.028. PubMed DOI PMC

Cuba L. de F.; Salum, F.G.; Guimarães, F.S.; Cherubini, K.; Borghetti, R.L.; de Figueiredo, M.A.Z. Cannabidiol on 5-FU-Induced Oral Mucositis in Mice. Oral Dis. 2020;26:1483–1493. doi: 10.1111/odi.13413. PubMed DOI

Leaf Vertical Inc . Randomized Double-Blind, Placebo-Controlled Parallel Multi-Center Study to Assess the Efficacy of Cannabidiol (BRCX014) Combined with Standard-of-Care Treatment in Subjects with Multiple Myeloma, Glioblastoma Multiforme, and GI Malignancies. Clinicaltrials.gov; Bethesda, MD, USA: 2018.

Toschi L., Finocchiaro G., Bartolini S., Gioia V., Cappuzzo F. Role of Gemcitabine in Cancer Therapy. Future Oncol. 2005;1:7–17. doi: 10.1517/14796694.1.1.7. PubMed DOI

Ferro R., Adamska A., Lattanzio R., Mavrommati I., Edling C.E., Arifin S.A., Fyffe C.A., Sala G., Sacchetto L., Chiorino G., et al. GPR55 Signalling Promotes Proliferation of Pancreatic Cancer Cells and Tumour Growth in Mice, and Its Inhibition Increases Effects of Gemcitabine. Oncogene. 2018;37:6368–6382. doi: 10.1038/s41388-018-0390-1. PubMed DOI

Oka S., Nakajima K., Yamashita A., Kishimoto S., Sugiura T. Identification of GPR55 as a Lysophosphatidylinositol Receptor. Biochem. Biophys. Res. Commun. 2007;362:928–934. doi: 10.1016/j.bbrc.2007.08.078. PubMed DOI

Piñeiro R., Maffucci T., Falasca M. The Putative Cannabinoid Receptor GPR55 Defines a Novel Autocrine Loop in Cancer Cell Proliferation. Oncogene. 2011;30:142–152. doi: 10.1038/onc.2010.417. PubMed DOI

Luongo M., Marinelli O., Zeppa L., Aguzzi C., Morelli M.B., Amantini C., Frassineti A., di Costanzo M., Fanelli A., Santoni G., et al. Cannabidiol and Oxygen-Ozone Combination Induce Cytotoxicity in Human Pancreatic Ductal Adenocarcinoma Cell Lines. Cancers. 2020;12:2774. doi: 10.3390/cancers12102774. PubMed DOI PMC

Hagner N., Joerger M. Cancer Chemotherapy: Targeting Folic Acid Synthesis. Cancer Manag. Res. 2010;2:293–301. doi: 10.2147/CMR.S10043. PubMed DOI PMC

Koźmiński P., Halik P.K., Chesori R., Gniazdowska E. Overview of Dual-Acting Drug Methotrexate in Different Neurological Diseases, Autoimmune Pathologies and Cancers. Int. J. Mol. Sci. 2020;21:3483. doi: 10.3390/ijms21103483. PubMed DOI PMC

Purcell W.T., Ettinger D.S. Novel Antifolate Drugs. Curr. Oncol. Rep. 2003;5:114–125. doi: 10.1007/s11912-003-0098-3. PubMed DOI

Mao Q., Unadkat J.D. Role of the Breast Cancer Resistance Protein (ABCG2) in Drug Transport. AAPS J. 2005;7:E118–E133. doi: 10.1208/aapsj070112. PubMed DOI PMC

Fu D., Calvo J.A., Samson L.D. Balancing Repair and Tolerance of DNA Damage Caused by Alkylating Agents. Nat. Rev. Cancer. 2012;12:104–120. doi: 10.1038/nrc3185. PubMed DOI PMC

Puyo S., Montaudon D., Pourquier P. From Old Alkylating Agents to New Minor Groove Binders. Crit. Rev. Oncol. Hematol. 2014;89:43–61. doi: 10.1016/j.critrevonc.2013.07.006. PubMed DOI

Adair F.E., Bagg H.J. Experimental and clinical studies on the treatment of cancer by dichlorethylsulphide (mustard gas) Ann. Surg. 1931;93:190–199. doi: 10.1097/00000658-193101000-00026. PubMed DOI PMC

Brandes A.A., Bartolotti M., Tosoni A., Franceschi E. Nitrosoureas in the Management of Malignant Gliomas. Curr. Neurol. Neurosci. Rep. 2016;16:13. doi: 10.1007/s11910-015-0611-8. PubMed DOI

Weiss R.B., Issell B.F. The Nitrosoureas: Carmustine (BCNU) and Lomustine (CCNU) Cancer Treat Rev. 1982;9:313–330. doi: 10.1016/S0305-7372(82)80043-1. PubMed DOI

Nabissi M., Morelli M.B., Santoni M., Santoni G. Triggering of the TRPV2 Channel by Cannabidiol Sensitizes Glioblastoma Cells to Cytotoxic Chemotherapeutic Agents. Carcinogenesis. 2013;34:48–57. doi: 10.1093/carcin/bgs328. PubMed DOI

Likar R., Nahler G. The Use of Cannabis in Supportive Care and Treatment of Brain Tumor. Neurooncol. Pract. 2017;4:151–160. doi: 10.1093/nop/npw027. PubMed DOI PMC

Chuang L.S.H., Ito K., Ito Y. RUNX Family: Regulation and Diversification of Roles through Interacting Proteins. Int. J. Cancer. 2013;132:1260–1271. doi: 10.1002/ijc.27964. PubMed DOI

Nabissi M., Morelli M.B., Amantini C., Liberati S., Santoni M., Ricci-Vitiani L., Pallini R., Santoni G. Cannabidiol Stimulates Aml-1a-Dependent Glial Differentiation and Inhibits Glioma Stem-like Cells Proliferation by Inducing Autophagy in a TRPV2-Dependent Manner. Int. J. Cancer. 2015;137:1855–1869. doi: 10.1002/ijc.29573. PubMed DOI

Deng L., Ng L., Ozawa T., Stella N. Quantitative Analyses of Synergistic Responses between Cannabidiol and DNA-Damaging Agents on the Proliferation and Viability of Glioblastoma and Neural Progenitor Cells in Culture. J. Pharmacol. Exp. Ther. 2017;360:215–224. doi: 10.1124/jpet.116.236968. PubMed DOI PMC

Arora A., Somasundaram K. Glioblastoma vs Temozolomide: Can the Red Queen Race Be Won? Cancer Biol. Ther. 2019;20:1083–1090. doi: 10.1080/15384047.2019.1599662. PubMed DOI PMC

Singh N., Miner A., Hennis L., Mittal S. Mechanisms of Temozolomide Resistance in Glioblastoma—A Comprehensive Review. Cancer Drug Resist. 2021;4:17–43. doi: 10.20517/cdr.2020.79. PubMed DOI PMC

Baumert B.G., Hegi M.E., van den Bent M.J., von Deimling A., Gorlia T., Hoang-Xuan K., Brandes A.A., Kantor G., Taphoorn M.J.B., Hassel M.B., et al. Temozolomide Chemotherapy versus Radiotherapy in High-Risk Low-Grade Glioma (EORTC 22033-26033): A Randomised, Open-Label, Phase 3 Intergroup Study. Lancet Oncol. 2016;17:1521–1532. doi: 10.1016/S1470-2045(16)30313-8. PubMed DOI PMC

Chang W.-H., Cerione R.A., Antonyak M.A. Extracellular Vesicles and Their Roles in Cancer Progression. Methods Mol. Biol. 2021;2174:143–170. doi: 10.1007/978-1-0716-0759-6_10. PubMed DOI PMC

Kosgodage U.S., Uysal-Onganer P., MacLatchy A., Mould R., Nunn A.V., Guy G.W., Kraev I., Chatterton N.P., Thomas E.L., Inal J.M., et al. Cannabidiol Affects Extracellular Vesicle Release, MiR21 and MiR126, and Reduces Prohibitin Protein in Glioblastoma Multiforme Cells. Transl. Oncol. 2019;12:513–522. doi: 10.1016/j.tranon.2018.12.004. PubMed DOI PMC

López-Valero I., Saiz-Ladera C., Torres S., Hernández-Tiedra S., García-Taboada E., Rodríguez-Fornés F., Barba M., Dávila D., Salvador-Tormo N., Guzmán M., et al. Targeting Glioma Initiating Cells with A Combined Therapy of Cannabinoids and Temozolomide. Biochem. Pharmacol. 2018;157:266–274. doi: 10.1016/j.bcp.2018.09.007. PubMed DOI

Huang T., Xu T., Wang Y., Zhou Y., Yu D., Wang Z., He L., Chen Z., Zhang Y., Davidson D., et al. Cannabidiol Inhibits Human Glioma by Induction of Lethal Mitophagy through Activating TRPV4. Autophagy. 2021;17:3592–3606. doi: 10.1080/15548627.2021.1885203. PubMed DOI PMC

Likar R., Koestenberger M., Stultschnig M., Nahler G. Concomitant Treatment of Malignant Brain Tumours With CBD—A Case Series and Review of the Literature. Anticancer Res. 2019;39:5797–5801. doi: 10.21873/anticanres.13783. PubMed DOI

Leaf Vertical Inc . A Phase I Study of BRCX014 to Investigate Dose-Ranging Safety and Pharmacokinetics in Adults with Glioblastoma (GBM) and Non-Methylated MGMT Gene Status. Clinicaltrials.gov; Bethesda, MD, USA: 2019.

Ghosh S. Cisplatin: The First Metal Based Anticancer Drug. Bioorg. Chem. 2019;88:102925. doi: 10.1016/j.bioorg.2019.102925. PubMed DOI

Pan H., Mukhopadhyay P., Rajesh M., Patel V., Mukhopadhyay B., Gao B., Haskó G., Pacher P. Cannabidiol Attenuates Cisplatin-Induced Nephrotoxicity by Decreasing Oxidative/Nitrosative Stress, Inflammation, and Cell Death. J. Pharmacol. Exp. Ther. 2009;328:708–714. doi: 10.1124/jpet.108.147181. PubMed DOI PMC

Kwiatkowska M., Parker L.A., Burton P., Mechoulam R. A Comparative Analysis of the Potential of Cannabinoids and Ondansetron to Suppress Cisplatin-Induced Emesis in the Suncus Murinus (House Musk Shrew) Psychopharmacology. 2004;174:254–259. doi: 10.1007/s00213-003-1739-9. PubMed DOI

Rock E.M., Bolognini D., Limebeer C.L., Cascio M.G., Anavi-Goffer S., Fletcher P.J., Mechoulam R., Pertwee R.G., Parker L.A. Cannabidiol, a Non-Psychotropic Component of Cannabis, Attenuates Vomiting and Nausea-like Behaviour via Indirect Agonism of 5-HT(1A) Somatodendritic Autoreceptors in the Dorsal Raphe Nucleus. Br. J. Pharmacol. 2012;165:2620–2634. doi: 10.1111/j.1476-5381.2011.01621.x. PubMed DOI PMC

Parker L.A., Rock E.M., Limebeer C.L. Regulation of Nausea and Vomiting by Cannabinoids. Br. J. Pharmacol. 2011;163:1411–1422. doi: 10.1111/j.1476-5381.2010.01176.x. PubMed DOI PMC

Bolognini D., Rock E.M., Cluny N.L., Cascio M.G., Limebeer C.L., Duncan M., Stott C.G., Javid F.A., Parker L.A., Pertwee R.G. Cannabidiolic Acid Prevents Vomiting in Suncus Murinus and Nausea-Induced Behaviour in Rats by Enhancing 5-HT1A Receptor Activation. Br. J. Pharmacol. 2013;168:1456–1470. doi: 10.1111/bph.12043. PubMed DOI PMC

Marinelli O., Morelli M.B., Annibali D., Aguzzi C., Zeppa L., Tuyaerts S., Amantini C., Amant F., Ferretti B., Maggi F., et al. The Effects of Cannabidiol and Prognostic Role of TRPV2 in Human Endometrial Cancer. Int. J. Mol. Sci. 2020;21:5409. doi: 10.3390/ijms21155409. PubMed DOI PMC

Fraguas-Sánchez A.I., Fernández-Carballido A., Delie F., Cohen M., Martin-Sabroso C., Mezzanzanica D., Figini M., Satta A., Torres-Suárez A.I. Enhancing Ovarian Cancer Conventional Chemotherapy through the Combination with Cannabidiol Loaded Microparticles. Eur. J. Pharm. Biopharm. 2020;154:246–258. doi: 10.1016/j.ejpb.2020.07.008. PubMed DOI

Raymond E., Faivre S., Chaney S., Woynarowski J., Cvitkovic E. Cellular and Molecular Pharmacology of Oxaliplatin. Mol. Cancer Ther. 2002;1:227–235. PubMed

Riddell I.A. Cisplatin and Oxaliplatin: Our Current Understanding of Their Actions. Met. Ions Life Sci. 2018;18 doi: 10.1515/9783110470734-007. PubMed DOI

Ozdian T., Holub D., Maceckova Z., Varanasi L., Rylova G., Rehulka J., Vaclavkova J., Slavik H., Moudry P., Znojek P., et al. Proteomic Profiling Reveals DNA Damage, Nucleolar and Ribosomal Stress Are the Main Responses to Oxaliplatin Treatment in Cancer Cells. J. Proteomics. 2017;162:73–85. doi: 10.1016/j.jprot.2017.05.005. PubMed DOI

King K.M., Myers A.M., Soroka-Monzo A.J., Tuma R.F., Tallarida R.J., Walker E.A., Ward S.J. Single and Combined Effects of Δ9 -Tetrahydrocannabinol and Cannabidiol in a Mouse Model of Chemotherapy-Induced Neuropathic Pain. Br. J. Pharmacol. 2017;174:2832–2841. doi: 10.1111/bph.13887. PubMed DOI PMC

Pereira A.F., Lisboa M.R.P., de Freitas Alves B.W., da Silva C.M.P., Dias D.B.S., de Menezes K.L.S., Cesário F.R.A.S., de França J.C., de Oliveira A.R., Hallak J.E.C., et al. Endocannabinoid System Attenuates Oxaliplatin-Induced Peripheral Sensory Neuropathy Through the Activation of CB1 Receptors. Neurotox Res. 2021;39:1782–1799. doi: 10.1007/s12640-021-00442-x. PubMed DOI

Jeong S., Kim B.G., Kim D.Y., Kim B.R., Kim J.L., Park S.H., Na Y.J., Jo M.J., Yun H.K., Jeong Y.A., et al. Cannabidiol Overcomes Oxaliplatin Resistance by Enhancing NOS3- and SOD2-Induced Autophagy in Human Colorectal Cancer Cells. Cancers. 2019;11:781. doi: 10.3390/cancers11060781. PubMed DOI PMC

Lokich J., Anderson N. Carboplatin versus Cisplatin in Solid Tumors: An Analysis of the Literature. Ann. Oncol. 1998;9:13–21. doi: 10.1023/A:1008215213739. PubMed DOI

Wilkins A.C., Rosenfelder N., Schick U., Gupta S., Thway K., Nutting C.M., Harrington K.J., Newbold K., Bhide S.A. Equivalence of Cisplatin and Carboplatin-Based Chemoradiation for Locally Advanced Squamous Cell Carcinoma of the Head and Neck: A Matched-Pair Analysis. Oral Oncol. 2013;49:615–619. doi: 10.1016/j.oraloncology.2013.02.004. PubMed DOI

Ho G.Y., Woodward N., Coward J.I.G. Cisplatin versus Carboplatin: Comparative Review of Therapeutic Management in Solid Malignancies. Crit. Rev. Oncol. Hematol. 2016;102:37–46. doi: 10.1016/j.critrevonc.2016.03.014. PubMed DOI

Oun R., Moussa Y.E., Wheate N.J. The Side Effects of Platinum-Based Chemotherapy Drugs: A Review for Chemists. Dalton Trans. 2018;47:6645–6653. doi: 10.1039/C8DT00838H. PubMed DOI

Inkol J.M., Hocker S.E., Mutsaers A.J. Combination Therapy with Cannabidiol and Chemotherapeutics in Canine Urothelial Carcinoma Cells. PLoS ONE. 2021;16:e0255591. doi: 10.1371/journal.pone.0255591. PubMed DOI PMC

Dumontet C., Jordan M.A. Microtubule-Binding Agents: A Dynamic Field of Cancer Therapeutics. Nat. Rev. Drug Discov. 2010;9:790–803. doi: 10.1038/nrd3253. PubMed DOI PMC

Steinmetz M.O., Prota A.E. Microtubule-Targeting Agents: Strategies To Hijack the Cytoskeleton. Trends Cell Biol. 2018;28:776–792. doi: 10.1016/j.tcb.2018.05.001. PubMed DOI

Parthasarathy R., Shanmuganathan R., Pugazhendhi A. Vinblastine Production by the Endophytic Fungus Curvularia Verruculosa from the Leaves of Catharanthus Roseus and Its in Vitro Cytotoxicity against HeLa Cell Line. Anal. Biochem. 2020;593:113530. doi: 10.1016/j.ab.2019.113530. PubMed DOI

Aslam J., Khan S.H., Siddiqui Z.H. Catharanthus roseus (L.) g. don. an important drug: Its applications and production. Pharm. Glob. 2010;4:1–16.

Earhart R.H., Khandekar J.D., Faraggi D., Schinella R.A., Davis T.E. Phase II Trial of Continuous Drug Infusions in Advanced Ovarian Carcinoma: Acivicin versus Vinblastine. Investig. New Drugs. 1989;7:255–260. doi: 10.1007/BF00170870. PubMed DOI

Wani M.C., Taylor H.L., Wall M.E., Coggon P., McPhail A.T. Plant Antitumor Agents. VI. The Isolation and Structure of Taxol, a Novel Antileukemic and Antitumor Agent from Taxus Brevifolia. J. Am. Chem. Soc. 1971;93:2325–2327. doi: 10.1021/ja00738a045. PubMed DOI

Marupudi N.I., Han J.E., Li K.W., Renard V.M., Tyler B.M., Brem H. Paclitaxel: A Review of Adverse Toxicities and Novel Delivery Strategies. Expert Opin. Drug Saf. 2007;6:609–621. doi: 10.1517/14740338.6.5.609. PubMed DOI

Ward S.J., Ramirez M.D., Neelakantan H., Walker E.A. Cannabidiol Prevents the Development of Cold and Mechanical Allodynia in Paclitaxel-Treated Female C57Bl6 Mice. Anesth Analg. 2011;113:947–950. doi: 10.1213/ANE.0b013e3182283486. PubMed DOI PMC

Ward S.J., McAllister S.D., Kawamura R., Murase R., Neelakantan H., Walker E.A. Cannabidiol Inhibits Paclitaxel-Induced Neuropathic Pain through 5-HT(1A) Receptors without Diminishing Nervous System Function or Chemotherapy Efficacy. Br. J. Pharmacol. 2014;171:636–645. doi: 10.1111/bph.12439. PubMed DOI PMC

Baron R., Binder A., Wasner G. Neuropathic Pain: Diagnosis, Pathophysiological Mechanisms, and Treatment. Lancet Neurol. 2010;9:807–819. doi: 10.1016/S1474-4422(10)70143-5. PubMed DOI

Brenneman D.E., Kinney W.A., Ward S.J. Knockdown SiRNA Targeting the Mitochondrial Sodium-Calcium Exchanger-1 Inhibits the Protective Effects of Two Cannabinoids Against Acute Paclitaxel Toxicity. J. Mol. Neurosci. 2019;68:603–619. doi: 10.1007/s12031-019-01321-z. PubMed DOI PMC

Foss J.D., Farkas D.J., Huynh L.M., Kinney W.A., Brenneman D.E., Ward S.J. Behavioural and Pharmacological Effects of Cannabidiol (CBD) and the Cannabidiol Analogue KLS-13019 in Mouse Models of Pain and Reinforcement. Br. J. Pharmacol. 2021;178:3067–3078. doi: 10.1111/bph.15486. PubMed DOI

Fraguas-Sánchez A.I., Fernández-Carballido A., Simancas-Herbada R., Martin-Sabroso C., Torres-Suárez A.I. CBD Loaded Microparticles as a Potential Formulation to Improve Paclitaxel and Doxorubicin-Based Chemotherapy in Breast Cancer. Int. J. Pharm. 2020;574:118916. doi: 10.1016/j.ijpharm.2019.118916. PubMed DOI

Alsherbiny M.A., Bhuyan D.J., Low M.N., Chang D., Li C.G. Synergistic Interactions of Cannabidiol with Chemotherapeutic Drugs in MCF7 Cells: Mode of Interaction and Proteomics Analysis of Mechanisms. Int. J. Mol. Sci. 2021;22:10103. doi: 10.3390/ijms221810103. PubMed DOI PMC

Sainz-Cort A., Müller-Sánchez C., Espel E. Anti-Proliferative and Cytotoxic Effect of Cannabidiol on Human Cancer Cell Lines in Presence of Serum. BMC Res. Notes. 2020;13:389. doi: 10.1186/s13104-020-05229-5. PubMed DOI PMC

Cortes J.E., Pazdur R. Docetaxel. J. Clin. Oncol. 1995;13:2643–2655. doi: 10.1200/JCO.1995.13.10.2643. PubMed DOI

Zhang E., Xing R., Liu S., Li P. Current Advances in Development of New Docetaxel Formulations. Expert Opin. Drug Deliv. 2019;16:301–312. doi: 10.1080/17425247.2019.1583644. PubMed DOI

De Petrocellis L., Ligresti A., Schiano Moriello A., Iappelli M., Verde R., Stott C.G., Cristino L., Orlando P., Di Marzo V. Non-THC Cannabinoids Inhibit Prostate Carcinoma Growth in Vitro and in Vivo: Pro-Apoptotic Effects and Underlying Mechanisms. Br. J. Pharmacol. 2013;168:79–102. doi: 10.1111/j.1476-5381.2012.02027.x. PubMed DOI PMC

Mohammadgholi A., Rabbani-Chadegani A., Fallah S. Mechanism of the Interaction of Plant Alkaloid Vincristine with DNA and Chromatin: Spectroscopic Study. DNA Cell Biol. 2013;32:228–235. doi: 10.1089/dna.2012.1886. PubMed DOI PMC

Michlitsch J., Larkin S., Vichinsky E., Kuypers F.A. Vincristine-Induced Anemia in Hereditary Spherocytosis. Exp. Biol. Med. 2019;244:850–854. doi: 10.1177/1535370219853791. PubMed DOI PMC

Holland M.L., Allen J.D., Arnold J.C. Interaction of Plant Cannabinoids with the Multidrug Transporter ABCC1 (MRP1) Eur. J. Pharmacol. 2008;591:128–131. doi: 10.1016/j.ejphar.2008.06.079. PubMed DOI

Henry J.G., Shoemaker G., Prieto J.M., Hannon M.B., Wakshlag J.J. The Effect of Cannabidiol on Canine Neoplastic Cell Proliferation and Mitogen-Activated Protein Kinase Activation during Autophagy and Apoptosis. Vet. Comp. Oncol. 2021;19:253–265. doi: 10.1111/vco.12669. PubMed DOI

Dall’Stella P.B., Docema M.F.L., Maldaun M.V.C., Feher O., Lancellotti C.L.P. Case Report: Clinical Outcome and Image Response of Two Patients With Secondary High-Grade Glioma Treated With Chemoradiation, PCV, and Cannabidiol. Front. Oncol. 2018;8:643. doi: 10.3389/fonc.2018.00643. PubMed DOI PMC

Douedi S., Carson M.P. StatPearls. StatPearls Publishing; Treasure Island, FL, USA: 2022. Anthracycline Medications (Doxorubicin) PubMed

Minotti G., Menna P., Salvatorelli E., Cairo G., Gianni L. Anthracyclines: Molecular Advances and Pharmacologic Developments in Antitumor Activity and Cardiotoxicity. Pharmacol. Rev. 2004;56:185–229. doi: 10.1124/pr.56.2.6. PubMed DOI

Carvalho C., Santos R.X., Cardoso S., Correia S., Oliveira P.J., Santos M.S., Moreira P.I. Doxorubicin: The Good, the Bad and the Ugly Effect. Curr. Med. Chem. 2009;16:3267–3285. doi: 10.2174/092986709788803312. PubMed DOI

Speth P.A., van Hoesel Q.G., Haanen C. Clinical Pharmacokinetics of Doxorubicin. Clin. Pharm. 1988;15:15–31. doi: 10.2165/00003088-198815010-00002. PubMed DOI

Hao E., Mukhopadhyay P., Cao Z., Erdélyi K., Holovac E., Liaudet L., Lee W.-S., Haskó G., Mechoulam R., Pacher P. Cannabidiol Protects against Doxorubicin-Induced Cardiomyopathy by Modulating Mitochondrial Function and Biogenesis. Mol. Med. 2015;21:38–45. doi: 10.2119/molmed.2014.00261. PubMed DOI PMC

Fouad A.A., Albuali W.H., Al-Mulhim A.S., Jresat I. Cardioprotective Effect of Cannabidiol in Rats Exposed to Doxorubicin Toxicity. Environ. Toxicol. Pharmacol. 2013;36:347–357. doi: 10.1016/j.etap.2013.04.018. PubMed DOI

Neumann-Raizel H., Shilo A., Lev S., Mogilevsky M., Katz B., Shneor D., Shaul Y.D., Leffler A., Gabizon A., Karni R., et al. 2-APB and CBD-Mediated Targeting of Charged Cytotoxic Compounds Into Tumor Cells Suggests the Involvement of TRPV2 Channels. Front. Pharmacol. 2019;10:1198. doi: 10.3389/fphar.2019.01198. PubMed DOI PMC

Elbaz M., Ahirwar D., Xiaoli Z., Zhou X., Lustberg M., Nasser M.W., Shilo K., Ganju R.K. TRPV2 Is a Novel Biomarker and Therapeutic Target in Triple Negative Breast Cancer. Oncotarget. 2016;9:33459–33470. doi: 10.18632/oncotarget.9663. PubMed DOI PMC

Patel N., Kommineni N., Surapaneni S.K., Kalvala A., Yaun X., Gebeyehu A., Arthur P., Duke L.C., York S.B., Bagde A., et al. Cannabidiol Loaded Extracellular Vesicles Sensitize Triple-Negative Breast Cancer to Doxorubicin in Both in-Vitro and in Vivo Models. Int. J. Pharm. 2021;607:120943. doi: 10.1016/j.ijpharm.2021.120943. PubMed DOI PMC

Surapaneni S.K., Patel N., Sun L., Kommineni N., Kalvala A.K., Gebeyehu A., Arthur P., Duke L.C., Nimma R., G Meckes D., et al. Anticancer and Chemosensitization Effects of Cannabidiol in 2D and 3D Cultures of TNBC: Involvement of GADD45α, Integrin-A5, -Β5, -Β1, and Autophagy. Drug Deliv. Transl. Res. 2022 doi: 10.1007/s13346-022-01137-2. PubMed DOI PMC

Deshaies R.J. Proteotoxic Crisis, the Ubiquitin-Proteasome System, and Cancer Therapy. BMC Biol. 2014;12:94. doi: 10.1186/s12915-014-0094-0. PubMed DOI PMC

Bastola P., Oien D.B., Cooley M., Chien J. Emerging Cancer Therapeutic Targets in Protein Homeostasis. AAPS J. 2018;20:94. doi: 10.1208/s12248-018-0254-1. PubMed DOI

Manasanch E.E., Orlowski R.Z. Proteasome Inhibitors in Cancer Therapy. Nat. Rev. Clin. Oncol. 2017;14:417–433. doi: 10.1038/nrclinonc.2016.206. PubMed DOI PMC

Scott K., Hayden P.J., Will A., Wheatley K., Coyne I. Bortezomib for the Treatment of Multiple Myeloma. Cochrane Database Syst. Rev. 2016;4:CD010816. doi: 10.1002/14651858.CD010816.pub2. PubMed DOI PMC

Morelli M.B., Offidani M., Alesiani F., Discepoli G., Liberati S., Olivieri A., Santoni M., Santoni G., Leoni P., Nabissi M. The Effects of Cannabidiol and Its Synergism with Bortezomib in Multiple Myeloma Cell Lines. A Role for Transient Receptor Potential Vanilloid Type-2. Int. J. Cancer. 2014;134:2534–2546. doi: 10.1002/ijc.28591. PubMed DOI

Meraz-Torres F., Plöger S., Garbe C., Niessner H., Sinnberg T. Disulfiram as a Therapeutic Agent for Metastatic Malignant Melanoma-Old Myth or New Logos? Cancers. 2020;12:3538. doi: 10.3390/cancers12123538. PubMed DOI PMC

University of Utah . A Phase I Study of Disulfiram and Copper Gluconate in Patients with Treatment-Refractory Multiple Myeloma. Clinicaltrials.gov; Bethesda, MD, USA: 2022.

The Institute of Molecular and Translational Medicine, Czech Republic . Phase II Open Labeled Trial of Disulfiram with Copper in Metastatic Breast Cancer. Clinicaltrials.gov; Bethesda, MD, USA: 2021.

National Cancer Institute, Slovakia . Phase II Study of Disulfiram and Cisplatin in Refractory TGCT. Clinicaltrials.gov; Bethesda, MD, USA: 2020.

Chroma K., Skrott Z., Gursky J., Bacovsky J., Moudry P., Buchtova T., Mistrik M., Bartek J. A Drug Repurposing Strategy for Overcoming Human Multiple Myeloma Resistance to Standard-of-Care Treatment. Cell Death Dis. 2022;13:1–11. doi: 10.1038/s41419-022-04651-w. PubMed DOI PMC

Skrott Z., Mistrik M., Andersen K.K., Friis S., Majera D., Gursky J., Ozdian T., Bartkova J., Turi Z., Moudry P., et al. Alcohol-Abuse Drug Disulfiram Targets Cancer via P97 Segregase Adaptor NPL4. Nature. 2017;552:194–199. doi: 10.1038/nature25016. PubMed DOI PMC

Meyer H., Bug M., Bremer S. Emerging Functions of the VCP/P97 AAA-ATPase in the Ubiquitin System. Nat. Cell Biol. 2012;14:117–123. doi: 10.1038/ncb2407. PubMed DOI

Buchtova T., Skrott Z., Chroma K., Rehulka J., Dzubak P., Hajduch M., Lukac D., Arampatzis S., Bartek J., Mistrik M. Cannabidiol-Induced Activation of the Metallothionein Pathway Impedes Anticancer Effects of Disulfiram and Its Metabolite CuET. Mol. Oncol. 2021 doi: 10.1002/1878-0261.13114. PubMed DOI PMC

Liang X., Wu Q., Luan S., Yin Z., He C., Yin L., Zou Y., Yuan Z., Li L., Song X., et al. A Comprehensive Review of Topoisomerase Inhibitors as Anticancer Agents in the Past Decade. Eur. J. Med. Chem. 2019;171:129–168. doi: 10.1016/j.ejmech.2019.03.034. PubMed DOI

Staker B.L., Hjerrild K., Feese M.D., Behnke C.A., Burgin A.B., Stewart L. The Mechanism of Topoisomerase I Poisoning by a Camptothecin Analog. Proc. Natl. Acad. Sci. USA. 2002;99:15387–15392. doi: 10.1073/pnas.242259599. PubMed DOI PMC

Devriese L.A., Witteveen P.E.O., Mergui-Roelvink M., Smith D.A., Lewis L.D., Mendelson D.S., Bang Y.-J., Chung H.C., Dar M.M., Huitema A.D.R., et al. Pharmacodynamics and Pharmacokinetics of Oral Topotecan in Patients with Advanced Solid Tumours and Impaired Renal Function. Br. J. Clin. Pharmacol. 2015;80:253–266. doi: 10.1111/bcp.12606. PubMed DOI PMC

McLennan A., Kerba M., Subnis U., Campbell T., Carlson L.E. Health Care Provider Preferences for, and Barriers to, Cannabis Use in Cancer Care. Curr. Oncol. 2020;27:e199–e205. doi: 10.3747/co.27.5615. PubMed DOI PMC

Mangelinck A., da Costa M.E.M., Stefanovska B., Bawa O., Polrot M., Gaspar N., Fromigué O. MT2A Is an Early Predictive Biomarker of Response to Chemotherapy and a Potential Therapeutic Target in Osteosarcoma. Sci. Rep. 2019;9:12301. doi: 10.1038/s41598-019-48846-2. PubMed DOI PMC

Merlos Rodrigo M.A., Jimenez Jimemez A.M., Haddad Y., Bodoor K., Adam P., Krizkova S., Heger Z., Adam V. Metallothionein Isoforms as Double Agents—Their Roles in Carcinogenesis, Cancer Progression and Chemoresistance. Drug Resist. Updat. 2020;52:100691. doi: 10.1016/j.drup.2020.100691. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...