Description of the Droplet Size Evolution in Flowing Immiscible Polymer Blends
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
TN01000008
Technologická Agentura České Republiky
PubMed
31052340
PubMed Central
PMC6571902
DOI
10.3390/polym11050761
PII: polym11050761
Knihovny.cz E-zdroje
- Klíčová slova
- coalescence, droplet breakup, interfacial tension, phase structure, polymer blends,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Control of the phase structure evolution in flowing immiscible polymer blends during their mixing and processing is fundamental for tailoring of their performance. This review summarizes present state of understanding and predictability of the phase structure evolution in flowing immiscible polymer blends with dispersed structure. Results of the studies of the droplet breakup in flow, important for determination of the droplet breakup frequency and of the size distribution of the daughter droplets, are reviewed. Theories of the flow-induced coalescence providing equations for collision efficiency are discussed. Approximate analytic expressions reliably describing dependence of the collision efficiency on system parameters are presented. Available theories describing the competition between the droplet breakup and coalescence in flow are summarized and approximations used in their derivation are discussed. Problems with applicability of available theories on prediction of the droplet size evolution during mixing and processing of immiscible polymer blends, which have not been broadly discussed so far, are addressed.
Zobrazit více v PubMed
Favis B.D. Factor influencing the morphology in immiscible polymer blends in melt processing. In: Paul D.R., Bucknall C.B., editors. Polymer Blends. Volume 1. J. Wiley and Sons; New York, NY, USA: 2000. pp. 501–537. doi:10.1016/B978-0-12-546802-2.X5001-5.
Fortelný I. Theoretical aspects of phase morphology development. In: Harrats C., Thomas S., Groeninckx G., editors. Micro-and Nanostructured Multiphase Polymer Blends Systems. Taylor and Francis; Boca Raton, FL, USA: 2006. pp. 43–90. doi:10.1201/9781420026542.
Sundararaj U. Phase morphology development in polymer blends. In: Harrats C., Thomas S., Groeninckx G., editors. Micro-and Nanostructured Multiphase Polymer Blends Systems. Taylor and Francis; Boca Raton, FL, USA: 2006. pp. 133–164. doi:10.1201/9781420026542.
Huang H.-X. Macro, Micro and Nanostructured Morphologies of Multiphase Polymer Systems. In: Boudenne A., Ibos L., Candau Y., Thomas S., editors. Handbook of Multiphase Polymer Systems. Volume 1. Wiley; Chichester, UK: 2011. pp. 161–249. doi:10.1002/9781119972020.ch6.
Stone H.A. Dynamics of drop deformation and breakup in viscous fluids. Annu. Rev. Fluid Mech. 1994;26:65–102. doi: 10.1146/annurev.fl.26.010194.000433. DOI
Utracki L.A., Shi Z.H. Development of polymer blend morphology during compounding in a twin-screw extruder. Part I: Droplet dispersion and coalescence—A review. Polym. Eng. Sci. 1992;32:1824–1833. doi: 10.1002/pen.760322405. DOI
Janssen J.M.H. Emulsions: The dynamic of liquid-liquid mixing. In: Meijer H.E.H., editor. Materials Science and Technology. Volume 18. Wiley-VCH; Weinheim, Germany: 1997. pp. 115–188.
Han C.D. Multiphase Flow in Polymer Processing. Academic Press; New York, NY, USA: 1981.
Tucker C.L., Moldenaers P. Microstructural evolution in polymer blends. Annu. Rev. Fluid Mech. 2002;34:177–210. doi: 10.1146/annurev.fluid.34.082301.144051. DOI
Taylor G.I. The formation of emulsions in definable fields of flow. Proc. R. Soc. Lond. Ser. A. 1934;146:501–523. doi: 10.1098/rspa.1934.0169. DOI
Chaffey C.E., Brenner H.A. A second-order theory for shear deformation of drops. J. Colloid Interface Sci. 1967;24:258–269. doi: 10.1016/0021-9797(67)90229-9. DOI
Cox R.G. The deformation of a drop in a general time-dependent fluid flow. J. Fluid Mech. 1969;37:601–623. doi: 10.1017/S0022112069000759. DOI
Barthes-Biesel D., Acrivos A. Deformation and burst of a liquid droplet freely suspended in a linear shear field. J. Fluid Mech. 1973;61:1–22. doi: 10.1017/S0022112073000534. DOI
Grace H.P. Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems. Chem. Eng. Commun. 1982;14:225–277. doi: 10.1080/00986448208911047. DOI
Bartok W., Mason S.G. Particle motions in sheared suspensions: VII. Internal circulation in fluid droplets (theoretical) J. Colloid Sci. 1958;13:293–307. doi: 10.1016/0095-8522(58)90040-0. DOI
Bartok W., Mason S.G. The dependence of the viscosity on the concentration of sodium carboxymethylcellulose in aqueous solutions. J. Colloid Sci. 1959;14:13–26. doi: 10.1016/0095-8522(59)90065-0. DOI
Rumscheidt F.D., Mason S.G. Particle motions in sheared suspensions XII. Deformation and burst of fluid drops in shear and hyperbolic flow. J. Colloid Sci. 1961;16:238–261. doi: 10.1016/0095-8522(61)90003-4. DOI
Torza S., Cox R.C., Mason S.G. Particle motions in sheared suspensions XXVII. Transient and steady deformation and burst of liquid drops. J. Colloid Interface Sci. 1972;38:395–411. doi: 10.1016/0021-9797(72)90255-X. DOI
Debruijn R.A. Ph.D. Thesis. Eindhoven University of Technology; Eindhoven, The Netherlands: 1989. Deformation and Break-Up of Drops in Simple Shear Flows.
Peters G.W.M., Hansen S., Meijer H.E.H. Constitutive modeling of dispersive mixtures. J. Rheol. 2001;45:659–689. doi: 10.1122/1.1366714. DOI
Kim E.K., White J.L. Manufacturing of polymer blends using polymeric and low molecular weight reactive compatibilizers. In: Isayev A.I., editor. Encyclopedia of Polymer Blends. Volume 2. Wiley-VCH; Weinheim, Germany: 2011. pp. 263–314.
Van Oene H.J. Modes of dispersion of viscoelastic fluids in flow. J. Colloid Interface Sci. 1972;40:448–467. doi: 10.1016/0021-9797(72)90355-4. DOI
Sundararaj U., Dori Y., Macosko W. Sheet formation in immiscible polymer blends: Model experiments on initial blend morphology. Polymer. 1995;36:1957–1968. doi: 10.1016/0032-3861(95)91438-D. DOI
Ghodgaonkar P.G., Sundararaj U. Prediction of dispersed phase drop diameter in polymer blends: The effect of elasticity. Polym. Eng. Sci. 1996;36:1656–1665. doi: 10.1002/pen.10562. DOI
Elmendorp J.J., Maalcke R.J. A study on polymer blending microrheology: Part 1. Polym. Eng. Sci. 1985;25:1041–1047. doi: 10.1002/pen.760251608. DOI
Gauthier F., Goldsmith H.L., Mason S.G. Particle motions in non-Newtonian media II. Poiseuille flow. Trans. Soc. Rheol. 1971;15:297–330. doi: 10.1122/1.549212. DOI
Varanasi P.P., Ryan M.E., Stroeve P. Experimental study on the breakup of model viscoelastic drops in uniform shear flow. Ind. Eng. Chem. 1994;33:1858–1866. doi: 10.1021/ie00031a028. DOI
Mighri F., Carreau P.J., Ajji A. Influence of elastic properties on drop deformation in elongational flow. J. Rheol. 1997;41:1183–1201. doi: 10.1122/1.550853. DOI
Mighri F., Carreau P.J., Ajji A. Influence of elastic properties on drop deformation in shear flow. J. Rheol. 1998;42:1477–1490. doi: 10.1122/1.550897. DOI
Lerdwijitjarud W., Larson R.G., Sirivat A., Solomon M.J. Influence of weak elasticity of dispersed phase on droplet behavior in sheared polybutadiene/poly(dimethyl siloxane) blends. J. Rheol. 2003;47:37–58. doi: 10.1122/1.1530623. DOI
Mechbal N., Bousmina M. In situ observation of unusual drop deformation and wobbling in simple shear flow. Rheol. Acta. 2009;48:653–663. doi: 10.1007/s00397-009-0360-1. DOI
Levitt L., Macosko C.W., Pearson S.D. Influence of normal stress difference on polymer drop deformation. Polym. Eng. Sci. 1996;36:1647–1655. doi: 10.1002/pen.10561. DOI
Tretheway D.C., Leal L.G. Deformation and relaxation of Newtonian drops in planar extensional flows of a Boger fluid. J. Non-Newton. Fluid Mech. 2001;99:81–108. doi: 10.1016/S0377-0257(01)00123-9. DOI
Aggarwal N., Sarkar K. Deformation and breakup of a viscoelastic drop in a Newtonian matrix under steady shear. J. Fluid Mech. 2007;584:1–21. doi: 10.1017/S0022112007006210. DOI
Milliken W.J., Leal L.G. Deformation and breakup of viscoelastic drops in planar extensional flows. J. Non-Newton. Fluid Mech. 1991;40:355–379. doi: 10.1016/0377-0257(91)87018-S. DOI
Sibillo V., Simeone M., Guido S. Break-up of a Newtonian drop in a viscoelastic matrix under simple shear flow. Rheol. Acta. 2004;43:449–456. doi: 10.1007/s00397-004-0374-7. DOI
Flumerfelt R.W. Drop breakup in simple shear fields of viscoelastic fluids. Ind. Eng. Chem. Fundam. 1972;11:312–318. doi: 10.1021/i160043a005. DOI
Guido S., Simeone M., Greco F. Deformation of a Newtonian drop in a viscoelastic matrix under steady shear flow: Experimental validation of slow flow theory. J. Non-Newton. Fluid Mech. 2003;114:65–82. doi: 10.1016/S0377-0257(03)00118-6. DOI
Verhulst K., Moldenaers P., Minale M. Drop shape dynamics of a Newtonian drop in a non-Newtonian matrix during transient and steady shear flow. J. Rheol. 2007;51:261–273. doi: 10.1122/1.2426973. DOI
Migler K.B., Hobbie E.K., Qiao F. In line study of droplet deformation in polymer blends in channel flow. Polym. Eng. Sci. 1999;39:2282–2291. doi: 10.1002/pen.11616. DOI
Choi S.J., Schowalter W.R. Rheological properties of nondilute suspensions of deformable particles. Phys. Fluids. 1975;18:420–427. doi: 10.1063/1.861167. DOI
Jansen K.M.B., Agterof W.G.M., Mellema J. Droplet breakup in concentrated emulsions. J. Rheol. 2001;45:227–236. doi: 10.1122/1.1333001. DOI
Janssen J.M.H., Meijer H.E.H. Dynamic of liquid-liquid mixing: A 2-zone model. Polym. Eng. Sci. 1995;35:1766–1780. doi: 10.1002/pen.760352206. DOI
Kaur S., Leal L.G. Drop deformation and break-up in concentrated suspensions. J. Rheol. 2010;54:981–1008. doi: 10.1122/1.3462306. DOI
Utracki L.A. On the viscosity–concentration dependence of immiscible polymer blends. J. Rheol. 1991;35:1615–1637. doi: 10.1122/1.550248. DOI
Elmendorp J.J., Van der Vegt A.K. Fundamentals of morphology formation in polymer blending. In: Utracki L.A., editor. Two-Phase Polymer Systems. Hansen; Munich, Germany: 1991. pp. 165–184.
Cristini V., Guido S., Alfani A., Bławzdziewicz J., Loewenberg M. Drop breakup and fragment size distribution in shear flow. J. Rheol. 2003;47:1283–1298. doi: 10.1122/1.1603240. DOI
Fortelný I., Jůza J. Prediction of average droplet size in flowing immiscible polymer blends. J. Appl. Polym. Sci. 2017;134:45250. doi: 10.1002/app.45250. DOI
Van Puyvelde P., Yang H., Mewis J., Moldenaers P. Breakup of filaments in blends during simple shear flow. J. Rheol. 2000;44:1401–1415. doi: 10.1122/1.1315309. DOI
Tomotika S. On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid. Proc. R. Soc. Lond. Ser. A. 1935;150:322–337. doi: 10.1098/rspa.1935.0104. DOI
Palierne J.F., Lequeux F. Sausage instability of a thread in a matrix; linear theory for viscoelastic fluids and interface. J. Non-Newton. Fluid Mech. 1991;40:289–306. doi: 10.1016/0377-0257(91)87014-O. DOI
Kuhn W. Spontane Aufteilung von Flüssigkeitszylindern in kleine Kugeln. Kolloid Z. 1953;134:84–99. doi: 10.1007/BF01513708. DOI
Mikami T., Cox R.G., Mason R.G. Breakup of extending liquid threads. Int. J. Multiph. Flow. 1975;2:113–138. doi: 10.1016/0301-9322(75)90003-8. DOI
Khakhar D., Ottino J.M. Breakup of liquid threads in linear flow. Int. J. Multiph. Flow. 1987;13:71–86. doi: 10.1016/0301-9322(87)90008-5. DOI
Janssen J.M.H., Meijer H.E.H. Droplet breakup mechanisms: Stepwise equilibrium versus transient dispersion. J. Rheol. 1993;37:597–608. doi: 10.1122/1.550385. DOI
Stone H.A., Leal L.G. Relaxation and breakup of an initially extended drop in an otherwise quiescent fluid. J. Fluid Mech. 1989;198:399–427. doi: 10.1017/S0022112089000194. DOI
Chesters A.K. The modeling of coalescence processes in fluid–liquid dispersions: A review of current understanding. Trans. Inst. Chem. Eng. A. 1991;69:259–270.
Zeichner G.R., Schowalter W.R. Use of trajectory analysis to study stability of colloidal dispersions in flow fields. AIChE J. 1977;23:243–254. doi: 10.1002/aic.690230306. DOI
Wang H., Zinchenko A.K., Davis R.H. The collision rate of small drops in linear flow fields. J. Fluid Mech. 1994;265:161–188. doi: 10.1017/S0022112094000790. DOI
Rother M.A., Davis R.H. The effect of slight deformation on droplet coalescence in linear flow. Phys. Fluids. 2001;13:1178–1190. doi: 10.1063/1.1358871. DOI
Smoluchowski M. Versuch einer mathematischen theorie der koagulationskinetik kollider losungen. Z. Phys. Chem. 1917;92:129–168. doi: 10.1515/zpch-1918-9209. DOI
Janssen P.J.A., Anderson P.D. Modeling film drainage and coalescence of drops in a viscous. Fluid Macromol. Mater. Eng. 2011;296:238–248. doi: 10.1002/mame.201000375. DOI
Zhang X., Davis R.H. The collision of small drops due to Brownian and gravitational motion. J. Fluid Mech. 1991;230:479–504. doi: 10.1017/S0022112091000861. DOI
Janssen J.M.H. Ph.D. Thesis. Eindhoven University of Technology; Eindhoven, The Netherlands: 1993. Dynamics of Liquid–Liquid Mixing.
Jeelani S.A.K., Hartland S. Effect of interfacial mobility on thin film drainage. J. Colloid Interface Sci. 1994;164:296–308. doi: 10.1006/jcis.1994.1171. DOI
Fortelný I., Jůza J. Modeling of interface mobility in the description of flow-induced coalescence in immiscible polymer blends. Colloid Polym. Sci. 2013;291:1863–1870. doi: 10.1007/s00396-013-2917-x. DOI
Zinchenko A.Z., Davis R.H. Hydrodynamical interaction of deformable drops. In: Petsev D.N., editor. Emulsions: Structure Stability and Interactions, Interface Science and Technology. Volume 4. Elsevier; Amsterdam, The Netherlands: 2004. pp. 391–447. doi:10.1016/S1573-4285(04)80012-7.
Jaeger P.T., Janssen J.J.M., Groeneweg F., Agterof W.G.M. Coalescence in emulsions containing inviscid drops with high interfacial mobility. Colloid Surf. A Physicochem. Eng. Asp. 1994;85:255–264. doi: 10.1016/0927-7757(94)02848-6. DOI
Nir A., Acrivos A. On creeping motion of two arbitrary-sized touching spheres in a linear shear fields. J. Fluid Mech. 1973;59:209–223. doi: 10.1017/S0022112073001527. DOI
Elmendorp J.J., Van der Vegt A.K. A study of polymer blending microrheology. Part IV. The influence of coalescence on blend morphology origination. Polym. Eng. Sci. 1986;26:1332–1338. doi: 10.1002/pen.760261908. DOI
Fortelný I., Jůza J. Modeling of the influence of matrix elasticity on coalescence probability of colliding droplets in shear flow. J. Rheol. 2012;56:1393–1411. doi: 10.1122/1.4739930. DOI
Fortelný I., Jůza J. Consequences of the effect of matrix elasticity on the rotation of droplet pairs for collision efficiency. Colloid Polym. Sci. 2015;293:1713–1721. doi: 10.1007/s00396-015-3540-9. DOI
Jůza J., Fortelný I. Flow induced coalescence in polymer blends. Chem. Chem. Technol. 2013;7:53–60. doi: 10.23939/chcht07.01.053. DOI
Fortelný I., Jůza J. Flow-induced coalescence in polydisperse systems. Macromol. Mater. Eng. 2014;299:1213–1219. doi: 10.1002/mame.201400050. DOI
Yu W., Zhou C. Coalescence of droplets in viscoelastic matrix with diffuse interface under simple shear flow. J. Polym. Sci. Part B Polym. Phys. 2007;45:1856–1869. doi: 10.1002/polb.21185. DOI
Volkov V.S., Vinogradov G.V. Theory of dilute polymer solutions in viscoelastic fluid with a single relaxation time. J. Non-Newton. Fluid Mech. 1984;15:29–44. doi: 10.1016/0377-0257(84)80026-9. DOI
Stasiak W., Cohen C. Concentration fluctuations of Brownian particles in a viscoelastic solvent. J. Chem. Phys. 1993;98:6510–6515. doi: 10.1063/1.464791. DOI
Park C.C., Baldessari F., Leal L.G. Study of molecular weight effects on coalescence: Interface slip layer. J. Rheol. 2003;47:911–942. doi: 10.1122/1.1579686. DOI
Nemer M.B., Chen X., Papadopoulos D.H., Bławzdziewicz J., Loewenberg M. Hindered and enhanced coalescence of drops in Stokes flows. Phys. Rev. Lett. 2004;92:114501:1–114501:4. doi: 10.1103/PhysRevLett.92.114501. PubMed DOI
Baldessari F., Leal L.G. Effect of overall drop deformation on flow-induced coalescence at low capillary numbers. Phys. Fluids. 2006;18:013602. doi: 10.1063/1.2158427. DOI
Yoon Y., Baldessari F., Ceniceros H.D., Leal L.G. Coalescence of two equal-sized deformable drops in an axisymmetric flow. Phys. Fluids. 2007;19:102102. doi: 10.1063/1.2772900. DOI
Santoro P., Loewenberg M. Coalescence of Drops with Tangentially Mobile Interfaces: Effects of Ambient Flow. Ann. N. Y. Acad. Sci. 2009;1161:277–291. doi: 10.1111/j.1749-6632.2008.04066.x. PubMed DOI
Vannozzi C. Relaxation and coalescence of two equal-sized viscous drops in a quiescent matrix. J. Fluid Mech. 2012;694:408–425. doi: 10.1017/jfm.2011.559. DOI
Zdravkov A.N., Peters G.W.M., Meijer H.E.H. Film drainage and interfacial instabilities in polymeric systems with diffuse interfaces. J. Colloid Interface Sci. 2006;296:86–94. doi: 10.1016/j.jcis.2005.08.062. PubMed DOI
Rother M.A., Davis R.H. Simplified model for droplet growth in shear flow. AIChE J. 2003;49:546–548. doi: 10.1002/aic.690490225. DOI
Lyu S.-P., Bates F.S., Macosko C.W. Coalescence in polymer blends during shearing. AIChE J. 2000;46:229–238. doi: 10.1002/aic.690460203. DOI
Caserta S., Simeone M., Guido S. A parametr investigation of shear-induced coalescence in semidilute PIB–PDMS polymer blends: Effects of shear rate, shear stress, volume fraction, and viscosity. Rheol. Acta. 2006;45:505–512. doi: 10.1007/s00397-006-0087-1. DOI
Burkhart B.E., Gopalkrishnan P., Hudson S.D., Jamieson A.M., Rother M.A., Davis R.H. Droplet growth by coalescence in binary fluid mixtures. Phys. Rev. Lett. 2001;87:983041–983044. doi: 10.1103/PhysRevLett.87.098304. PubMed DOI
Ziegler V.E., Wolf B.A. Bimodal drop size distribution during the early stages of shear induced coalescence. Polymer. 2005;46:9265–9273. doi: 10.1016/j.polymer.2005.07.055. DOI
Börschig C., Fries B., Gronski W., Weis C., Friedrich C. Shear-induced coalescence in polymer blends—Simulations and rheo small angle light scattering. Polymer. 2000;41:3029–3035. doi: 10.1016/S0032-3861(99)00456-5. DOI
Gabriele M., Pasquino R., Grizzuti N. Effect of viscosity-controlled interfacial mobility on the coalescence of immiscible polymer blends. Macromol. Mater. Eng. 2011;296:263–269. doi: 10.1002/mame.201000286. DOI
Li Y.-Y., Chen Z.-Q., Huang Y., Sheng J. Morphology development in polypropylene/polystyrene blends during coalescence under shear. J. Appl. Polym. Sci. 2007;104:666–671. doi: 10.1002/app.25736. DOI
Ramic A.J., Hudson S.D., Jamieson A.M., Manas–Zloczower I. Temporary droplet-size hysteresis in immiscible polymer blends. Polymer. 2000;41:6263–6270. doi: 10.1016/S0032-3861(99)00845-9. DOI
Minale M., Moldenaers P., Mewis J. Effect of shear history on the morphology of immiscible polymer blends. Macromolecules. 1997;30:5470–5475. doi: 10.1021/ma9617330. DOI
Minale M., Mewis J., Moldenaers P. Study of the morphological hysteresis in immiscible polymer blends. AIChE J. 1998;44:943–950. doi: 10.1002/aic.690440420. DOI
Filippone G., Netti P.A., Acierno D. Microstructural evolutions of LDPE/PA6 blends by rheological and rheo–optical analyses: Influence of flow and compatibilizer on break-up and coalescence processes. Polymer. 2007;48:564–573. doi: 10.1016/j.polymer.2006.11.050. DOI
Rusu D., Peuvrel-Disdier E. In situ characterization by small angle light scattering of the shear-induced coalescence mechanisms in immiscible polymer blends. J. Rheol. 1999;43:1391–1409. doi: 10.1122/1.551051. DOI
Jůza J., Fortelný I. Flow-induced coalescence: Evaluation of some approximation. Macromol. Symp. 2017;373:1600097:1–1600097:10. doi: 10.1002/masy.201600097. DOI
Patlazhan S.A., Lindt J.T. Kinetics of structure development in liquid-liquid dispersion under simple shear flow. Theory J. Rheol. 1996;40:1095–1113. doi: 10.1122/1.550774. DOI
Tokita N. Analysis of morphology formation in elastomer blends. Rubber Chem. Technol. 1977;50:292–300. doi: 10.5254/1.3535144. DOI
Fortelný I., Kovář J. Droplet size of the minor component in the mixing of melts of immiscible polymers. Eur. Polym. J. 1989;25:317–319. doi: 10.1016/0014-3057(89)90239-5. DOI
Lyngaae-Jørgensen J., Valenza A. Structuring of polymer blends in simple shear flow. Makromol. Chem. Macromol. Symp. 1990;38:43–60. doi: 10.1002/masy.19900380105. DOI
Huneault M.A., Shi Z.H., Utracki L.A. Development of polymer blend morphology during compounding in a twin–screw extruder. Part IV: A new computational model with coalescence. Polym. Eng. Sci. 1995;35:115–127. doi: 10.1002/pen.760350114. DOI
Utracki L.A. The mechanical stability of synthetic polymer latexes. J. Colloid Sci. 1973;42:185–197. doi: 10.1016/0021-9797(73)90023-4. DOI
Fortelný I., Živný A. Theory of competition between breakup and coalescence in in flowing polymer blends. Polym. Eng. Sci. 1995;35:1872–1877. doi: 10.1002/pen.760352306. DOI
Delamare L., Vergnes B. Computation of morphological changes of a polymer blend along a twin–screw extruder. Polym. Eng. Sci. 1996;36:1685–1693. doi: 10.1002/pen.10565. DOI
Milner T., Xi H. How copolymers promote mixing of immiscible homopolymers. J. Rheol. 1996;40:663–687. doi: 10.1122/1.550731. DOI
Lyu S.P., Bates F.S., Macosko C.W. Modeling of coalescence in polymer blends. AIChE J. 2002;48:7–14. doi: 10.1002/aic.690480103. DOI
Potente H., Bastian M. Calculating morphology development of polymer blends on the basis of results of boundary and finite element simulation using the sigma simulation software. Polym. Eng. Sci. 2000;40:727–737. doi: 10.1002/pen.11202. DOI
Fortelný I. Analysis of the effect of breakup frequency on the steady droplet size in flowing polymer blends. Rheol. Acta. 2001;40:485–489. doi: 10.1007/s003970100174. DOI
Lee H.M., Park O.O. Rheology and dynamics of immiscible polymer blends. J. Rheol. 1994;38:1405–1425. doi: 10.1122/1.550551. DOI
Fortelný I., Dimzoski B., Michálková D., Mikešová J., Kaprálková L. Dependence of the average size of particles formed during steady mixing on their concentration in immiscible polymer blends. J. Macromol. Sci. 2013;52:662–673. doi: 10.1080/00222348.2012.720176. DOI
Fortelný I., Ostafińska A., Michálková D., Jůza J., Mikešová J., Šlouf M. Phase structure evolution during mixing and processing of poly(lactic acid)/polycaprolactone (PLA/PCL) blends. Polym. Bull. 2015;72:2931–2947. doi: 10.1007/s00289-015-1445-x. DOI
Bousmina M., Ait-Kadi A., Faisant J.B. Determination of shear rate and viscosity from batch mixer data. J. Rheol. 1999;43:415–433. doi: 10.1122/1.551044. DOI
The Effects of Copolymer Compatibilizers on the Phase Structure Evolution in Polymer Blends-A Review