Description of the Droplet Size Evolution in Flowing Immiscible Polymer Blends

. 2019 Apr 30 ; 11 (5) : . [epub] 20190430

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid31052340

Grantová podpora
TN01000008 Technologická Agentura České Republiky

Control of the phase structure evolution in flowing immiscible polymer blends during their mixing and processing is fundamental for tailoring of their performance. This review summarizes present state of understanding and predictability of the phase structure evolution in flowing immiscible polymer blends with dispersed structure. Results of the studies of the droplet breakup in flow, important for determination of the droplet breakup frequency and of the size distribution of the daughter droplets, are reviewed. Theories of the flow-induced coalescence providing equations for collision efficiency are discussed. Approximate analytic expressions reliably describing dependence of the collision efficiency on system parameters are presented. Available theories describing the competition between the droplet breakup and coalescence in flow are summarized and approximations used in their derivation are discussed. Problems with applicability of available theories on prediction of the droplet size evolution during mixing and processing of immiscible polymer blends, which have not been broadly discussed so far, are addressed.

Zobrazit více v PubMed

Favis B.D. Factor influencing the morphology in immiscible polymer blends in melt processing. In: Paul D.R., Bucknall C.B., editors. Polymer Blends. Volume 1. J. Wiley and Sons; New York, NY, USA: 2000. pp. 501–537. doi:10.1016/B978-0-12-546802-2.X5001-5.

Fortelný I. Theoretical aspects of phase morphology development. In: Harrats C., Thomas S., Groeninckx G., editors. Micro-and Nanostructured Multiphase Polymer Blends Systems. Taylor and Francis; Boca Raton, FL, USA: 2006. pp. 43–90. doi:10.1201/9781420026542.

Sundararaj U. Phase morphology development in polymer blends. In: Harrats C., Thomas S., Groeninckx G., editors. Micro-and Nanostructured Multiphase Polymer Blends Systems. Taylor and Francis; Boca Raton, FL, USA: 2006. pp. 133–164. doi:10.1201/9781420026542.

Huang H.-X. Macro, Micro and Nanostructured Morphologies of Multiphase Polymer Systems. In: Boudenne A., Ibos L., Candau Y., Thomas S., editors. Handbook of Multiphase Polymer Systems. Volume 1. Wiley; Chichester, UK: 2011. pp. 161–249. doi:10.1002/9781119972020.ch6.

Stone H.A. Dynamics of drop deformation and breakup in viscous fluids. Annu. Rev. Fluid Mech. 1994;26:65–102. doi: 10.1146/annurev.fl.26.010194.000433. DOI

Utracki L.A., Shi Z.H. Development of polymer blend morphology during compounding in a twin-screw extruder. Part I: Droplet dispersion and coalescence—A review. Polym. Eng. Sci. 1992;32:1824–1833. doi: 10.1002/pen.760322405. DOI

Janssen J.M.H. Emulsions: The dynamic of liquid-liquid mixing. In: Meijer H.E.H., editor. Materials Science and Technology. Volume 18. Wiley-VCH; Weinheim, Germany: 1997. pp. 115–188.

Han C.D. Multiphase Flow in Polymer Processing. Academic Press; New York, NY, USA: 1981.

Tucker C.L., Moldenaers P. Microstructural evolution in polymer blends. Annu. Rev. Fluid Mech. 2002;34:177–210. doi: 10.1146/annurev.fluid.34.082301.144051. DOI

Taylor G.I. The formation of emulsions in definable fields of flow. Proc. R. Soc. Lond. Ser. A. 1934;146:501–523. doi: 10.1098/rspa.1934.0169. DOI

Chaffey C.E., Brenner H.A. A second-order theory for shear deformation of drops. J. Colloid Interface Sci. 1967;24:258–269. doi: 10.1016/0021-9797(67)90229-9. DOI

Cox R.G. The deformation of a drop in a general time-dependent fluid flow. J. Fluid Mech. 1969;37:601–623. doi: 10.1017/S0022112069000759. DOI

Barthes-Biesel D., Acrivos A. Deformation and burst of a liquid droplet freely suspended in a linear shear field. J. Fluid Mech. 1973;61:1–22. doi: 10.1017/S0022112073000534. DOI

Grace H.P. Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems. Chem. Eng. Commun. 1982;14:225–277. doi: 10.1080/00986448208911047. DOI

Bartok W., Mason S.G. Particle motions in sheared suspensions: VII. Internal circulation in fluid droplets (theoretical) J. Colloid Sci. 1958;13:293–307. doi: 10.1016/0095-8522(58)90040-0. DOI

Bartok W., Mason S.G. The dependence of the viscosity on the concentration of sodium carboxymethylcellulose in aqueous solutions. J. Colloid Sci. 1959;14:13–26. doi: 10.1016/0095-8522(59)90065-0. DOI

Rumscheidt F.D., Mason S.G. Particle motions in sheared suspensions XII. Deformation and burst of fluid drops in shear and hyperbolic flow. J. Colloid Sci. 1961;16:238–261. doi: 10.1016/0095-8522(61)90003-4. DOI

Torza S., Cox R.C., Mason S.G. Particle motions in sheared suspensions XXVII. Transient and steady deformation and burst of liquid drops. J. Colloid Interface Sci. 1972;38:395–411. doi: 10.1016/0021-9797(72)90255-X. DOI

Debruijn R.A. Ph.D. Thesis. Eindhoven University of Technology; Eindhoven, The Netherlands: 1989. Deformation and Break-Up of Drops in Simple Shear Flows.

Peters G.W.M., Hansen S., Meijer H.E.H. Constitutive modeling of dispersive mixtures. J. Rheol. 2001;45:659–689. doi: 10.1122/1.1366714. DOI

Kim E.K., White J.L. Manufacturing of polymer blends using polymeric and low molecular weight reactive compatibilizers. In: Isayev A.I., editor. Encyclopedia of Polymer Blends. Volume 2. Wiley-VCH; Weinheim, Germany: 2011. pp. 263–314.

Van Oene H.J. Modes of dispersion of viscoelastic fluids in flow. J. Colloid Interface Sci. 1972;40:448–467. doi: 10.1016/0021-9797(72)90355-4. DOI

Sundararaj U., Dori Y., Macosko W. Sheet formation in immiscible polymer blends: Model experiments on initial blend morphology. Polymer. 1995;36:1957–1968. doi: 10.1016/0032-3861(95)91438-D. DOI

Ghodgaonkar P.G., Sundararaj U. Prediction of dispersed phase drop diameter in polymer blends: The effect of elasticity. Polym. Eng. Sci. 1996;36:1656–1665. doi: 10.1002/pen.10562. DOI

Elmendorp J.J., Maalcke R.J. A study on polymer blending microrheology: Part 1. Polym. Eng. Sci. 1985;25:1041–1047. doi: 10.1002/pen.760251608. DOI

Gauthier F., Goldsmith H.L., Mason S.G. Particle motions in non-Newtonian media II. Poiseuille flow. Trans. Soc. Rheol. 1971;15:297–330. doi: 10.1122/1.549212. DOI

Varanasi P.P., Ryan M.E., Stroeve P. Experimental study on the breakup of model viscoelastic drops in uniform shear flow. Ind. Eng. Chem. 1994;33:1858–1866. doi: 10.1021/ie00031a028. DOI

Mighri F., Carreau P.J., Ajji A. Influence of elastic properties on drop deformation in elongational flow. J. Rheol. 1997;41:1183–1201. doi: 10.1122/1.550853. DOI

Mighri F., Carreau P.J., Ajji A. Influence of elastic properties on drop deformation in shear flow. J. Rheol. 1998;42:1477–1490. doi: 10.1122/1.550897. DOI

Lerdwijitjarud W., Larson R.G., Sirivat A., Solomon M.J. Influence of weak elasticity of dispersed phase on droplet behavior in sheared polybutadiene/poly(dimethyl siloxane) blends. J. Rheol. 2003;47:37–58. doi: 10.1122/1.1530623. DOI

Mechbal N., Bousmina M. In situ observation of unusual drop deformation and wobbling in simple shear flow. Rheol. Acta. 2009;48:653–663. doi: 10.1007/s00397-009-0360-1. DOI

Levitt L., Macosko C.W., Pearson S.D. Influence of normal stress difference on polymer drop deformation. Polym. Eng. Sci. 1996;36:1647–1655. doi: 10.1002/pen.10561. DOI

Tretheway D.C., Leal L.G. Deformation and relaxation of Newtonian drops in planar extensional flows of a Boger fluid. J. Non-Newton. Fluid Mech. 2001;99:81–108. doi: 10.1016/S0377-0257(01)00123-9. DOI

Aggarwal N., Sarkar K. Deformation and breakup of a viscoelastic drop in a Newtonian matrix under steady shear. J. Fluid Mech. 2007;584:1–21. doi: 10.1017/S0022112007006210. DOI

Milliken W.J., Leal L.G. Deformation and breakup of viscoelastic drops in planar extensional flows. J. Non-Newton. Fluid Mech. 1991;40:355–379. doi: 10.1016/0377-0257(91)87018-S. DOI

Sibillo V., Simeone M., Guido S. Break-up of a Newtonian drop in a viscoelastic matrix under simple shear flow. Rheol. Acta. 2004;43:449–456. doi: 10.1007/s00397-004-0374-7. DOI

Flumerfelt R.W. Drop breakup in simple shear fields of viscoelastic fluids. Ind. Eng. Chem. Fundam. 1972;11:312–318. doi: 10.1021/i160043a005. DOI

Guido S., Simeone M., Greco F. Deformation of a Newtonian drop in a viscoelastic matrix under steady shear flow: Experimental validation of slow flow theory. J. Non-Newton. Fluid Mech. 2003;114:65–82. doi: 10.1016/S0377-0257(03)00118-6. DOI

Verhulst K., Moldenaers P., Minale M. Drop shape dynamics of a Newtonian drop in a non-Newtonian matrix during transient and steady shear flow. J. Rheol. 2007;51:261–273. doi: 10.1122/1.2426973. DOI

Migler K.B., Hobbie E.K., Qiao F. In line study of droplet deformation in polymer blends in channel flow. Polym. Eng. Sci. 1999;39:2282–2291. doi: 10.1002/pen.11616. DOI

Choi S.J., Schowalter W.R. Rheological properties of nondilute suspensions of deformable particles. Phys. Fluids. 1975;18:420–427. doi: 10.1063/1.861167. DOI

Jansen K.M.B., Agterof W.G.M., Mellema J. Droplet breakup in concentrated emulsions. J. Rheol. 2001;45:227–236. doi: 10.1122/1.1333001. DOI

Janssen J.M.H., Meijer H.E.H. Dynamic of liquid-liquid mixing: A 2-zone model. Polym. Eng. Sci. 1995;35:1766–1780. doi: 10.1002/pen.760352206. DOI

Kaur S., Leal L.G. Drop deformation and break-up in concentrated suspensions. J. Rheol. 2010;54:981–1008. doi: 10.1122/1.3462306. DOI

Utracki L.A. On the viscosity–concentration dependence of immiscible polymer blends. J. Rheol. 1991;35:1615–1637. doi: 10.1122/1.550248. DOI

Elmendorp J.J., Van der Vegt A.K. Fundamentals of morphology formation in polymer blending. In: Utracki L.A., editor. Two-Phase Polymer Systems. Hansen; Munich, Germany: 1991. pp. 165–184.

Cristini V., Guido S., Alfani A., Bławzdziewicz J., Loewenberg M. Drop breakup and fragment size distribution in shear flow. J. Rheol. 2003;47:1283–1298. doi: 10.1122/1.1603240. DOI

Fortelný I., Jůza J. Prediction of average droplet size in flowing immiscible polymer blends. J. Appl. Polym. Sci. 2017;134:45250. doi: 10.1002/app.45250. DOI

Van Puyvelde P., Yang H., Mewis J., Moldenaers P. Breakup of filaments in blends during simple shear flow. J. Rheol. 2000;44:1401–1415. doi: 10.1122/1.1315309. DOI

Tomotika S. On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid. Proc. R. Soc. Lond. Ser. A. 1935;150:322–337. doi: 10.1098/rspa.1935.0104. DOI

Palierne J.F., Lequeux F. Sausage instability of a thread in a matrix; linear theory for viscoelastic fluids and interface. J. Non-Newton. Fluid Mech. 1991;40:289–306. doi: 10.1016/0377-0257(91)87014-O. DOI

Kuhn W. Spontane Aufteilung von Flüssigkeitszylindern in kleine Kugeln. Kolloid Z. 1953;134:84–99. doi: 10.1007/BF01513708. DOI

Mikami T., Cox R.G., Mason R.G. Breakup of extending liquid threads. Int. J. Multiph. Flow. 1975;2:113–138. doi: 10.1016/0301-9322(75)90003-8. DOI

Khakhar D., Ottino J.M. Breakup of liquid threads in linear flow. Int. J. Multiph. Flow. 1987;13:71–86. doi: 10.1016/0301-9322(87)90008-5. DOI

Janssen J.M.H., Meijer H.E.H. Droplet breakup mechanisms: Stepwise equilibrium versus transient dispersion. J. Rheol. 1993;37:597–608. doi: 10.1122/1.550385. DOI

Stone H.A., Leal L.G. Relaxation and breakup of an initially extended drop in an otherwise quiescent fluid. J. Fluid Mech. 1989;198:399–427. doi: 10.1017/S0022112089000194. DOI

Chesters A.K. The modeling of coalescence processes in fluid–liquid dispersions: A review of current understanding. Trans. Inst. Chem. Eng. A. 1991;69:259–270.

Zeichner G.R., Schowalter W.R. Use of trajectory analysis to study stability of colloidal dispersions in flow fields. AIChE J. 1977;23:243–254. doi: 10.1002/aic.690230306. DOI

Wang H., Zinchenko A.K., Davis R.H. The collision rate of small drops in linear flow fields. J. Fluid Mech. 1994;265:161–188. doi: 10.1017/S0022112094000790. DOI

Rother M.A., Davis R.H. The effect of slight deformation on droplet coalescence in linear flow. Phys. Fluids. 2001;13:1178–1190. doi: 10.1063/1.1358871. DOI

Smoluchowski M. Versuch einer mathematischen theorie der koagulationskinetik kollider losungen. Z. Phys. Chem. 1917;92:129–168. doi: 10.1515/zpch-1918-9209. DOI

Janssen P.J.A., Anderson P.D. Modeling film drainage and coalescence of drops in a viscous. Fluid Macromol. Mater. Eng. 2011;296:238–248. doi: 10.1002/mame.201000375. DOI

Zhang X., Davis R.H. The collision of small drops due to Brownian and gravitational motion. J. Fluid Mech. 1991;230:479–504. doi: 10.1017/S0022112091000861. DOI

Janssen J.M.H. Ph.D. Thesis. Eindhoven University of Technology; Eindhoven, The Netherlands: 1993. Dynamics of Liquid–Liquid Mixing.

Jeelani S.A.K., Hartland S. Effect of interfacial mobility on thin film drainage. J. Colloid Interface Sci. 1994;164:296–308. doi: 10.1006/jcis.1994.1171. DOI

Fortelný I., Jůza J. Modeling of interface mobility in the description of flow-induced coalescence in immiscible polymer blends. Colloid Polym. Sci. 2013;291:1863–1870. doi: 10.1007/s00396-013-2917-x. DOI

Zinchenko A.Z., Davis R.H. Hydrodynamical interaction of deformable drops. In: Petsev D.N., editor. Emulsions: Structure Stability and Interactions, Interface Science and Technology. Volume 4. Elsevier; Amsterdam, The Netherlands: 2004. pp. 391–447. doi:10.1016/S1573-4285(04)80012-7.

Jaeger P.T., Janssen J.J.M., Groeneweg F., Agterof W.G.M. Coalescence in emulsions containing inviscid drops with high interfacial mobility. Colloid Surf. A Physicochem. Eng. Asp. 1994;85:255–264. doi: 10.1016/0927-7757(94)02848-6. DOI

Nir A., Acrivos A. On creeping motion of two arbitrary-sized touching spheres in a linear shear fields. J. Fluid Mech. 1973;59:209–223. doi: 10.1017/S0022112073001527. DOI

Elmendorp J.J., Van der Vegt A.K. A study of polymer blending microrheology. Part IV. The influence of coalescence on blend morphology origination. Polym. Eng. Sci. 1986;26:1332–1338. doi: 10.1002/pen.760261908. DOI

Fortelný I., Jůza J. Modeling of the influence of matrix elasticity on coalescence probability of colliding droplets in shear flow. J. Rheol. 2012;56:1393–1411. doi: 10.1122/1.4739930. DOI

Fortelný I., Jůza J. Consequences of the effect of matrix elasticity on the rotation of droplet pairs for collision efficiency. Colloid Polym. Sci. 2015;293:1713–1721. doi: 10.1007/s00396-015-3540-9. DOI

Jůza J., Fortelný I. Flow induced coalescence in polymer blends. Chem. Chem. Technol. 2013;7:53–60. doi: 10.23939/chcht07.01.053. DOI

Fortelný I., Jůza J. Flow-induced coalescence in polydisperse systems. Macromol. Mater. Eng. 2014;299:1213–1219. doi: 10.1002/mame.201400050. DOI

Yu W., Zhou C. Coalescence of droplets in viscoelastic matrix with diffuse interface under simple shear flow. J. Polym. Sci. Part B Polym. Phys. 2007;45:1856–1869. doi: 10.1002/polb.21185. DOI

Volkov V.S., Vinogradov G.V. Theory of dilute polymer solutions in viscoelastic fluid with a single relaxation time. J. Non-Newton. Fluid Mech. 1984;15:29–44. doi: 10.1016/0377-0257(84)80026-9. DOI

Stasiak W., Cohen C. Concentration fluctuations of Brownian particles in a viscoelastic solvent. J. Chem. Phys. 1993;98:6510–6515. doi: 10.1063/1.464791. DOI

Park C.C., Baldessari F., Leal L.G. Study of molecular weight effects on coalescence: Interface slip layer. J. Rheol. 2003;47:911–942. doi: 10.1122/1.1579686. DOI

Nemer M.B., Chen X., Papadopoulos D.H., Bławzdziewicz J., Loewenberg M. Hindered and enhanced coalescence of drops in Stokes flows. Phys. Rev. Lett. 2004;92:114501:1–114501:4. doi: 10.1103/PhysRevLett.92.114501. PubMed DOI

Baldessari F., Leal L.G. Effect of overall drop deformation on flow-induced coalescence at low capillary numbers. Phys. Fluids. 2006;18:013602. doi: 10.1063/1.2158427. DOI

Yoon Y., Baldessari F., Ceniceros H.D., Leal L.G. Coalescence of two equal-sized deformable drops in an axisymmetric flow. Phys. Fluids. 2007;19:102102. doi: 10.1063/1.2772900. DOI

Santoro P., Loewenberg M. Coalescence of Drops with Tangentially Mobile Interfaces: Effects of Ambient Flow. Ann. N. Y. Acad. Sci. 2009;1161:277–291. doi: 10.1111/j.1749-6632.2008.04066.x. PubMed DOI

Vannozzi C. Relaxation and coalescence of two equal-sized viscous drops in a quiescent matrix. J. Fluid Mech. 2012;694:408–425. doi: 10.1017/jfm.2011.559. DOI

Zdravkov A.N., Peters G.W.M., Meijer H.E.H. Film drainage and interfacial instabilities in polymeric systems with diffuse interfaces. J. Colloid Interface Sci. 2006;296:86–94. doi: 10.1016/j.jcis.2005.08.062. PubMed DOI

Rother M.A., Davis R.H. Simplified model for droplet growth in shear flow. AIChE J. 2003;49:546–548. doi: 10.1002/aic.690490225. DOI

Lyu S.-P., Bates F.S., Macosko C.W. Coalescence in polymer blends during shearing. AIChE J. 2000;46:229–238. doi: 10.1002/aic.690460203. DOI

Caserta S., Simeone M., Guido S. A parametr investigation of shear-induced coalescence in semidilute PIB–PDMS polymer blends: Effects of shear rate, shear stress, volume fraction, and viscosity. Rheol. Acta. 2006;45:505–512. doi: 10.1007/s00397-006-0087-1. DOI

Burkhart B.E., Gopalkrishnan P., Hudson S.D., Jamieson A.M., Rother M.A., Davis R.H. Droplet growth by coalescence in binary fluid mixtures. Phys. Rev. Lett. 2001;87:983041–983044. doi: 10.1103/PhysRevLett.87.098304. PubMed DOI

Ziegler V.E., Wolf B.A. Bimodal drop size distribution during the early stages of shear induced coalescence. Polymer. 2005;46:9265–9273. doi: 10.1016/j.polymer.2005.07.055. DOI

Börschig C., Fries B., Gronski W., Weis C., Friedrich C. Shear-induced coalescence in polymer blends—Simulations and rheo small angle light scattering. Polymer. 2000;41:3029–3035. doi: 10.1016/S0032-3861(99)00456-5. DOI

Gabriele M., Pasquino R., Grizzuti N. Effect of viscosity-controlled interfacial mobility on the coalescence of immiscible polymer blends. Macromol. Mater. Eng. 2011;296:263–269. doi: 10.1002/mame.201000286. DOI

Li Y.-Y., Chen Z.-Q., Huang Y., Sheng J. Morphology development in polypropylene/polystyrene blends during coalescence under shear. J. Appl. Polym. Sci. 2007;104:666–671. doi: 10.1002/app.25736. DOI

Ramic A.J., Hudson S.D., Jamieson A.M., Manas–Zloczower I. Temporary droplet-size hysteresis in immiscible polymer blends. Polymer. 2000;41:6263–6270. doi: 10.1016/S0032-3861(99)00845-9. DOI

Minale M., Moldenaers P., Mewis J. Effect of shear history on the morphology of immiscible polymer blends. Macromolecules. 1997;30:5470–5475. doi: 10.1021/ma9617330. DOI

Minale M., Mewis J., Moldenaers P. Study of the morphological hysteresis in immiscible polymer blends. AIChE J. 1998;44:943–950. doi: 10.1002/aic.690440420. DOI

Filippone G., Netti P.A., Acierno D. Microstructural evolutions of LDPE/PA6 blends by rheological and rheo–optical analyses: Influence of flow and compatibilizer on break-up and coalescence processes. Polymer. 2007;48:564–573. doi: 10.1016/j.polymer.2006.11.050. DOI

Rusu D., Peuvrel-Disdier E. In situ characterization by small angle light scattering of the shear-induced coalescence mechanisms in immiscible polymer blends. J. Rheol. 1999;43:1391–1409. doi: 10.1122/1.551051. DOI

Jůza J., Fortelný I. Flow-induced coalescence: Evaluation of some approximation. Macromol. Symp. 2017;373:1600097:1–1600097:10. doi: 10.1002/masy.201600097. DOI

Patlazhan S.A., Lindt J.T. Kinetics of structure development in liquid-liquid dispersion under simple shear flow. Theory J. Rheol. 1996;40:1095–1113. doi: 10.1122/1.550774. DOI

Tokita N. Analysis of morphology formation in elastomer blends. Rubber Chem. Technol. 1977;50:292–300. doi: 10.5254/1.3535144. DOI

Fortelný I., Kovář J. Droplet size of the minor component in the mixing of melts of immiscible polymers. Eur. Polym. J. 1989;25:317–319. doi: 10.1016/0014-3057(89)90239-5. DOI

Lyngaae-Jørgensen J., Valenza A. Structuring of polymer blends in simple shear flow. Makromol. Chem. Macromol. Symp. 1990;38:43–60. doi: 10.1002/masy.19900380105. DOI

Huneault M.A., Shi Z.H., Utracki L.A. Development of polymer blend morphology during compounding in a twin–screw extruder. Part IV: A new computational model with coalescence. Polym. Eng. Sci. 1995;35:115–127. doi: 10.1002/pen.760350114. DOI

Utracki L.A. The mechanical stability of synthetic polymer latexes. J. Colloid Sci. 1973;42:185–197. doi: 10.1016/0021-9797(73)90023-4. DOI

Fortelný I., Živný A. Theory of competition between breakup and coalescence in in flowing polymer blends. Polym. Eng. Sci. 1995;35:1872–1877. doi: 10.1002/pen.760352306. DOI

Delamare L., Vergnes B. Computation of morphological changes of a polymer blend along a twin–screw extruder. Polym. Eng. Sci. 1996;36:1685–1693. doi: 10.1002/pen.10565. DOI

Milner T., Xi H. How copolymers promote mixing of immiscible homopolymers. J. Rheol. 1996;40:663–687. doi: 10.1122/1.550731. DOI

Lyu S.P., Bates F.S., Macosko C.W. Modeling of coalescence in polymer blends. AIChE J. 2002;48:7–14. doi: 10.1002/aic.690480103. DOI

Potente H., Bastian M. Calculating morphology development of polymer blends on the basis of results of boundary and finite element simulation using the sigma simulation software. Polym. Eng. Sci. 2000;40:727–737. doi: 10.1002/pen.11202. DOI

Fortelný I. Analysis of the effect of breakup frequency on the steady droplet size in flowing polymer blends. Rheol. Acta. 2001;40:485–489. doi: 10.1007/s003970100174. DOI

Lee H.M., Park O.O. Rheology and dynamics of immiscible polymer blends. J. Rheol. 1994;38:1405–1425. doi: 10.1122/1.550551. DOI

Fortelný I., Dimzoski B., Michálková D., Mikešová J., Kaprálková L. Dependence of the average size of particles formed during steady mixing on their concentration in immiscible polymer blends. J. Macromol. Sci. 2013;52:662–673. doi: 10.1080/00222348.2012.720176. DOI

Fortelný I., Ostafińska A., Michálková D., Jůza J., Mikešová J., Šlouf M. Phase structure evolution during mixing and processing of poly(lactic acid)/polycaprolactone (PLA/PCL) blends. Polym. Bull. 2015;72:2931–2947. doi: 10.1007/s00289-015-1445-x. DOI

Bousmina M., Ait-Kadi A., Faisant J.B. Determination of shear rate and viscosity from batch mixer data. J. Rheol. 1999;43:415–433. doi: 10.1122/1.551044. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...