The Effects of Copolymer Compatibilizers on the Phase Structure Evolution in Polymer Blends-A Review
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
TN01000008
Technology Agency of the Czech Republic
PubMed
34947377
PubMed Central
PMC8707745
DOI
10.3390/ma14247786
PII: ma14247786
Knihovny.cz E-zdroje
- Klíčová slova
- blend morphology, coalescence, compatibilization efficiency, copolymers, droplet breakup, interfacial tension,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
This paper summarizes the results of studies describing the effect of block and graft copolymers on the phase structure formation and evolution in immiscible polymer blends. The main phenomenological rules for prediction of the copolymer compatibilization efficiency are briefly described and compared with selected experimental data. The results of the theories of equilibrium distribution of a copolymer between the blend interface and the bulk phases and its effect on the blend interfacial tension are summarized. The theories of the compatibilizer effect on the droplet breakup in flow are analyzed. The mechanisms of the copolymer effect on the coalescence of droplets in flow are compared and their effect on the droplet size is shown. The problems of reliable description of the effect of a copolymer on the coalescence in quiescent state are presented. Obstacles to derivation of a realistic theory of the copolymer effect on the competition between the droplet breakup and coalescence are discussed. Selected experimental data are compared with the theoretical results.
Zobrazit více v PubMed
Hudson S.D., Jamieson A.M. Morphology and properties of blends containing block copolymers. In: Paul D.R., Bucknall C.B., editors. Polymer Blends, Vol. 1: Formulations. J. Wiley and Sons; New York, NY, USA: 2000. pp. 461–499.
Koning C., Van Duin M., Pagnoulle C., Jerome R. Strategies for compatibilization of polymer blends. Prog. Polym. Sci. 1998;23:707–757. doi: 10.1016/S0079-6700(97)00054-3. DOI
Covas J.A., Pessan L.A., Machado A.V., Larocca N.M. Ch. 7: Polymer blend compatibilization by copolymers and functional polymers. In: Isayev A.I., editor. Encyclopedia of Polymer Blends, Vol. 2: Processing. Volume 2. Wiley-VCH; Weinheim, Germany: 2011. pp. 315–356. DOI
Anastasiadis S.H. Interfacial tension in binary polymer blends and the effects of copolymers as emulsifying agents. In: Wolf B., Enders S., editors. Polymer thermodynamics. Advances in Polymer Science, vol 238. Springer; Berlin/Heidelberg, Germany: 2010. pp. 179–269. DOI
Favis B.D. Factor influencing the morphology in immiscible polymer blends in melt processing. In: Paul D.R., Bucknall C.B., editors. Polymer Blends. Volume 1. J. Wiley and Sons; New York, NY, USA: 2000. pp. 501–537. DOI
Fortelný I. Theoretical aspects of phase morphology development. In: Harrats C., Thomas S., Groeninckx G., editors. Micro- and Nanostructured Multiphase Polymer Blends Systems. Taylor and Francis; Boca Raton, FL, USA: 2006. pp. 43–90. DOI
Sundararaj U. Phase morphology development in polymer blends. In: Harrats C., Thomas S., Groeninckx G., editors. Micro- and Nanostructured Multiphase Polymer Blends Systems. Taylor and Francis; Boca Raton, FL, USA: 2006. pp. 133–164. DOI
Huang H.-X. Macro, micro and nanostructured morphologies of multiphase polymer systems. In: Boudenne A., Ibos L., Candau Y., Thomas S., editors. Handbook of Multiphase Polymer Systems. Volume 1. Wiley; Chichester, UK: 2011. pp. 161–249. DOI
Fortelný I., Jůza J. Description of the Droplet Size Evolution in Flowing Immiscible Polymer Blends. Polymers. 2019;11:761. doi: 10.3390/polym11050761. PubMed DOI PMC
Glansdorf P., Prigogine I. Thermodynamic Theory of Structure, Stability and Fluctuations. Wiley-Interscience; London, UK: 1971.
Lyngaae-Jørgensen J. Diblock copolymers and steric stabilization during flow. J. Macromol. Sci. Phys. 1998;B37:239–253. doi: 10.1080/00222349808220469. DOI
Tang T., Huang B. Interfacial behaviour of compatibilizers in polymer blends. Polymer. 1994;35:281–285. doi: 10.1016/0032-3861(94)90691-2. DOI
Kim J.R., Jamieson A.M., Hudson S.D., Manas-Zloczower I., Ishida H. Influence of Segmental Swelling Ratio of a Symmetric Block Copolymer on the Morphology of Melt-Mixed Immiscible Polymer Blends. Macromolecules. 1999;32:4582–4587. doi: 10.1021/ma990177h. DOI
Chun S.B., Han C.D. The Role of the Order−Disorder Transition Temperature of Block Copolymer in the Compatibilization of Two Immiscible Homopolymers. Macromolecules. 1999;32:4030–4042. doi: 10.1021/ma981665c. DOI
Adedeji A., Lyu S., Macosko C.W. Block Copolymers in Homopolymer Blends: Interface vs. Micelles. Macromolecules. 2001;34:8663–8668. doi: 10.1021/ma001944b. DOI
Wang J., Tsou A.H., Passino H.L., Favis B.D. PPE-g-HDPE in high-performance poly(p-phenylene ether)/polyethylene blends: Synthesis and compatibilization effects. Polymer. 2018;138:92–102. doi: 10.1016/j.polymer.2018.01.041. DOI
Ferri J.M., Garcia-Garcia D., Rayón E., Samper M.D., Balart R. Compatibilization and Characterization of Polylactide and Biopolyethylene Binary Blends by Non-Reactive and Reactive Compatibilization Approaches. Polymers. 2020;12:1344. doi: 10.3390/polym12061344. PubMed DOI PMC
Zhao X., Huang Y., Kong M., Yang Q., Li G. Assessment of compatibilization efficiency of SEBS in the PP/PS blend. J. Appl. Polym. Sci. 2018;135:46244. doi: 10.1002/app.46244. DOI
Ding Y., Feng W., Huang D., Lu B., Wang P., Wang G., Ji J. Compatibilization of immiscible PLA-based biodegradable polymer blends using amphiphilic di-block copolymers. Eur. Polym. J. 2019;118:45–52. doi: 10.1016/j.eurpolymj.2019.05.036. DOI
Leibler L. Emulsifying effects of block copolymers in incompatible polymer blends. Makromol. Chemie. Macromol. Symp. 1988;16:1–17. doi: 10.1002/masy.19880160103. DOI
Retsos H., Margiolaki I., Messaritaki A.A., Anastasiadis S.H. Interfacial Tension in Binary Polymer Blends in the Presence of Block Copolymers: Effects of Additive MW. Macromolecules. 2001;34:5295–5305. doi: 10.1021/ma002105s. DOI
Noolandi J. Interfacial tension in incompatible homopolymer blends with added block copolymer. Makromol. Chem. Rapid Commun. 1991;12:517–521. doi: 10.1002/marc.1991.030120810. DOI
Retsos H., Anastasiadis S.H., Pispas S., Mays J.W., Hadjichristidis N. Interfacial Tension in Binary Polymer Blends in the Presence of Block Copolymers. 2. Effects of Additive Architecture and Composition. Macromolecules. 2004;37:524–537. doi: 10.1021/ma035463e. DOI
Erukhimovich I., Govorun E.N., Litmanovich A.D. Stabilization of polymer blend structure by diblock copolymers. Macromol. Theory Simul. 1998;7:233–239. doi: 10.1002/(SICI)1521-3919(19980301)7:2<233::AID-MATS233>3.0.CO;2-V. DOI
Govorun E.N., Erukhimovich I. Emulsion Stabilization by Diblock Copolymers: Droplet Curvature Effect. Langmuir. 1999;15:8392–8398. doi: 10.1021/la990428f. DOI
Lyatskaya Y., Gersappe D., Gross N.A., Balazs A.C. Designing Compatibilizers To Reduce Interfacial Tension in Polymer Blends. J. Phys. Chem. 1996;100:1449–1458. doi: 10.1021/jp952422e. DOI
Scheutjens J.M.H.M., Fleer G.J. Statistical theory of the adsorption of interacting chain molecules. 1. Partition function, segment density distribution, and adsorption isotherms. J. Phys. Chem. 1979;83:1619–1635. doi: 10.1021/j100475a012. DOI
Lyatskaya Y., Jacobson S.H., Balazs A.C. Effect of Composition on the Compatibilizing Activity of Comb Copolymers. Macromolecules. 1996;29:1059–1061. doi: 10.1021/ma950615u. DOI
Lyatskaya Y., Balazs A.C. Using Copolymer Mixtures To Compatibilize Immiscible Homopolymer Blends. Macromolecules. 1996;29:7581–7587. doi: 10.1021/ma960645c. DOI
Shull K.R., Kramer E.J. Mean-field theory of polymer interfaces in the presence of block copolymers. Macromolecules. 1990;23:4769–4779. doi: 10.1021/ma00224a005. DOI
Shull K.R., Kramer E.J., Hadziioannou G., Tang W. Segregation of block copolymers to interfaces between immiscible homopolymers. Macromolecules. 1990;23:4780–4787. doi: 10.1021/ma00224a006. DOI
Reynolds B.J., Ruegg M.L., Mates T.E., Radke C.J., Balsara N.P. Experimental and Theoretical Study of the Adsorption of a Diblock Copolymer to Interfaces between Two Homopolymers. Macromolecules. 2005;38:3872–3882. doi: 10.1021/ma047539s. DOI
Gersappe D., Harm P.K., Irvine D., Balazs A.C. Contrasting the compatibilizing activity of comb and linear copolymers. Macromolecules. 1994;27:720–724. doi: 10.1021/ma00081a015. DOI
Reynolds B.J., Ruegg M.L., Mates T.E., Radke C.J., Balsara N.P. Diblock Copolymer Surfactant Transport across the Interface between Two Homopolymers. Langmuir. 2006;22:9192–9200. doi: 10.1021/la060580z. PubMed DOI
Reynolds B.J., Ruegg M.L., Balsara N.P., Radke C.J. Relationship between Macroscopic and Microscopic Models of Surfactant Adsorption Dynamics at Fluid Interfaces. Langmuir. 2006;22:9201–9207. doi: 10.1021/la060581r. PubMed DOI
Chang K., Morse D.C. Diblock Copolymer Surfactants in Immiscible Homopolymer Blends: Swollen Micelles and Interfacial Tension. Macromolecules. 2006;39:7746–7756. doi: 10.1021/ma060481s. DOI
Vilgis T.A., Noolandi J. Theory of homopolymer-block copolymer blends. The search for a universal compatibilizer. Macromolecules. 1990;23:2941–2947. doi: 10.1021/ma00213a021. DOI
Adedeji A., Hudson S.D., Jamieson A.M. Effect of Exothermic Interfacial Mixing on Interfacial Activity of a Block Copolymer. Macromolecules. 1996;29:2449–2456. doi: 10.1021/ma951298u. DOI
Fortelný I., Jůza J. Analysis of the effect of block copolymers on interfacial tension in immiscible polymer blends. Polymer. 2018;150:380–390. doi: 10.1016/j.polymer.2018.07.041. DOI
Noolandi J., Hong K.M. Effect of block copolymers at a demixed homopolymer interface. Macromolecules. 1984;17:1531–1537. doi: 10.1021/ma00138a019. DOI
Semenov A.N. Theory of diblock-copolymer segregation to the interface and free surface of a homopolymer layer. Macromolecules. 1992;25:4967–4977. doi: 10.1021/ma00045a024. DOI
Jůza J., Fortelný I. Analysis of the effect of interaction parameters of copolymer blocks on their efficiency in reduction of interfacial tension in immiscible polymer blends. Colloid Polym. Sci. 2021;299:1247–1269. doi: 10.1007/s00396-021-04809-6. DOI
Jůza J., Fortelný I. Removal of some approximations in calculation of the effect of a block copolymer on the interfacial tension in polymer blends. Colloid Polym. Sci. 2021:1–20. doi: 10.1007/s00396-021-04904-8. DOI
Noolandi J. Multiblock copolymers as polymeric surfactants: Are “pancakes” better than “dumbbells”? Die Makromol. Chem. Theory Simul. 1992;1:295–298. doi: 10.1002/mats.1992.040010503. DOI
Dai K.H., Kramer E.J., Shull K.R. Interfacial segregation in two-phase polymer blends with diblock copolymer additives: The effect of homopolymer molecular weight. Macromolecules. 1992;25:220–225. doi: 10.1021/ma00027a037. DOI
Bačová P., Foskinis R., Glynos E., Rissanou A.N., Anastasiadis S.H., Harmandaris V. Effect of macromolecular architecture on the self-assembly behavior of copolymers in a selective polymer host. Soft Matter. 2018;14:9562–9570. doi: 10.1039/C8SM01421C. PubMed DOI
Whitmore M.D., Noolandi J. Theory of micelle formation in block copolymer-homopolymer blends. Macromolecules. 1985;18:657–665. doi: 10.1021/ma00146a014. DOI
Leibler L., Orland H., Wheeler J.C. Theory of critical micelle concentration for solutions of block copolymers. J. Chem. Phys. 1983;79:3550–3557. doi: 10.1063/1.446209. DOI
Fortelný I. Breakup and Coalescence of Dispersed Droplets in Compatibilized Polymer Blends. J. Macromol. Sci. Phys. B. 2000;B39:67–78. doi: 10.1081/MB-100100372. DOI
Van Puyvelde P., Velankar S., Moldenaers P. Rheology and morphology of compatibilized polymer blends. Curr. Opin. Colloid Interface Sci. 2001;6:457–463. doi: 10.1016/S1359-0294(01)00113-3. DOI
Gabriele M., Pasquino R., Grizzuti N. Effects of Viscosity-Controlled Interfacial Mobility on the Coalescence of Immiscible Polymer Blends. Macromol. Mater. Eng. 2011;296:263–269. doi: 10.1002/mame.201000286. DOI
Flumerfelt R.W. Effects of dynamic interfacial properties on drop deformation and orientation in shear and extensional flow fields. J. Colloid Interface Sci. 1980;76:330–349. doi: 10.1016/0021-9797(80)90377-X. DOI
Stone H.A. Dynamics of Drop Deformation and Breakup in Viscous Fluids. Annu. Rev. Fluid Mech. 1994;26:65–102. doi: 10.1146/annurev.fl.26.010194.000433. DOI
Nagarajan R. Constructing a molecular theory of self-assembly: Interplay of ideas from surfactants and block copolymers. Adv. Colloid Interface Sci. 2017;244:113–123. doi: 10.1016/j.cis.2016.12.001. PubMed DOI
Stone H.A., Leal L.G. The effects of surfactants on drop deformation and breakup. J. Fluid Mech. 1990;220:161–186. doi: 10.1017/S0022112090003226. DOI
Yang J., Zhao J., Han C.C. Lateral Mobility of Single Chains at a Liquid Polymer Interface. Macromolecules. 2008;41:7284–7286. doi: 10.1021/ma8015135. DOI
Cox R.G. The deformation of a drop in a general time-dependent fluid flow. J. Fluid Mech. 1969;37:601–623. doi: 10.1017/S0022112069000759. DOI
Abbassi-Sourki F., Huneault M.A., Bousmina M. Effect of compatibilization on the deformation and breakup of drops in step-wise increasing shear flow. Polymer. 2009;50:645–653. doi: 10.1016/j.polymer.2008.11.027. DOI
Velankar S., Van Puyvelde P., Mewis J., Moldenaers P. Effect of compatibilization on the breakup of polymeric drops in shear flow. J. Rheol. 2001;45:1007–1019. doi: 10.1122/1.1380424. DOI
Van Puyvelde P., Velankar S., Mewis J., Moldenaers P. Effect of marangoni stresses on the deformation and coalescence in compatibilized immiscible polymer blends. Polym. Eng. Sci. 2002;42:1956–1964. doi: 10.1002/pen.11088. DOI
Jeon H.K., Macosko C.W. Visualization of block copolymer distribution on a sheared drop. Polymer. 2003;44:5381–5386. doi: 10.1016/S0032-3861(03)00474-9. DOI
Cardinaels R., Vananroye A., Van Puyvelde P., Moldenaers P. Breakup Criteria for Confined Droplets: Effects of Compatibilization and Component Viscoelasticity. Macromol. Mater. Eng. 2011;296:231–242. doi: 10.1002/mame.201000305. DOI
Vananroye A., Van Puyvelde P., Moldenaers P. Deformation and orientation of single droplets during shear flow: Combined effects of confinement and compatibilization. Rheol. Acta. 2011;50:231–242. doi: 10.1007/s00397-011-0535-4. DOI
Hu Y.T., Pine D.J., Leal L.G. Drop deformation, breakup, and coalescence with compatibilizer. Phys. Fluids. 2000;12:484–489. doi: 10.1063/1.870254. DOI
Palierne J.F., Lequeux F. Sausage instability of a thread in a matrix; linear theory for viscoelastic fluids and interface. J. Non-Newtonian Fluid Mech. 1991;40:289–306. doi: 10.1016/0377-0257(91)87014-O. DOI
Tomotika S. On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid. Proc. R. Soc. 1935;150:322–337. doi: 10.1098/rspa.1935.0104. DOI
Chesters A.K. The modeling of coalescence processes in fluid-liquid dispersions: A review of current understanding. Trans. Inst. Chem. Eng. (A) 1991;69:259–270.
Janssen P.J.A., Anderson P.D. Modeling Film Drainage and Coalescence of Drops in a Viscous Fluid. Macromol. Mater. Eng. 2011;296:238–248. doi: 10.1002/mame.201000375. DOI
Milner S.T., Xi H. How copolymers promote mixing of immiscible homopolymers. J. Rheol. 1996;40:663–687. doi: 10.1122/1.550731. DOI
Jeelani S.A.K., Hartland S. Effect of Interfacial Mobility on Thin Film Drainage. J. Colloid Interface Sci. 1994;164:296–308. doi: 10.1006/jcis.1994.1171. DOI
Sundararaj U., Macosko C.W. Drop Breakup and Coalescence in Polymer Blends: The Effects of Concentration and Compatibilization. Macromolecules. 1995;28:2647–2657. doi: 10.1021/ma00112a009. DOI
Macosko C.W., Guégan P., Khandpur A.K., Nakayama A., Marechal P., Inoue T. Compatibilizers for Melt Blending: Premade Block Copolymers. Macromolecules. 1996;29:5590–5598. doi: 10.1021/ma9602482. DOI
Lyu S., Jones T.D., Bates F.S., Macosko C.W. Role of Block Copolymers on Suppression of Droplet Coalescence. Macromolecules. 2002;35:7845–7855. doi: 10.1021/ma020754t. DOI
Lyu S. Block Copolymers Suppressing Droplet Coalescence through Stopping Film Rupture. Macromolecules. 2003;36:10052–10055. doi: 10.1021/ma025868j. DOI
Vannozzi C. Relaxation and coalescence of two equal-sized viscous drops in a quiescent matrix. J. Fluid Mech. 2012;694:408–425. doi: 10.1017/jfm.2011.559. DOI
Wang H., Zinchenko A.Z., Davis R.H. The collision rate of small drops in linear flow fields. J. Fluid Mech. 1994;265:161–188. doi: 10.1017/S0022112094000790. DOI
Hudson S.D., Jamieson A.M., Burkhart B.E. The effect of surfactant on the efficiency of shear-induced drop coalescence. J. Colloid Interface Sci. 2003;265:409–421. doi: 10.1016/S0021-9797(03)00396-5. PubMed DOI
Cristini V., Bławzdziewicz J., Loewenberg M. Near-contact motion of surfactant-covered spherical drops. J. Fluid Mech. 1998;366:259–287. doi: 10.1017/S0022112098001359. PubMed DOI
Bławzdziewicz J., Cristini V., Loewenberg M. Near-Contact Motion of Surfactant-Covered Spherical Drops: Ionic Surfactant. J. Colloid Interface Sci. 1999;211:355–366. doi: 10.1006/jcis.1998.5998. PubMed DOI
Chesters A.K., Bazhlekov I.B. Effect of Insoluble Surfactants on Drainage and Rupture of a Film between Drops Interacting under a Constant Force. J. Colloid Interface Sci. 2000;230:229–243. doi: 10.1006/jcis.2000.7074. PubMed DOI
Ha J.W., Yoon Y., Leal L.G. The effect of compatibilizer on the coalescence of two drops in flow. Phys. Fluids. 2003;15:849–867. doi: 10.1063/1.1555803. DOI
Fortelný I. An analysis of the origin of coalescence suppression in compatibilized polymer blends. Eur. Polym. J. 2004;40:2161–2166. doi: 10.1016/j.eurpolymj.2004.05.017. DOI
Fortelný I., Jůza J., Dimzoski B. Coalescence in quiescent polymer blends with a high content of the dispersed phase. Eur. Polym. J. 2012;48:1230–1240. doi: 10.1016/j.eurpolymj.2012.04.017. DOI
Fortelný I., Živný A. Theoretical description of steady droplet size in polymer blends containing a compatibilizer. Polymer. 2000;41:6865–6873. doi: 10.1016/S0032-3861(00)00038-0. DOI
Janssen J.M.H., Meijer H.E.H. Dynamics of liquid-liquid mixing: A 2-zone model. Polym. Eng. Sci. 1995;35:1766–1780. doi: 10.1002/pen.760352206. DOI
Fortelný I., Kovář J. Droplet size of the minor component in the mixing of melts of immiscible polymers. Eur. Polym. J. 1989;25:317–319. doi: 10.1016/0014-3057(89)90239-5. DOI
La Mantia F.P., Ceraulo M., Giacchi G., Mistretta M.C., Botta L. Effect of a Compatibilizer on the Morphology and Properties of Polypropylene/Polyethylentherephthalate Spun Fibers. Polymers. 2017;9:47. doi: 10.3390/polym9020047. PubMed DOI PMC
Cigana P., Favis B.D., Jerome R. Diblock copolymers as emulsifying agents in polymer blends: Influence of molecular weight, architecture, and chemical composition. J. Polym. Sci. Part B: Polym. Phys. 1996;34:1691–1700. doi: 10.1002/(SICI)1099-0488(19960715)34:9<1691::AID-POLB18>3.0.CO;2-2. DOI
Favis B.D., Cigana P., Matos M., Trembla A. Factors influencing the efficacy of an interfacial modifier for the interface in an immiscible polymer blend. Can. J. Chem. Eng. 1997;75:273–281. doi: 10.1002/cjce.5450750201. DOI
Matos M., Favis B.D., Lomellini P. Interfacial modification of polymer blends—the emulsification curve: 1. Influence of molecular weight and chemical composition of the interfacial modifier. Polymer. 1995;36:3899–3907. doi: 10.1016/0032-3861(95)99784-R. DOI
Li J., Favis B.D. Strategies to measure and optimize the migration of the interfacial modifier to the interface in immiscible polymer blends. Polymer. 2002;43:4935–4945. doi: 10.1016/S0032-3861(02)00277-X. DOI
Cerclé C., Favis B.D. Generalizing interfacial modification in polymer blends. Polymer. 2012;53:4338–4343. doi: 10.1016/j.polymer.2012.07.027. DOI
Marić M., Macosko C.W. Block copolymer compatibilizers for polystyrene/poly(dimethylsiloxane) blends. J. Polym. Sci. Part B Polym. Phys. 2002;40:346–357. doi: 10.1002/polb.10098. DOI
Fortelný I., Hlavatá D., Mikešová J., Michálková D., Potroková L., Šloufová I. Effect of mixing conditions on the morphology and properties of polystyrene/polyethylene blends compatibilized with styrene-butadiene block copolymers. J. Polym. Sci. Part B Polym. Phys. 2003;41:609–622. doi: 10.1002/polb.10409. DOI
Fortelný I., Mikešová J., Hromádková J., Hašová V., Horák Z. Effect of molecular structure of styrene-butadiene block copolymers on morphology, rheological properties, and impact strength of polystyrene/polyethylene blends. J. Appl. Polym. Sci. 2003;90:2303–2309. doi: 10.1002/app.12730. DOI
Fortelný I., Šlouf M., Hlavatá D., Sikora A. Interfacial activity of styrene-butadiene block copolymers in low-density polyethylene/polystyrene blends. Compos. Interfaces. 2006;13:783–799. doi: 10.1163/156855406779366822. DOI
Fortelný I., Šlouf M., Sikora A., Hlavatá D., Hašová V., Mikešová J., Jacob C. The effect of the architecture and concentration of styrene–butadiene compatibilizers on the morphology of polystyrene/low-density polyethylene blends. J. Appl. Polym. Sci. 2006;100:2803–2816. doi: 10.1002/app.23731. DOI
Fortelný I., Minkova L.I., Kotek J., Lapčíková M., Michálková D. Morphology and mechanical properties of polypropylene/polystyrene blends compatibilized with styrene-butadiene block copolymers. Polym. Eng. Sci. 2012;52:191–204. doi: 10.1002/pen.22066. DOI
Hlavatá D., Hromádková J., Fortelný I., Hašová V., Pulda J. Compatibilization efficiency of styrene-butadiene triblock copolymers in polystyrene-polypropylene blends with varying compositions. J. Appl. Polym. Sci. 2004;92:2431–2441. doi: 10.1002/app.20216. DOI
Rek V., Vranješ N., Šlouf M., Fortelný I., Jelčić Ž. Morphology and Properties of SEBS Block Copolymer Compatibilized PS/HDPE Blends. J. Elastomers Plast. 2008;40:237–251. doi: 10.1177/0095244307084906. DOI
Starý Z., Fortelný I., Kruliš Z., Šlouf M. Effect of the molecular structure of ethene–propene and styrene–butadiene copolymers on their compatibilization efficiency in low-density polyethylene/polystyrene blends. J. Appl. Polym. Sci. 2008;107:174–186. doi: 10.1002/app.27005. DOI
Horák Z., Hlavatá D., Fortelný I., Lednický F. Effect of styrene-butadiene triblock copolymer structure on its compatibilization efficiency in PS/PB and PS/PP blends. Polym. Eng. Sci. 2002;42:2042–2047. doi: 10.1002/pen.11095. DOI
Hlavatá D., Horák Z., Lednický F., Hromádková J., Pleska A., Zanevskii Y.V. Compatibilization efficiency of styrene-butadiene multiblock copolymers in PS/PP blends. J. Polym. Sci. Part B: Polym. Phys. 2001;39:931–942. doi: 10.1002/polb.1068. DOI