The Effects of Copolymer Compatibilizers on the Phase Structure Evolution in Polymer Blends-A Review

. 2021 Dec 16 ; 14 (24) : . [epub] 20211216

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34947377

Grantová podpora
TN01000008 Technology Agency of the Czech Republic

This paper summarizes the results of studies describing the effect of block and graft copolymers on the phase structure formation and evolution in immiscible polymer blends. The main phenomenological rules for prediction of the copolymer compatibilization efficiency are briefly described and compared with selected experimental data. The results of the theories of equilibrium distribution of a copolymer between the blend interface and the bulk phases and its effect on the blend interfacial tension are summarized. The theories of the compatibilizer effect on the droplet breakup in flow are analyzed. The mechanisms of the copolymer effect on the coalescence of droplets in flow are compared and their effect on the droplet size is shown. The problems of reliable description of the effect of a copolymer on the coalescence in quiescent state are presented. Obstacles to derivation of a realistic theory of the copolymer effect on the competition between the droplet breakup and coalescence are discussed. Selected experimental data are compared with the theoretical results.

Zobrazit více v PubMed

Hudson S.D., Jamieson A.M. Morphology and properties of blends containing block copolymers. In: Paul D.R., Bucknall C.B., editors. Polymer Blends, Vol. 1: Formulations. J. Wiley and Sons; New York, NY, USA: 2000. pp. 461–499.

Koning C., Van Duin M., Pagnoulle C., Jerome R. Strategies for compatibilization of polymer blends. Prog. Polym. Sci. 1998;23:707–757. doi: 10.1016/S0079-6700(97)00054-3. DOI

Covas J.A., Pessan L.A., Machado A.V., Larocca N.M. Ch. 7: Polymer blend compatibilization by copolymers and functional polymers. In: Isayev A.I., editor. Encyclopedia of Polymer Blends, Vol. 2: Processing. Volume 2. Wiley-VCH; Weinheim, Germany: 2011. pp. 315–356. DOI

Anastasiadis S.H. Interfacial tension in binary polymer blends and the effects of copolymers as emulsifying agents. In: Wolf B., Enders S., editors. Polymer thermodynamics. Advances in Polymer Science, vol 238. Springer; Berlin/Heidelberg, Germany: 2010. pp. 179–269. DOI

Favis B.D. Factor influencing the morphology in immiscible polymer blends in melt processing. In: Paul D.R., Bucknall C.B., editors. Polymer Blends. Volume 1. J. Wiley and Sons; New York, NY, USA: 2000. pp. 501–537. DOI

Fortelný I. Theoretical aspects of phase morphology development. In: Harrats C., Thomas S., Groeninckx G., editors. Micro- and Nanostructured Multiphase Polymer Blends Systems. Taylor and Francis; Boca Raton, FL, USA: 2006. pp. 43–90. DOI

Sundararaj U. Phase morphology development in polymer blends. In: Harrats C., Thomas S., Groeninckx G., editors. Micro- and Nanostructured Multiphase Polymer Blends Systems. Taylor and Francis; Boca Raton, FL, USA: 2006. pp. 133–164. DOI

Huang H.-X. Macro, micro and nanostructured morphologies of multiphase polymer systems. In: Boudenne A., Ibos L., Candau Y., Thomas S., editors. Handbook of Multiphase Polymer Systems. Volume 1. Wiley; Chichester, UK: 2011. pp. 161–249. DOI

Fortelný I., Jůza J. Description of the Droplet Size Evolution in Flowing Immiscible Polymer Blends. Polymers. 2019;11:761. doi: 10.3390/polym11050761. PubMed DOI PMC

Glansdorf P., Prigogine I. Thermodynamic Theory of Structure, Stability and Fluctuations. Wiley-Interscience; London, UK: 1971.

Lyngaae-Jørgensen J. Diblock copolymers and steric stabilization during flow. J. Macromol. Sci. Phys. 1998;B37:239–253. doi: 10.1080/00222349808220469. DOI

Tang T., Huang B. Interfacial behaviour of compatibilizers in polymer blends. Polymer. 1994;35:281–285. doi: 10.1016/0032-3861(94)90691-2. DOI

Kim J.R., Jamieson A.M., Hudson S.D., Manas-Zloczower I., Ishida H. Influence of Segmental Swelling Ratio of a Symmetric Block Copolymer on the Morphology of Melt-Mixed Immiscible Polymer Blends. Macromolecules. 1999;32:4582–4587. doi: 10.1021/ma990177h. DOI

Chun S.B., Han C.D. The Role of the Order−Disorder Transition Temperature of Block Copolymer in the Compatibilization of Two Immiscible Homopolymers. Macromolecules. 1999;32:4030–4042. doi: 10.1021/ma981665c. DOI

Adedeji A., Lyu S., Macosko C.W. Block Copolymers in Homopolymer Blends: Interface vs. Micelles. Macromolecules. 2001;34:8663–8668. doi: 10.1021/ma001944b. DOI

Wang J., Tsou A.H., Passino H.L., Favis B.D. PPE-g-HDPE in high-performance poly(p-phenylene ether)/polyethylene blends: Synthesis and compatibilization effects. Polymer. 2018;138:92–102. doi: 10.1016/j.polymer.2018.01.041. DOI

Ferri J.M., Garcia-Garcia D., Rayón E., Samper M.D., Balart R. Compatibilization and Characterization of Polylactide and Biopolyethylene Binary Blends by Non-Reactive and Reactive Compatibilization Approaches. Polymers. 2020;12:1344. doi: 10.3390/polym12061344. PubMed DOI PMC

Zhao X., Huang Y., Kong M., Yang Q., Li G. Assessment of compatibilization efficiency of SEBS in the PP/PS blend. J. Appl. Polym. Sci. 2018;135:46244. doi: 10.1002/app.46244. DOI

Ding Y., Feng W., Huang D., Lu B., Wang P., Wang G., Ji J. Compatibilization of immiscible PLA-based biodegradable polymer blends using amphiphilic di-block copolymers. Eur. Polym. J. 2019;118:45–52. doi: 10.1016/j.eurpolymj.2019.05.036. DOI

Leibler L. Emulsifying effects of block copolymers in incompatible polymer blends. Makromol. Chemie. Macromol. Symp. 1988;16:1–17. doi: 10.1002/masy.19880160103. DOI

Retsos H., Margiolaki I., Messaritaki A.A., Anastasiadis S.H. Interfacial Tension in Binary Polymer Blends in the Presence of Block Copolymers: Effects of Additive MW. Macromolecules. 2001;34:5295–5305. doi: 10.1021/ma002105s. DOI

Noolandi J. Interfacial tension in incompatible homopolymer blends with added block copolymer. Makromol. Chem. Rapid Commun. 1991;12:517–521. doi: 10.1002/marc.1991.030120810. DOI

Retsos H., Anastasiadis S.H., Pispas S., Mays J.W., Hadjichristidis N. Interfacial Tension in Binary Polymer Blends in the Presence of Block Copolymers. 2. Effects of Additive Architecture and Composition. Macromolecules. 2004;37:524–537. doi: 10.1021/ma035463e. DOI

Erukhimovich I., Govorun E.N., Litmanovich A.D. Stabilization of polymer blend structure by diblock copolymers. Macromol. Theory Simul. 1998;7:233–239. doi: 10.1002/(SICI)1521-3919(19980301)7:2<233::AID-MATS233>3.0.CO;2-V. DOI

Govorun E.N., Erukhimovich I. Emulsion Stabilization by Diblock Copolymers: Droplet Curvature Effect. Langmuir. 1999;15:8392–8398. doi: 10.1021/la990428f. DOI

Lyatskaya Y., Gersappe D., Gross N.A., Balazs A.C. Designing Compatibilizers To Reduce Interfacial Tension in Polymer Blends. J. Phys. Chem. 1996;100:1449–1458. doi: 10.1021/jp952422e. DOI

Scheutjens J.M.H.M., Fleer G.J. Statistical theory of the adsorption of interacting chain molecules. 1. Partition function, segment density distribution, and adsorption isotherms. J. Phys. Chem. 1979;83:1619–1635. doi: 10.1021/j100475a012. DOI

Lyatskaya Y., Jacobson S.H., Balazs A.C. Effect of Composition on the Compatibilizing Activity of Comb Copolymers. Macromolecules. 1996;29:1059–1061. doi: 10.1021/ma950615u. DOI

Lyatskaya Y., Balazs A.C. Using Copolymer Mixtures To Compatibilize Immiscible Homopolymer Blends. Macromolecules. 1996;29:7581–7587. doi: 10.1021/ma960645c. DOI

Shull K.R., Kramer E.J. Mean-field theory of polymer interfaces in the presence of block copolymers. Macromolecules. 1990;23:4769–4779. doi: 10.1021/ma00224a005. DOI

Shull K.R., Kramer E.J., Hadziioannou G., Tang W. Segregation of block copolymers to interfaces between immiscible homopolymers. Macromolecules. 1990;23:4780–4787. doi: 10.1021/ma00224a006. DOI

Reynolds B.J., Ruegg M.L., Mates T.E., Radke C.J., Balsara N.P. Experimental and Theoretical Study of the Adsorption of a Diblock Copolymer to Interfaces between Two Homopolymers. Macromolecules. 2005;38:3872–3882. doi: 10.1021/ma047539s. DOI

Gersappe D., Harm P.K., Irvine D., Balazs A.C. Contrasting the compatibilizing activity of comb and linear copolymers. Macromolecules. 1994;27:720–724. doi: 10.1021/ma00081a015. DOI

Reynolds B.J., Ruegg M.L., Mates T.E., Radke C.J., Balsara N.P. Diblock Copolymer Surfactant Transport across the Interface between Two Homopolymers. Langmuir. 2006;22:9192–9200. doi: 10.1021/la060580z. PubMed DOI

Reynolds B.J., Ruegg M.L., Balsara N.P., Radke C.J. Relationship between Macroscopic and Microscopic Models of Surfactant Adsorption Dynamics at Fluid Interfaces. Langmuir. 2006;22:9201–9207. doi: 10.1021/la060581r. PubMed DOI

Chang K., Morse D.C. Diblock Copolymer Surfactants in Immiscible Homopolymer Blends: Swollen Micelles and Interfacial Tension. Macromolecules. 2006;39:7746–7756. doi: 10.1021/ma060481s. DOI

Vilgis T.A., Noolandi J. Theory of homopolymer-block copolymer blends. The search for a universal compatibilizer. Macromolecules. 1990;23:2941–2947. doi: 10.1021/ma00213a021. DOI

Adedeji A., Hudson S.D., Jamieson A.M. Effect of Exothermic Interfacial Mixing on Interfacial Activity of a Block Copolymer. Macromolecules. 1996;29:2449–2456. doi: 10.1021/ma951298u. DOI

Fortelný I., Jůza J. Analysis of the effect of block copolymers on interfacial tension in immiscible polymer blends. Polymer. 2018;150:380–390. doi: 10.1016/j.polymer.2018.07.041. DOI

Noolandi J., Hong K.M. Effect of block copolymers at a demixed homopolymer interface. Macromolecules. 1984;17:1531–1537. doi: 10.1021/ma00138a019. DOI

Semenov A.N. Theory of diblock-copolymer segregation to the interface and free surface of a homopolymer layer. Macromolecules. 1992;25:4967–4977. doi: 10.1021/ma00045a024. DOI

Jůza J., Fortelný I. Analysis of the effect of interaction parameters of copolymer blocks on their efficiency in reduction of interfacial tension in immiscible polymer blends. Colloid Polym. Sci. 2021;299:1247–1269. doi: 10.1007/s00396-021-04809-6. DOI

Jůza J., Fortelný I. Removal of some approximations in calculation of the effect of a block copolymer on the interfacial tension in polymer blends. Colloid Polym. Sci. 2021:1–20. doi: 10.1007/s00396-021-04904-8. DOI

Noolandi J. Multiblock copolymers as polymeric surfactants: Are “pancakes” better than “dumbbells”? Die Makromol. Chem. Theory Simul. 1992;1:295–298. doi: 10.1002/mats.1992.040010503. DOI

Dai K.H., Kramer E.J., Shull K.R. Interfacial segregation in two-phase polymer blends with diblock copolymer additives: The effect of homopolymer molecular weight. Macromolecules. 1992;25:220–225. doi: 10.1021/ma00027a037. DOI

Bačová P., Foskinis R., Glynos E., Rissanou A.N., Anastasiadis S.H., Harmandaris V. Effect of macromolecular architecture on the self-assembly behavior of copolymers in a selective polymer host. Soft Matter. 2018;14:9562–9570. doi: 10.1039/C8SM01421C. PubMed DOI

Whitmore M.D., Noolandi J. Theory of micelle formation in block copolymer-homopolymer blends. Macromolecules. 1985;18:657–665. doi: 10.1021/ma00146a014. DOI

Leibler L., Orland H., Wheeler J.C. Theory of critical micelle concentration for solutions of block copolymers. J. Chem. Phys. 1983;79:3550–3557. doi: 10.1063/1.446209. DOI

Fortelný I. Breakup and Coalescence of Dispersed Droplets in Compatibilized Polymer Blends. J. Macromol. Sci. Phys. B. 2000;B39:67–78. doi: 10.1081/MB-100100372. DOI

Van Puyvelde P., Velankar S., Moldenaers P. Rheology and morphology of compatibilized polymer blends. Curr. Opin. Colloid Interface Sci. 2001;6:457–463. doi: 10.1016/S1359-0294(01)00113-3. DOI

Gabriele M., Pasquino R., Grizzuti N. Effects of Viscosity-Controlled Interfacial Mobility on the Coalescence of Immiscible Polymer Blends. Macromol. Mater. Eng. 2011;296:263–269. doi: 10.1002/mame.201000286. DOI

Flumerfelt R.W. Effects of dynamic interfacial properties on drop deformation and orientation in shear and extensional flow fields. J. Colloid Interface Sci. 1980;76:330–349. doi: 10.1016/0021-9797(80)90377-X. DOI

Stone H.A. Dynamics of Drop Deformation and Breakup in Viscous Fluids. Annu. Rev. Fluid Mech. 1994;26:65–102. doi: 10.1146/annurev.fl.26.010194.000433. DOI

Nagarajan R. Constructing a molecular theory of self-assembly: Interplay of ideas from surfactants and block copolymers. Adv. Colloid Interface Sci. 2017;244:113–123. doi: 10.1016/j.cis.2016.12.001. PubMed DOI

Stone H.A., Leal L.G. The effects of surfactants on drop deformation and breakup. J. Fluid Mech. 1990;220:161–186. doi: 10.1017/S0022112090003226. DOI

Yang J., Zhao J., Han C.C. Lateral Mobility of Single Chains at a Liquid Polymer Interface. Macromolecules. 2008;41:7284–7286. doi: 10.1021/ma8015135. DOI

Cox R.G. The deformation of a drop in a general time-dependent fluid flow. J. Fluid Mech. 1969;37:601–623. doi: 10.1017/S0022112069000759. DOI

Abbassi-Sourki F., Huneault M.A., Bousmina M. Effect of compatibilization on the deformation and breakup of drops in step-wise increasing shear flow. Polymer. 2009;50:645–653. doi: 10.1016/j.polymer.2008.11.027. DOI

Velankar S., Van Puyvelde P., Mewis J., Moldenaers P. Effect of compatibilization on the breakup of polymeric drops in shear flow. J. Rheol. 2001;45:1007–1019. doi: 10.1122/1.1380424. DOI

Van Puyvelde P., Velankar S., Mewis J., Moldenaers P. Effect of marangoni stresses on the deformation and coalescence in compatibilized immiscible polymer blends. Polym. Eng. Sci. 2002;42:1956–1964. doi: 10.1002/pen.11088. DOI

Jeon H.K., Macosko C.W. Visualization of block copolymer distribution on a sheared drop. Polymer. 2003;44:5381–5386. doi: 10.1016/S0032-3861(03)00474-9. DOI

Cardinaels R., Vananroye A., Van Puyvelde P., Moldenaers P. Breakup Criteria for Confined Droplets: Effects of Compatibilization and Component Viscoelasticity. Macromol. Mater. Eng. 2011;296:231–242. doi: 10.1002/mame.201000305. DOI

Vananroye A., Van Puyvelde P., Moldenaers P. Deformation and orientation of single droplets during shear flow: Combined effects of confinement and compatibilization. Rheol. Acta. 2011;50:231–242. doi: 10.1007/s00397-011-0535-4. DOI

Hu Y.T., Pine D.J., Leal L.G. Drop deformation, breakup, and coalescence with compatibilizer. Phys. Fluids. 2000;12:484–489. doi: 10.1063/1.870254. DOI

Palierne J.F., Lequeux F. Sausage instability of a thread in a matrix; linear theory for viscoelastic fluids and interface. J. Non-Newtonian Fluid Mech. 1991;40:289–306. doi: 10.1016/0377-0257(91)87014-O. DOI

Tomotika S. On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid. Proc. R. Soc. 1935;150:322–337. doi: 10.1098/rspa.1935.0104. DOI

Chesters A.K. The modeling of coalescence processes in fluid-liquid dispersions: A review of current understanding. Trans. Inst. Chem. Eng. (A) 1991;69:259–270.

Janssen P.J.A., Anderson P.D. Modeling Film Drainage and Coalescence of Drops in a Viscous Fluid. Macromol. Mater. Eng. 2011;296:238–248. doi: 10.1002/mame.201000375. DOI

Milner S.T., Xi H. How copolymers promote mixing of immiscible homopolymers. J. Rheol. 1996;40:663–687. doi: 10.1122/1.550731. DOI

Jeelani S.A.K., Hartland S. Effect of Interfacial Mobility on Thin Film Drainage. J. Colloid Interface Sci. 1994;164:296–308. doi: 10.1006/jcis.1994.1171. DOI

Sundararaj U., Macosko C.W. Drop Breakup and Coalescence in Polymer Blends: The Effects of Concentration and Compatibilization. Macromolecules. 1995;28:2647–2657. doi: 10.1021/ma00112a009. DOI

Macosko C.W., Guégan P., Khandpur A.K., Nakayama A., Marechal P., Inoue T. Compatibilizers for Melt Blending: Premade Block Copolymers. Macromolecules. 1996;29:5590–5598. doi: 10.1021/ma9602482. DOI

Lyu S., Jones T.D., Bates F.S., Macosko C.W. Role of Block Copolymers on Suppression of Droplet Coalescence. Macromolecules. 2002;35:7845–7855. doi: 10.1021/ma020754t. DOI

Lyu S. Block Copolymers Suppressing Droplet Coalescence through Stopping Film Rupture. Macromolecules. 2003;36:10052–10055. doi: 10.1021/ma025868j. DOI

Vannozzi C. Relaxation and coalescence of two equal-sized viscous drops in a quiescent matrix. J. Fluid Mech. 2012;694:408–425. doi: 10.1017/jfm.2011.559. DOI

Wang H., Zinchenko A.Z., Davis R.H. The collision rate of small drops in linear flow fields. J. Fluid Mech. 1994;265:161–188. doi: 10.1017/S0022112094000790. DOI

Hudson S.D., Jamieson A.M., Burkhart B.E. The effect of surfactant on the efficiency of shear-induced drop coalescence. J. Colloid Interface Sci. 2003;265:409–421. doi: 10.1016/S0021-9797(03)00396-5. PubMed DOI

Cristini V., Bławzdziewicz J., Loewenberg M. Near-contact motion of surfactant-covered spherical drops. J. Fluid Mech. 1998;366:259–287. doi: 10.1017/S0022112098001359. PubMed DOI

Bławzdziewicz J., Cristini V., Loewenberg M. Near-Contact Motion of Surfactant-Covered Spherical Drops: Ionic Surfactant. J. Colloid Interface Sci. 1999;211:355–366. doi: 10.1006/jcis.1998.5998. PubMed DOI

Chesters A.K., Bazhlekov I.B. Effect of Insoluble Surfactants on Drainage and Rupture of a Film between Drops Interacting under a Constant Force. J. Colloid Interface Sci. 2000;230:229–243. doi: 10.1006/jcis.2000.7074. PubMed DOI

Ha J.W., Yoon Y., Leal L.G. The effect of compatibilizer on the coalescence of two drops in flow. Phys. Fluids. 2003;15:849–867. doi: 10.1063/1.1555803. DOI

Fortelný I. An analysis of the origin of coalescence suppression in compatibilized polymer blends. Eur. Polym. J. 2004;40:2161–2166. doi: 10.1016/j.eurpolymj.2004.05.017. DOI

Fortelný I., Jůza J., Dimzoski B. Coalescence in quiescent polymer blends with a high content of the dispersed phase. Eur. Polym. J. 2012;48:1230–1240. doi: 10.1016/j.eurpolymj.2012.04.017. DOI

Fortelný I., Živný A. Theoretical description of steady droplet size in polymer blends containing a compatibilizer. Polymer. 2000;41:6865–6873. doi: 10.1016/S0032-3861(00)00038-0. DOI

Janssen J.M.H., Meijer H.E.H. Dynamics of liquid-liquid mixing: A 2-zone model. Polym. Eng. Sci. 1995;35:1766–1780. doi: 10.1002/pen.760352206. DOI

Fortelný I., Kovář J. Droplet size of the minor component in the mixing of melts of immiscible polymers. Eur. Polym. J. 1989;25:317–319. doi: 10.1016/0014-3057(89)90239-5. DOI

La Mantia F.P., Ceraulo M., Giacchi G., Mistretta M.C., Botta L. Effect of a Compatibilizer on the Morphology and Properties of Polypropylene/Polyethylentherephthalate Spun Fibers. Polymers. 2017;9:47. doi: 10.3390/polym9020047. PubMed DOI PMC

Cigana P., Favis B.D., Jerome R. Diblock copolymers as emulsifying agents in polymer blends: Influence of molecular weight, architecture, and chemical composition. J. Polym. Sci. Part B: Polym. Phys. 1996;34:1691–1700. doi: 10.1002/(SICI)1099-0488(19960715)34:9<1691::AID-POLB18>3.0.CO;2-2. DOI

Favis B.D., Cigana P., Matos M., Trembla A. Factors influencing the efficacy of an interfacial modifier for the interface in an immiscible polymer blend. Can. J. Chem. Eng. 1997;75:273–281. doi: 10.1002/cjce.5450750201. DOI

Matos M., Favis B.D., Lomellini P. Interfacial modification of polymer blends—the emulsification curve: 1. Influence of molecular weight and chemical composition of the interfacial modifier. Polymer. 1995;36:3899–3907. doi: 10.1016/0032-3861(95)99784-R. DOI

Li J., Favis B.D. Strategies to measure and optimize the migration of the interfacial modifier to the interface in immiscible polymer blends. Polymer. 2002;43:4935–4945. doi: 10.1016/S0032-3861(02)00277-X. DOI

Cerclé C., Favis B.D. Generalizing interfacial modification in polymer blends. Polymer. 2012;53:4338–4343. doi: 10.1016/j.polymer.2012.07.027. DOI

Marić M., Macosko C.W. Block copolymer compatibilizers for polystyrene/poly(dimethylsiloxane) blends. J. Polym. Sci. Part B Polym. Phys. 2002;40:346–357. doi: 10.1002/polb.10098. DOI

Fortelný I., Hlavatá D., Mikešová J., Michálková D., Potroková L., Šloufová I. Effect of mixing conditions on the morphology and properties of polystyrene/polyethylene blends compatibilized with styrene-butadiene block copolymers. J. Polym. Sci. Part B Polym. Phys. 2003;41:609–622. doi: 10.1002/polb.10409. DOI

Fortelný I., Mikešová J., Hromádková J., Hašová V., Horák Z. Effect of molecular structure of styrene-butadiene block copolymers on morphology, rheological properties, and impact strength of polystyrene/polyethylene blends. J. Appl. Polym. Sci. 2003;90:2303–2309. doi: 10.1002/app.12730. DOI

Fortelný I., Šlouf M., Hlavatá D., Sikora A. Interfacial activity of styrene-butadiene block copolymers in low-density polyethylene/polystyrene blends. Compos. Interfaces. 2006;13:783–799. doi: 10.1163/156855406779366822. DOI

Fortelný I., Šlouf M., Sikora A., Hlavatá D., Hašová V., Mikešová J., Jacob C. The effect of the architecture and concentration of styrene–butadiene compatibilizers on the morphology of polystyrene/low-density polyethylene blends. J. Appl. Polym. Sci. 2006;100:2803–2816. doi: 10.1002/app.23731. DOI

Fortelný I., Minkova L.I., Kotek J., Lapčíková M., Michálková D. Morphology and mechanical properties of polypropylene/polystyrene blends compatibilized with styrene-butadiene block copolymers. Polym. Eng. Sci. 2012;52:191–204. doi: 10.1002/pen.22066. DOI

Hlavatá D., Hromádková J., Fortelný I., Hašová V., Pulda J. Compatibilization efficiency of styrene-butadiene triblock copolymers in polystyrene-polypropylene blends with varying compositions. J. Appl. Polym. Sci. 2004;92:2431–2441. doi: 10.1002/app.20216. DOI

Rek V., Vranješ N., Šlouf M., Fortelný I., Jelčić Ž. Morphology and Properties of SEBS Block Copolymer Compatibilized PS/HDPE Blends. J. Elastomers Plast. 2008;40:237–251. doi: 10.1177/0095244307084906. DOI

Starý Z., Fortelný I., Kruliš Z., Šlouf M. Effect of the molecular structure of ethene–propene and styrene–butadiene copolymers on their compatibilization efficiency in low-density polyethylene/polystyrene blends. J. Appl. Polym. Sci. 2008;107:174–186. doi: 10.1002/app.27005. DOI

Horák Z., Hlavatá D., Fortelný I., Lednický F. Effect of styrene-butadiene triblock copolymer structure on its compatibilization efficiency in PS/PB and PS/PP blends. Polym. Eng. Sci. 2002;42:2042–2047. doi: 10.1002/pen.11095. DOI

Hlavatá D., Horák Z., Lednický F., Hromádková J., Pleska A., Zanevskii Y.V. Compatibilization efficiency of styrene-butadiene multiblock copolymers in PS/PP blends. J. Polym. Sci. Part B: Polym. Phys. 2001;39:931–942. doi: 10.1002/polb.1068. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...