CHK1-CDC25A-CDK1 regulate cell cycle progression and protect genome integrity in early mouse embryos
Status Publisher Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
0134-00299B
Danmarks Frie Forskningsfond (DFF)
724718
EC ¦ European Research Council (ERC)
20-27742S
Grantová Agentura České Republiky (GAČR)
1402217
Grantová Agentura, Univerzita Karlova (GA UK)
Laege Sophus Carl Emil Friis og hustru Olga Doris Friis' Legat (LAEGE SOFUS CARL EMIL FRIIS OG HUSTRU OLGA DORIS FRIIS LEGAT)
2/0072/19
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV (VEGA)
PubMed
37694680
PubMed Central
PMC10561370
DOI
10.15252/embr.202256530
Knihovny.cz E-zdroje
- Klíčová slova
- CDC25A phosphatase, CDK1 kinase, CHK1 kinase, cell cycle regulation, early mouse embryos,
- Publikační typ
- časopisecké články MeSH
After fertilization, remodeling of the oocyte and sperm genomes is essential to convert these highly differentiated and transcriptionally quiescent cells into early cleavage-stage blastomeres that are transcriptionally active and totipotent. This developmental transition is accompanied by cell cycle adaptation, such as lengthening or shortening of the gap phases G1 and G2. However, regulation of these cell cycle changes is poorly understood, especially in mammals. Checkpoint kinase 1 (CHK1) is a protein kinase that regulates cell cycle progression in somatic cells. Here, we show that CHK1 regulates cell cycle progression in early mouse embryos by restraining CDK1 kinase activity due to CDC25A phosphatase degradation. CHK1 kinase also ensures the long G2 phase needed for genome activation and reprogramming gene expression in two-cell stage mouse embryos. Finally, Chk1 depletion leads to DNA damage and chromosome segregation errors that result in aneuploidy and infertility.
Department of Biology University of Pennsylvania Philadelphia PA USA
Faculty of Science Charles University Prague Czech Republic
Institute of Animal Physiology and Genetics of the Czech Academy of Sciences Libechov Czech Republic
Institute of Animal Physiology Centre of Biosciences Slovak Academy of Sciences Kosice Slovakia
Zobrazit více v PubMed
Abe K‐I, Funaya S, Tsukioka D, Kawamura M, Suzuki Y, Suzuki MG, Schultz RM, Aoki F (2018) Minor zygotic gene activation is essential for mouse preimplantation development. Proc Natl Acad Sci U S A 115: E6780–E6788 PubMed PMC
Abramczuk J, Sawicki W (1975) Pronuclear synthesis of DNA in fertilized and parthenogenetically activated mouse eggs: a cytophotometric study. Exp Cell Res 92: 361–371 PubMed
Adhikari D, Zheng W, Shen Y, Gorre N, Ning Y, Halet G (2012) Cdk1, but not Cdk2, is the sole Cdk that is essential and sufficient to drive resumption of meiosis in mouse oocytes. Hum Mol Genet 21: 2476–2484 PubMed
Aoki F, Worrad DM, Schultz RM (1997) Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev Biol 181: 296–307 PubMed
Artus J, Cohen‐Tannoudji M (2008) Cell cycle regulation during early mouse embryogenesis. Mol Cell Endocrinol 282: 78–86 PubMed
Barroso S, Herrera‐Moyano E, Muñoz S, García‐Rubio M, Gómez‐González B, Aguilera A (2019) The DNA damage response acts as a safeguard against harmful DNA–RNA hybrids of different origins. EMBO Rep 20: e47250 PubMed PMC
Blengini CS, Ibrahimian P, Vaskovicova M, Drutovic D, Solc P, Schindler K (2021) Aurora kinase A is essential for meiosis in mouse oocytes. PLoS Genet 17: 1–27 PubMed PMC
Blythe SA, Wieschaus EF (2015) Zygotic genome activation triggers the DNA replication checkpoint at the midblastula transition. Cell 160: 1169–1181 PubMed PMC
Bolton VN, Oades PJ, Johnson MH (1984) The relationship between cleavage, DNA replication, and gene expression in the mouse 2‐cell embryo. J Embryol Exp Morphol 79: 139–163 PubMed
Bolton H, Graham SJL, Van Der Aa N, Kumar P, Theunis K, Fernandez Gallardo E, Voet T, Zernicka‐Goetz M (2016) Mouse model of chromosome mosaicism reveals lineage‐specific depletion of aneuploid cells and normal developmental potential. Nat Commun 7: 11165 PubMed PMC
Branigan TB, Kozono D, Schade AE, Deraska P, Rivas HG, Sambel L, Reavis HD, Shapiro GI, D'Andrea AD, DeCaprio JA (2021) MMB‐FOXM1‐driven premature mitosis is required for CHK1 inhibitor sensitivity. Cell Rep 34: 108808 PubMed PMC
Braude BPR (1979) Time‐dependent effects of a‐amanitin on blastocyst formation in the mouse. J Embryol Exp Morphol 52: 193–202 PubMed
Brown EJ, Baltimore D (2000) ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev 14: 397–402 PubMed PMC
Capalbo A, Poli M, Rienzi L, Girardi L, Patassini C, Fabiani M, Cimadomo D, Benini F, Farcomeni A, Cuzzi J et al (2021) Mosaic human preimplantation embryos and their developmental potential in a prospective, non‐selection clinical trial. Am J Hum Genet 108: 2238–2247 PubMed PMC
Carson SA, Kallen AN (2021) Diagnosis and management of infertility: a review. JAMA 326: 65–76 PubMed PMC
Cavazza T, Takeda Y, Politi AZ, Aushev M, Aldag P, Baker C, Choudhary M, Bucevičius J, Lukinavičius G, Elder K et al (2021) Parental genome unification is highly error‐prone in mammalian embryos. Cell 184: 2860–2877 PubMed PMC
Chen M‐S, Hurov J, White LS, Piwnica‐worms H, Woodford‐thomas T (2001) Absence of apparent phenotype in mice lacking Cdc25C protein phosphatase. Mol Cell Biol 21: 3853–3861 PubMed PMC
Chen M‐S, Ryan CE, Piwnica‐Worms H (2003) Chk1 kinase negatively regulates mitotic function of Cdc25A phosphatase through 14‐3‐3 binding. Mol Cell Biol 23: 7488–7497 PubMed PMC
Chen B, Guo J, Wang T, Lee Q, Ming J, Ding F, Li H, Zhang Z, Li L, Cao Y et al (2022) Maternal heterozygous mutation in CHEK1 leads to mitotic arrest in human zygotes. Protein Cell 13: 148–154 PubMed PMC
Collart C, Allen GE, Bradshaw CR, Smith JC, Zegerman P (2013) Titration of four replication factors is essential for the Xenopus laevis midblastula transition. Science 341: 893–896 PubMed PMC
Collart C, Smith JC, Zegerman P (2017) Chk1 inhibition of the replication factor Drf1 guarantees cell‐cycle elongation at the Xenopus laevis mid‐blastula transition. Dev Cell 42: 82–96 PubMed PMC
Currie CE, Ford E, Benham Whyte L, Taylor DM, Mihalas BP, Erent M, Marston AL, Hartshorne GM, McAinsh AD (2022) The first mitotic division of human embryos is highly error prone. Nat Commun 13: 6755 PubMed PMC
Dalle Nogare DE, Pauerstein PT, Lane ME (2009) G2 acquisition by transcription‐independent mechanism at the zebrafish midblastula transition. Dev Biol 326: 131–142 PubMed
Dandoulaki M, Petsalaki E, Sumpton D, Zanivan S, Zachos G (2018) Src activation by Chk1 promotes actin patch formation and prevents chromatin bridge breakage in cytokinesis. J Cell Biol 217: 3071–3089 PubMed PMC
Deneke VE, Melbinger A, Vergassola M, Di Talia S (2016) Waves of Cdk1 activity in S phase synchronize the cell cycle in Drosophila embryos. Dev Cell 38: 399–412 PubMed PMC
Domon M (1980) Cell cycle‐dependent radiosensitivity in two‐cell mouse embryos in culture. Radiat Res 81: 236–245 PubMed
Durkin SG, Arlt MF, Howlett NG, Glover TW (2006) Depletion of CHK1, but not CHK2, induces chromosomal instability and breaks at common fragile sites. Oncogene 25: 4381–4388 PubMed
Eckersley‐Maslin MA, Alda‐Catalinas C, Reik W (2018) Dynamics of the epigenetic landscape during the maternal‐to‐zygotic transition. Nat Rev Mol Cell Biol 19: 436–450 PubMed
Enoch T, Nurse P (1990) Mutation of fission yeast cell cycle control genes abolishes dependence of mitosis on DNA replication. Cell 60: 665–673 PubMed
Eykelenboom JK, Harte EC, Canavan L, Pastor‐Peidro A, Calvo‐Asensio I, Llorens‐Agost M, Lowndes NF (2013) ATR activates the S‐M checkpoint during unperturbed growth to ensure sufficient replication prior to mitotic onset. Cell Rep 5: 1095–1107 PubMed
Fenclová T, Řimnáčová H, Chemek M, Havránková J, Klein P, Králíčková M, Nevoral J (2022) Nursing exposure to bisphenols as a cause of male idiopathic infertility. Front Physiol 13: 725442 PubMed PMC
Ferencova I, Vaskovicova M, Drutovic D, Knoblochova L, Macurek L, Schultz RM, Solc P (2022) CDC25B is required for the metaphase I‐metaphase II transition in mouse oocytes. J Cell Sci 135: jcs252924 PubMed
Ferguson AM, White LS, Donovan PJ, Piwnica‐worms H (2005) Normal cell cycle and checkpoint responses in mice and cells lacking Cdc25B and Cdc25C protein phosphatases. Mol Cell Biol 25: 2853–2860 PubMed PMC
Fishler T, Li YY, Wang RH, Kim HS, Sengupta K, Vassilopoulos A, Lahusen T, Xu X, Lee MH, Liu Q et al (2010) Genetic instability and mammary tumor formation in mice carrying mammary‐specific disruption of Chk1 and p53. Oncogene 29: 4007–4017 PubMed PMC
Flach G, Johnson MH, Braude PR, Ra T, Bolton VN (1982) The transition from maternal to embryonic control in the 2‐cell mouse embryo. EMBO J 1: 681–686 PubMed PMC
Foe VE, Alberts BM (1983) Studies of nuclear and cytoplasmic behaviour during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis. J Cell Sci 61: 31–70 PubMed
Galaktionov K, Beach D (1991) Specific activation of cdc25 tyrosine phosphatases by B‐type cyclins: evidence for multiple roles of mitotic cyclins. Cell 67: 1181–1194 PubMed
González Besteiro MA, Gottifredi V (2015) The fork and the kinase: a DNA replication tale from a CHK1 perspective. Mutat Res Rev Mutat Res 763: 168–180 PubMed PMC
Goto H, Natsume T, Kanemaki MT, Kaito A, Wang S, Gabazza EC, Inagaki M, Mizoguchi A (2019) Chk1‐mediated Cdc25A degradation as a critical mechanism for normal cell cycle progression. J Cell Sci 132: jcs223123 PubMed
Graf A, Krebs S, Zakhartchenko V, Schwalb B, Blum H, Wolf E (2014) Fine mapping of genome activation in bovine embryos by RNA sequencing. Proc Natl Acad Sci U S A 111: 4139–4144 PubMed PMC
Gruhn JR, Hoffmann ER (2022) Errors of the egg: the establishment and progression of human aneuploidy research in the maternal germline. Annu Rev Genet 56: 369–390 PubMed
Hadjantonakis A‐K, Papaioannou VE (2004) Dynamic in vivo imaging and cell tracking using a histone fluorescent protein fusion in mice. BMC Biotechnol 4: 33 PubMed PMC
Hamatani T, Carter MG, Sharov AA, Ko MSH (2004) Dynamics of global gene expression changes during mouse preimplantation development. Dev Cell 6: 117–131 PubMed
Hartley RS, Rempel RE, Maller JL (1996) In vivo regulation of the early embryonic cell cycle in Xenopus. Dev Biol 173: 408–419 PubMed
Hartwell LH, Weinert TA (1989) Checkpoints: controls that ensure the order of cell cycle events. Science 246: 629–634 PubMed
Herbert AD, Carr AM, Hoffmann E, Lichten M (2014) FindFoci: a focus detection algorithm with automated parameter training that closely matches human assignments, reduces human inconsistencies and increases speed of analysis. PLoS One 9: 1–33 PubMed PMC
Hoffelder DR, Luo L, Burke NA, Watkins SC, Gollin SM, Saunders WS (2004) Resolution of anaphase bridges in cancer cells. Chromosoma 112: 389–397 PubMed
Holway AH, Kim S‐H, La Volpe A, Michael WM (2006) Checkpoint silencing during the DNA damage response in Caenorhabditis elegans embryos. J Cell Biol 172: 999–1008 PubMed PMC
Hörmanseder E, Tischer T, Mayer TU (2013) Modulation of cell cycle control during oocyte‐to‐embryo transitions. EMBO J 32: 2191–2203 PubMed PMC
Howlett SK, Bolton VN (1985) Sequence and regulation of morphological and molecular events during the first cell cycle of mouse embryogenesis. Development 87: 175–206 PubMed
Jang W‐I, Lin Z‐L, Lee SH, Namgoong S, Kim N‐H (2014) A specific inhibitor of CDK1, RO‐3306, reversibly arrests meiosis during in vitro maturation of porcine oocytes. Anim Reprod Sci 144: 102–108 PubMed
Ju JQ, Li XH, Pan MH, Xu Y, Sun MH, Xu Y, Sun SC (2020) CHK1 monitors spindle assembly checkpoint and DNA damage repair during the first cleavage of mouse early embryos. Cell Prolif 53: e12895 PubMed PMC
Kalogeropoulos N, Christoforou C, Green AJ, Gill S, Ashcroft NR (2004) chk‐1 is an essential gene and is required for an S‐M checkpoint during early embryogenesis. Cell Cycle 3: 1196–1200 PubMed
Kitajima TS, Ohsugi M, Ellenberg J (2011) Complete kinetochore tracking reveals error‐prone homologous chromosome biorientation in mammalian oocytes. Cell 146: 568–581 PubMed
Knowland J, Graham C (1972) RNA synthesis at the two‐cell stage of mouse development. J Embryol Exp Morphol 27: 167–176 PubMed
Kobayashi H, Sakurai T, Imai M, Takahashi N, Fukuda A, Yayoi O, Sato S, Nakabayashi K, Hata K, Sotomaru Y et al (2012) Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish oocyte‐specific heritable marks. PLoS Genet 8: e1002440 PubMed PMC
Kramer A, Mailand N, Lukas C, Syljuasen RG, Wilkinson CJ, Nigg EA, Bartek J, Lukas J (2004) Centrosome‐associated Chk1 prevents premature activation of cyclin‐B‐Cdk1 kinase. Nat Cell Biol 6: 884–891 PubMed
Krishna M, Generoso WM (1977) Timing of sperm penetration, pronuclear formation, pronuclear DNA synthesis, and first cleavage in naturally ovulated mouse eggs. J Exp Zool 202: 245–252 PubMed
Ladstätter S, Tachibana‐Konwalski K (2016) A surveillance mechanism ensures repair of DNA lesions during zygotic reprogramming. Cell 167: 1774–1787 PubMed PMC
Lam MH, Liu Q, Elledge SJ, Rosen JM (2004) Chk1 is haploinsufficient for multiple functions critical to tumor suppression. Cancer Cell 6: 45–59 PubMed
Lam FC, Kong YW, Huang Q, Vu Han T‐L, Maffa AD, Kasper EM, Yaffe MB (2020) BRD4 prevents the accumulation of R‐loops and protects against transcription‐replication collision events and DNA damage. Nat Commun 11: 4083 PubMed PMC
Lebrec V, Poteau M, Morretton J‐P, Gavet O (2022) Chk1 dynamics in G2 phase upon replication stress predict daughter cell outcome. Dev Cell 57: 638–653 PubMed
Lee G, White LS, Hurov KE, Stappenbeck TS, Piwnica‐Worms H (2009) Response of small intestinal epithelial cells to acute disruption of cell division through CDC25 deletion. Proc Natl Acad Sci U S A 106: 4701–4706 PubMed PMC
Lemmens B, Hegarat N, Akopyan K, Sala-Gaston J, Bartek J, Hochegger H, Lindqvist A (2018) DNA replication determines timing of mitosis by restricting CDK1 and PLK1 activation. Mol Cell 71: 117–128 PubMed PMC
Lewandoski M, Wassarman KM, Martin GR (1997) Zp3–cre, a transgenic mouse line for the activation or inactivation of loxP‐flanked target genes specifically in the female germ line. Curr Biol 7: 148–151 PubMed
Li Y, Sun J, Ling Y, Ming H, Chen Z, Fang F, Liu Y, Cao H, Ding J, Cao Z et al (2020) Transcription profiles of oocytes during maturation and embryos during preimplantation development in vivo in the goat. Reprod Fertil Dev 32: 714–725 PubMed
Lincoln AJ, Wickramasinghe D, Stein P, Schultz RM, Palko ME, De Miguel MP, Tessarollo L, Donovan PJ (2002) Cdc25b phosphatase is required for resumption of meiosis during oocyte maturation. Nat Genet 30: 446–449 PubMed
Liu Q, Guntuku S, Cui XS, Matsuoka S, Cortez D, Tamai K, Luo G, Carattini‐Rivera S, DeMayo F, Bradley A et al (2000) Chk1 is an essential kinase that is regulated by Atr and required for the G2/M DNA damage checkpoint. Genes Dev 14: 1448–1459 PubMed PMC
del Llano E, Iyyappan R, Aleshkina D, Masek T, Dvoran M, Jiang Z, Pospisek M, Kubelka M, Susor A (2022) SGK1 is essential for meiotic resumption in mammalian oocytes. Eur J Cell Biol 101: 151210 PubMed PMC
Löffler H, Rebacz B, Ho AD, Lukas J, Bartek J, Krämer A (2006) Chk1‐dependent regulation of Cdc25B functions to coordinate mitotic events. Cell Cycle 5: 2543–2547 PubMed
Mah LJ, El‐Osta A, Karagiannis TC (2010) γH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia 24: 679–686 PubMed
Mailand N, Falck J, Lukas C, Syljuâsen RG, Welcker M, Bartek J, Lukas J (2000) Rapid destruction of human Cdc25A in response to DNA damage. Science 288: 1425–1429 PubMed
Mailand N, Podtelejnikov VA, Groth A, Mann M, Bartek J, Lukas J (2002) Regulation of G(2)/M events by Cdc25A through phosphorylation‐dependent modulation of its stability. EMBO J 21: 5911–5920 PubMed PMC
Mashiko D, Ikeda Z, Yao T, Tokoro M, Fukunaga N, Asada Y, Yamagata K (2020) Chromosome segregation error during early cleavage in mouse pre‐implantation embryo does not necessarily cause developmental failure after blastocyst stage. Sci Rep 10: 1–10 PubMed PMC
Mayer A, Baran V, Sakakibara Y, Brzakova A, Ferencova I, Motlik J, Kitajima TS, Schultz RM, Solc P (2016) DNA damage response during mouse oocyte maturation. Cell Cycle 15: 546–558 PubMed PMC
McCoy RC, Summers MC, McCollin A, Ottolini CS, Ahuja K, Handyside AH (2022) Meiotic and mitotic aneuploidies drive arrest of in vitro fertilized human preimplantation embryos. bioRxiv 10.1101/2022.07.03.498614 [PREPRINT] PubMed DOI PMC
Michelena J, Gatti M, Teloni F, Imhof R, Altmeyer M (2019) Basal CHK1 activity safeguards its stability to maintain intrinsic S‐phase checkpoint functions. J Cell Biol 218: 2865–2875 PubMed PMC
Mocanu C, Karanika E, Fernandez‐Casanas M, Herbert A, Olukoga T, Ozgurses ME, Chan KL (2022) DNA replication is highly resilient and persistent under the challenge of mild replication stress. Cell Rep 39: 110701 PubMed PMC
Moiseeva TN, Yin Y, Calderon MJ, Qian C, Schamus‐haynes S, Sugitani N (2019) An ATR and CHK1 kinase signaling mechanism that limits origin firing during unperturbed DNA replication. Proc Natl Acad Sci U S A 116: 13374–13383 PubMed PMC
Molinari M, Mercurio C, Dominguez J, Goubin F, Draetta GF (2000) Human Cdc25 A inactivation in response to S phase inhibition and its role in preventing premature mitosis. EMBO Rep 1: 71–79 PubMed PMC
Molls M, Zamboglou N, Streffer C (1983) A comparison of the cell kinetics of pre‐implantation mouse embryos from two different mouse strains. Cell Tissue Kinet 16: 277–283 PubMed
Muralidharan VS, Nilsson LM, Lindberg MF, Nilsson JA (2020) Small molecule inhibitors and a kinase‐dead expressing mouse model demonstrate that the kinase activity of Chk1 is essential for mouse embryos and cancer cells. Life Sci Alliance 3: 1–9 PubMed PMC
Nagata A, Igarashi M, Jinno S, Suto K, Okayama H (1991) An additional homolog of the fission yeast cdc25+ gene occurs in humans and is highly expressed in some cancer cells. New Biol 3: 959–968 PubMed
Newport J, Kirschner M (1982) A major developmental transition in early xenopus embryos: I. characterization and timing of cellular changes at the midblastula stage. Cell 30: 675–686 PubMed
Niida H, Tsuge S, Katsuno Y, Konishi A, Takeda N, Nakanishi M (2005) Depletion of Chk1 leads to premature activation of Cdc2‐cyclin B and mitotic catastrophe. J Biol Chem 280: 39246–39252 PubMed
Nothias J‐Y, Majumder S, Kaneko KJ, DePamphilis ML (1995) Regulation of gene expression at the beginning of mammalian development. J Biol Chem 270: 22077–22080 PubMed
Palmer N, Kaldis P (2016) Chapter One – Regulation of the embryonic cell cycle during mammalian preimplantation development. In Mammalian Preimplantation Development, DePamphilis ML (ed), pp 1–53. Cambridge, MA: Academic Press; PubMed
Palmerola KL, Amrane S, Angeles ADL, Koren A, Baslan T, Egli D, Palmerola KL, Amrane S, Angeles ADL, Xu S et al (2022) Replication stress impairs chromosome segregation and preimplantation development in human embryos. Cell 185: 2988–3007 PubMed
Park S‐J, Komata M, Inoue F, Yamada K, Nakai K, Ohsugi M, Shirahige K (2013) Inferring the choreography of parental genomes during fertilization from ultralarge‐scale whole‐transcriptome analysis. Genes Dev 27: 2736–2748 PubMed PMC
Peddibhotla S, Lam MH, Gonzalez‐Rimbau M, Rosen JM (2009) The DNA‐damage effector checkpoint kinase 1 is essential for chromosome segregation and cytokinesis. Proc Natl Acad Sci U S A 106: 5159–5164 PubMed PMC
Peng CY, Graves PR, Thoma RS, Wu Z, Shaw AS, Piwnica‐Worms H (1997) Mitotic and G2 checkpoint control: regulation of 14‐3‐3 protein binding by phosphorylation of Cdc25C on serine‐216. Science 277: 1501–1505 PubMed
Petrus MJ, Wilhelm DE, Murakami M, Kappas NC, Carter AD, Wroble BN, Sible JC (2004) Altered expression of Chk1 disrupts cell cycle remodeling at the midblastula transition in Xenopus laevis embryos. Cell Cycle 3: 212–217 PubMed
Pomerening JR, Sontag ED, Ferrell JE Jr (2003) Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2. Nat Cell Biol 5: 346–351 PubMed
Qiu JJ, Zhang WW, Wu ZL, Wang YH, Qian M, Li YP (2003) Delay of ZGA initiation occurred in 2‐cell blocked mouse embryos. Cell Res 13: 179–185 PubMed
Radonova L, Svobodova T, Anger M (2019) Regulation of the cell cycle in early mammalian embryos and its clinical implications. Int J Dev Biol 63: 113–122 PubMed
Rambhatla L, Latham KE (1995) Strain‐specific progression of α‐amanitin—treated mouse embryos beyond the two‐cell stage. Mol Reprod Dev 41: 16–19 PubMed
Ray D, Terao Y, Nimbalkar D, Hirai H, Osmundson EC, Zou X, Franks R, Christov K, Kiyokawa H (2007) Hemizygous disruption of Cdc25A inhibits cellular transformation and mammary tumorigenesis in mice. Cancer Res 67: 6605–6612 PubMed
Ruth KS, Day FR, Hussain J, Martínez‐Marchal A, Aiken CE, Azad A, Thompson DJ, Knoblochova L, Abe H, Tarry‐Adkins JL et al (2021) Genetic insights into biological mechanisms governing human ovarian ageing. Nature 596: 393–397 PubMed PMC
Sadhu K, Reed SI, Richardson H, Russell P (1990) Human homolog of fission yeast cdc25 mitotic inducer is predominantly expressed in G2. Proc Natl Acad Sci U S A 87: 5139–5143 PubMed PMC
Sakaue‐Sawano A, Yo M, Komatsu N, Hiratsuka T, Kogure T, Hoshida T, Goshima N, Matsuda M, Miyoshi H, Miyawaki A (2017) Genetically encoded tools for optical dissection of the mammalian cell cycle. Mol Cell 68: 626–640 PubMed
Saldivar JC, Hamperl S, Bocek MJ, Chung M, Bass TE, Cisneros‐Soberanis F, Samejima K, Xie L, Paulson JR, Earnshaw WC et al (2018) An intrinsic S/G(2) checkpoint enforced by ATR. Science 361: 806–810 PubMed PMC
Sanchez Y, Wong C, Thoma RS, Richman R, Wu Z, Piwnica‐Worms H, Elledge SJ (1997) Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 277: 1497–1501 PubMed
Sankar A, Lerdrup M, Manaf A, Johansen JV, Gonzalez JM, Borup R, Blanshard R, Klungland A, Hansen K, Andersen CY et al (2020) KDM4A regulates the maternal‐to‐zygotic transition by protecting broad H3K4me3 domains from H3K9me3 invasion in oocytes. Nat Cell Biol 22: 380–388 PubMed PMC
Santamaría D, Barrière C, Cerqueira A, Hunt S, Tardy C, Newton K, Cáceres JF, Dubus P, Malumbres M, Barbacid M (2007) Cdk1 is sufficient to drive the mammalian cell cycle. Nature 448: 811–815 PubMed
Saskova A, Solc P, Baran V, Kubelka M, Schultz RM, Motlik J (2008) Aurora kinase a controls meiosis I progression in mouse oocytes. Cell Cycle 7: 2368–2376 PubMed PMC
Schindelin J, Arganda‐Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B et al (2012) Fiji: an open‐source platform for biological‐image analysis. Nat Methods 9: 676–682 PubMed PMC
Schmitt E, Boutros R, Froment C, Monsarrat B, Ducommun B, Dozier C (2006) CHK1 phosphorylates CDC25B during the cell cycle in the absence of DNA damage. J Cell Sci 119: 4269–4275 PubMed
Sedelnikova OA, Rogakou EP, Panyutin IG, Bonner WM (2002) Quantitative detection of (125)IdU‐induced DNA double‐strand breaks with gamma‐H2AX antibody. Radiat Res 158: 486–492 PubMed
Sha W, Moore J, Chen K, Lassaletta AD, Yi C‐S, Tyson JJ, Sible JC (2003) Hysteresis drives cell‐cycle transitions in Xenopus laevis egg extracts. Proc Natl Acad Sci U S A 100: 975–980 PubMed PMC
Shimuta K, Nakajo N, Uto K, Hayano Y, Okazaki K, Sagata N (2002) Chk1 is activated transiently and targets Cdc25A for degradation at the Xenopus midblastula transition. EMBO J 21: 3694–3703 PubMed PMC
Sibon OCM, Stevenson VA, Theurkauf WE (1997) DNA‐replication checkpoint control at the Drosophila midblastula transition. Nature 388: 93–97 PubMed
Solc P, Saskova A, Baran V, Kubelka M, Schultz RM, Motlik J (2008) CDC25A phosphatase controls meiosis I progression in mouse oocytes. Dev Biol 317: 260–269 PubMed PMC
Solc P, Kitajima TS, Yoshida S, Brzakova A, Kaido M, Baran V, Mayer A, Samalova P, Motlik J, Ellenberg J (2015) Multiple requirements of PLK1 during mouse oocyte maturation. PLoS One 10: e0116783 PubMed PMC
Sollier J, Cimprich KA (2015) Breaking bad: R‐loops and genome integrity. Trends Cell Biol 25: 514–522 PubMed PMC
Sorensen CS, Syljuasen RG, Falck J, Schroeder T, Ronnstrand L, Khanna KK, Zhou B‐B, Bartek J, Lukas J (2003) Chk1 regulates the S phase checkpoint by coupling the physiological turnover and ionizing radiation‐induced accelerated proteolysis of Cdc25A. Cancer Cell 3: 247–258 PubMed
Spencer SL, Cappell SD, Tsai FC, Overton KW, Wang CL, Meyer T (2013) The proliferation‐quiescence decision is controlled by a bifurcation in CDK2 activity at mitotic exit. Cell 155: 369–383 PubMed PMC
Suski JM, Ratnayeke N, Braun M, Zhang T, Strmiska V, Michowski W, Can G, Simoneau A, Snioch K, Cup M et al (2022) CDC7‐independent G1/S transition revealed by targeted protein degradation. Nature 605: 357–365 PubMed PMC
Svoboda P (2018) Mammalian zygotic genome activation. Semin Cell Dev Biol 84: 118–126 PubMed
Syljuåsen RG, Sørensen CS, Hansen LT, Fugger K, Lundin C, Johansson F, Helleday T, Sehested M, Lukas J, Bartek J (2005) Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage. Mol Cell Biol 25: 3553–3562 PubMed PMC
Takai H, Tominaga K, Motoyama N, Minamishima YA, Nagahama H, Tsukiyama T, Ikeda K, Nakayama K, Nakanishi M, Nakayama KI (2000) Aberrant cell cycle checkpoint function and early embryonic death in Chk1(−/−) mice. Genes Dev 14: 1439–1447 PubMed PMC
Tsai TY, Theriot JA, Ferrell JE Jr (2014) Changes in oscillatory dynamics in the cell cycle of early Xenopus laevis embryos. PLoS Biol 12: e1001788 PubMed PMC
Tse AN, Rendahl KG, Sheikh T, Cheema H, Aardalen K, Embry M, Ma S, Moler EJ, Ni ZJ, Lopes de Menezes DE et al (2007) CHIR‐124, a novel potent inhibitor of Chk1, potentiates the cytotoxicity of topoisomerase I poisons in vitro and in vivo . Clin Cancer Res 13: 591–602 PubMed
Vanneste E, Voet T, Melotte C, Debrock S, Sermon K, Staessen C, Liebaers I, Fryns J‐P, D'Hooghe T, Vermeesch JR (2009) What next for preimplantation genetic screening? High mitotic chromosome instability rate provides the biological basis for the low success rate. Hum Reprod 24: 2679–2682 PubMed PMC
Vassilev LT, Tovar C, Chen S, Knezevic D, Zhao X, Sun H, Heimbrook DC, Chen L (2006) Selective small‐molecule inhibitor reveals critical mitotic functions of human CDK1. Proc Natl Acad Sci U S A 103: 10660–10665 PubMed PMC
Xie D, Chen CC, Ptaszek LM, Xiao S, Cao X, Fang F, Ng HH, Lewin HA, Cowan C, Zhong S (2010) Rewirable gene regulatory networks in the preimplantation embryonic development of three mammalian species. Genome Res 20: 804–815 PubMed PMC
Xu Q, Wang F, Xiang Y, Zhang X, Zhao Z‐A, Gao Z, Liu W, Lu X, Liu Y, Yu X‐J et al (2015) Maternal BCAS2 protects genomic integrity in mouse early embryonic development. Development 142: 3943–3953 PubMed
Xue Z, Huang K, Cai C, Cai L, Jiang C‐y, Feng Y, Liu Z, Zeng Q, Cheng L, Sun YE et al (2013) Genetic programs in human and mouse early embryos revealed by single‐cell RNA sequencing. Nature 500: 593–597 PubMed PMC
Zachos G, Rainey MD, Gillespie DAF (2003) Chk1‐deficient tumour cells are viable but exhibit multiple checkpoint and survival defects. EMBO J 22: 713–723 PubMed PMC
Zachos G, Rainey MD, Gillespie DAF (2005) Chk1‐dependent S‐M checkpoint delay in vertebrate cells is linked to maintenance of viable replication structures. Mol Cell Biol 25: 563–574 PubMed PMC
Zachos G, Black EJ, Walker M, Scott MT, Vagnarelli P, Earnshaw WC, Gillespie DAF (2007) Chk1 is required for spindle checkpoint function. Dev Cell 12: 247–260 PubMed PMC
Zamir E, Kam Z, Yarden A (1997) Transcription‐dependent induction of G1 phase during the zebra fish midblastula transition. Mol Cell Biol 17: 529–536 PubMed PMC
Zeng F, Schultz RM (2005) RNA transcript profiling during zygotic gene activation in the preimplantation mouse embryo. Dev Biol 283: 40–57 PubMed
Zeng F, Baldwin DA, Schultz RM (2004) Transcript profiling during preimplantation mouse development. Dev Biol 272: 483–496 PubMed
Zhang M, Kothari P, Mullins M, Lampson MA (2014) Regulation of zygotic genome activation and DNA damage checkpoint acquisition at the mid‐blastula transition. Cell Cycle 13: 3828–3838 PubMed PMC
Zhang H, Chen T, Wu K, Hou Z, Zhao S, Zhang C, Gao Y, Gao M, Chen ZJ, Zhao H (2021) Dominant mutations in CHK1 cause pronuclear fusion failure and zygote arrest that can be rescued by CHK1 inhibitor. Cell Res 31: 814–817 PubMed PMC
Zhao H, Watkins JL, Piwnica‐worms H (2002) Disruption of the checkpoint kinase 1/cell division cycle 25A pathway abrogates ionizing radiation‐induced S and G 2 checkpoints. Proc Natl Acad Sci U S A 99: 14795–14800 PubMed PMC
Zonderland G, Vanzo R, Gadi SA, Martín‐Doncel E, Coscia F, Mund A, Lerdrup M, Benada J, Boos D, Toledo L (2022) The TRESLIN‐MTBP complex couples completion of DNA replication with S/G2 transition. Mol Cell 82: 3350–3365 PubMed PMC