SGK1 is essential for meiotic resumption in mammalian oocytes
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 HD102533
NICHD NIH HHS - United States
PubMed
35240557
PubMed Central
PMC11008056
DOI
10.1016/j.ejcb.2022.151210
PII: S0171-9335(22)00013-9
Knihovny.cz E-zdroje
- Klíčová slova
- CDK1, MPF, Meiosis, Nuclear envelope breakdown, Oocyte, SGK1,
- MeSH
- faktor podporující zrání * metabolismus MeSH
- kontrolní body buněčného cyklu MeSH
- meióza MeSH
- myši MeSH
- oocyty metabolismus MeSH
- profáze meiózy I MeSH
- protein-serin-threoninkinasy genetika MeSH
- proteiny bezprostředně časné * genetika metabolismus MeSH
- savci metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- faktor podporující zrání * MeSH
- protein-serin-threoninkinasy MeSH
- proteiny bezprostředně časné * MeSH
- serum-glucocorticoid regulated kinase MeSH Prohlížeč
In mammalian females, oocytes are stored in the ovary and meiosis is arrested at the diplotene stage of prophase I. When females reach puberty oocytes are selectively recruited in cycles to grow, overcome the meiotic arrest, complete the first meiotic division and become mature (ready for fertilization). At a molecular level, the master regulator of prophase I arrest and meiotic resumption is the maturation-promoting factor (MPF) complex, formed by the active form of cyclin dependent kinase 1 (CDK1) and Cyclin B1. However, we still do not have complete information regarding the factors implicated in MPF activation. In this study we document that out of three mammalian serum-glucocorticoid kinase proteins (SGK1, SGK2, SGK3), mouse oocytes express only SGK1 with a phosphorylated (active) form dominantly localized in the nucleoplasm. Further, suppression of SGK1 activity in oocytes results in decreased CDK1 activation via the phosphatase cell division cycle 25B (CDC25B), consequently delaying or inhibiting nuclear envelope breakdown. Expression of exogenous constitutively active CDK1 can rescue the phenotype induced by SGK1 inhibition. These findings bring new insights into the molecular pathways acting upstream of MPF and a better understanding of meiotic resumption control by presenting a new key player SGK1 in mammalian oocytes.
Zobrazit více v PubMed
Adhikari D, Busayavalasa K, Zhang J, Hu M, Risal S, Bayazit MB, Singh M, Diril MK, Kaldis P, Liu K, 2016. Inhibitory phosphorylation of Cdk1 mediates prolonged prophase I arrest in female germ cells and is essential for female reproductive lifespan. Cell Res. 26, 1212–1225. PubMed PMC
Akaike Y, Chibazakura T, 2020. Aberrant activation of cyclin A-CDK induces G2/M-phase checkpoint in human cells. Cell Cycle 19, 84–96. PubMed PMC
Alamares-Sapuay JG, Martinez-Gil L, Stertz S, Miller MS, Shaw ML, Palese P, 2013. Serum- and glucocorticoid-regulated kinase 1 is required for nuclear export of the ribonucleoprotein of influenza A virus. J. Virol. 87, 6020–6026. PubMed PMC
Berdel HO, Yin H, Liu JY, Grochowska K, Middleton C, Yanasak N, Abdelsayed R, Berdel WE, Mozaffari M, Yu JC, Baban B, 2014. Targeting serum glucocorticoid-regulated Kinase-1 in squamous cell Carcinoma of the head and neck: a novel modality of local control. PLOS ONE 9, e113795. PubMed PMC
Bomberger JM, Coutermarsh BA, Barnaby RL, Sato JD, Chapline MC, Stanton BA, 2014. Serum and Glucocorticoid-inducible Kinase1 increases plasma membrane wt-CFTR in human airway Epithelial cells by inhibiting its Endocytic retrieval. PLOS ONE 9, e89599. PubMed PMC
Bruhn MA, Pearson RB, Hannan RD, Sheppard KE, 2010. Second AKT: The rise of SGK in cancer signalling. Growth Factors 28, 394–408. PubMed
Cazales M, Schmitt E, Montembault E, Dozier C, Prigent C, Ducommun B, 2005. CDC25B Phosphorylation by Aurora A occurs at the G2/M transition and is inhibited by DNA damage. Cell Cycle 4, 1233–1238. PubMed
Chen W, Chen Y, Xu B, Juang Y-C, Stippec S, Zhao Y, Cobb MH, 2009. Regulation of a third conserved Phosphorylation site in SGK1*. J. Biol. Chem. 284, 3453–3460. PubMed PMC
Coleman TR, Dunphy WG, 1994. Cdc2 regulatory factors. Curr. Opin. Cell Biol. 6, 877–882. PubMed
van den Hurk R, Zhao J, 2005. Formation of mammalian oocytes and their growth, differentiation and maturation within ovarian follicles. Theriogenology 63, 1717–1751. PubMed
Di Cristofano A, 2017. SGK1: the dark side of PI3K signaling. Curr. Top. Dev. Biol. 123, 49–71. PubMed PMC
Edson MA, Nagaraja AK, Matzuk MM, 2009. The mammalian ovary from genesis to revelation. Endocr. Rev. 30, 624–712. PubMed PMC
Faresse N, Lagnaz D, Debonneville A, Ismailji A, Maillard M, Fejes-Tóth G, Náray-Fejes-Tóth A, Staub O, 2012. Inducible kidney-specific Sgk1 knockout mice show a salt-losing phenotype. American Journal of Physiology - Renal Physiology 302 (8), F977–85. PubMed
Fejes-Tóth G, Frindt G, Náray-Fejes-Tóth A, Palmer LG, 2008. Epithelial Na+ channel activation and processing in mice lacking SGK1. American Journal of Physiology - Renal Physiology 294 (6), F1298–305. PubMed
Ferencova I, Vaskovicova M, Drutovic D, Knoblochova L, Macurek L, Schultz RM, and Solc P. (under revision). CDC25B is required for the metaphase I-metaphase II transition in mouse oocytes. Journal of Cell Science. PubMed
Gautier J, Minshull J, Lohka M, Glotzer M, Hunt T, Maller JL, 1990. Cyclin is a component of maturation-promoting factor from Xenopus. Cell 60, 487–494. PubMed
Hagting A, Karlsson C, Clute P, Jackman M, Pines J, 1998. MPF localization is controlled by nuclear export. EMBO J. 17, 4127–4138. PubMed PMC
Hiraoka D, Hosoda E, Chiba K, Kishimoto T, 2019. SGK phosphorylates Cdc25 and Myt1 to trigger cyclin B–Cdk1 activation at the meiotic G2/M transition. J. Cell Biol. 218, 3597–3611. PubMed PMC
Hiraoka D, Aono R, Hanada S, Okumura E, Kishimoto T, 2016a. Two new competing pathways establish the threshold for cyclin-B–Cdk1 activation at the meiotic G2/M transition. J. Cell Sci. 129, 3153–3166. PubMed PMC
Hiraoka D, Aono R, Hanada S, Okumura E, Kishimoto T, 2016b. Two new competing pathways establish the threshold for cyclin-B–Cdk1 activation at the meiotic G2/M transition. J. Cell Sci. 129, 3153–3166. PubMed PMC
Homer HA, 2020. The Role of Oocyte quality in explaining “unexplained” infertility. Semin Reprod. Med. 38, 21–28. PubMed
Hosoda E, Hiraoka D, Hirohashi N, Omi S, Kishimoto T, Chiba K, 2019. SGK regulates pH increase and cyclin B–Cdk1 activation to resume meiosis in starfish ovarian oocytes. J. Cell Biol. 218, 3612–3629. PubMed PMC
Kalous J, Solc P, Baran V, Kubelka M, Schultz RM, Motlik J, 2006. PKB/AKT is involved in resumption of meiosis in mouse oocytes. Biol. Cell 98, 111–123. PubMed
Keefe D, Kumar M, Kalmbach K, 2015. Oocyte competency is the key to embryo potential. Fertil. Steril. 103, 317–322. PubMed
Kobayashi T, Cohen P, 1999. Activation of serum- and glucocorticoid-regulated protein kinase by agonists that activate phosphatidylinositide 3-kinase is mediated by 3-phosphoinositide-dependent protein kinase-1 (PDK1) and PDK2. Biochem. J. 339 (Pt 2), 319–328. PubMed PMC
Kobayashi T, Deak M, Morrice N, Cohen P, 1999. Characterization of the structure and regulation of two novel isoforms of serum- and glucocorticoid-induced protein kinase. Biochem J. 344 (Pt 1), 189–197. PubMed PMC
Koncicka M, Tetkova A, Jansova D, Del Llano E, Gahurova L, Kracmarova J, Prokesova S, Masek T, Pospisek M, Bruce AW, Kubelka M, Susor A, 2018. Increased expression of maturation promoting factor components speeds up Meiosis in Oocytes from aged females. Int. J. Mol. Sci. 19, 2841. PubMed PMC
Krisher RL, 2004. The effect of oocyte quality on development. J. Anim. Sci. 82, E14–E23. PubMed
Lang F, Cohen P, 2001. Regulation and physiological roles of serum- and Glucocorticoid-induced protein Kinase isoforms. Sci. STKE 2001, re17. PubMed
Lien EC, Dibble CC, Toker A, 2017. PI3K signaling in cancer: beyond AKT. Curr. Opin. Cell Biol. 45, 62–71. PubMed PMC
Lincoln AJ, Wickramasinghe D, Stein P, Schultz RM, Palko ME, De Miguel MPD, Tessarollo L, Donovan PJ, 2002. Cdc25b phosphatase is required for resumption of meiosis during oocyte maturation. Nat. Genet 30, 446–449. PubMed
del Llano E, Masek T, Gahurova L, Pospisek M, Koncicka M, Jindrova A, Jansova D, Iyyappan R, Roucova K, Bruce AW, Kubelka M, Susor A, 2020. Age-related differences in the translational landscape of mammalian oocytes. Aging Cell 19, e13231. PubMed PMC
Masek T, Del Llano E, Gahurova L, Kubelka M, Susor A, Roucova K, Lin C-J, Bruce AW, Pospisek M, 2020. Identifying the translatome of mouse NEBD-stage oocytes via SSP-profiling; a novel Polysome fractionation method. Int J. Mol. Sci. 21, E1254. PubMed PMC
Murray JT, Campbell DG, Morrice N, Auld GC, Shpiro N, Marquez R, Peggie M, Bain J, Bloomberg GB, Grahammer F, Lang F, Wulff P, Kuhl D, Cohen P, 2004. Exploitation of KESTREL to identify NDRG family members as physiological substrates for SGK1 and GSK3. Biochem. J. 384, 477–488. PubMed PMC
Norris RP, Ratzan WJ, Freudzon M, Mehlmann LM, Krall J, Movsesian MA, Wang H, Ke H, Nikolaev VO, Jaffe LA, 2009. Cyclic GMP from the surrounding somatic cells regulates cyclic AMP and meiosis in the mouse oocyte. Development 136, 1869–1878. PubMed PMC
Pan B, Li J, 2019. The art of oocyte meiotic arrest regulation. Reprod. Biol. Endocrinol. 17, 8. PubMed PMC
Pirino G, Wescott MP, Donovan PJ, 2009. Protein Kinase A regulates resumption of meiosis by phosphorylation of Cdc25B in mammalian oocytes. Cell Cycle 8, 665–670. PubMed
Potireddy S, Vassena R, Patel BG, Latham KE, 2006. Analysis of polysomal mRNA populations of mouse oocytes and zygotes: Dynamic changes in maternal mRNA utilization and function. Dev. Biol. 298, 155–166. PubMed
Roberts EC, Shapiro PS, Nahreini TS, Pages G, Pouyssegur J, Ahn NG, 2002. Distinct cell cycle timing requirements for extracellular signal-regulated Kinase and Phosphoinositide 3-Kinase signaling pathways in somatic cell Mitosis. Mol. Cell Biol. 22, 7226–7241. PubMed PMC
Schmidt M, Rohe A, Platzer C, Najjar A, Erdmann F, Sippl W, 2017. Regulation of G2/M transition by inhibition of WEE1 and PKMYT1 Kinases. Molecules 22, 2045. PubMed PMC
Sharma A, Tiwari M, Gupta A, Pandey AN, Yadav PK, Chaube SK, 2018. Journey of oocyte from metaphase-I to metaphase-II stage in mammals. J. Cell. Physiol. 233, 5530–5536. PubMed
Sherk AB, Frigo DE, Schnackenberg CG, Bray JD, Laping NJ, Trizna W, Hammond M, Patterson JR, Thompson SK, Kazmin D, Norris JD, McDonnell DP, 2008. Development of a small-molecule serum- and glucocorticoid-regulated Kinase-1 antagonist and its evaluation as a prostate cancer therapeutic. Cancer Res. 68, 7475–7483. PubMed PMC
Solc P, Saskova A, Baran V, Kubelka M, Schultz RM, Motlik J, 2008. CDC25A phosphatase controls meiosis I progression in mouse oocytes. Dev. Biol. 317, 260–269. PubMed PMC
Tetkova A, Hancova M, 2016. Mouse oocyte isolation. Cultiv. RNA Micro Bio-Protoc. 6, e1729.
Tripathi A, Kumar KVP, Chaube SK, 2010. Meiotic cell cycle arrest in mammalian oocytes. J. Cell. Physiol. 223, 592–600. PubMed
Xiao L, Han X, Wang X, Li Q, Shen P, Liu Z, Cui Y, Chen Y, 2019. Spinal serum- and glucocorticoid-regulated Kinase 1 (SGK1) signaling contributes to Morphine-induced Analgesic tolerance in rats. Neuroscience 413, 206–218. PubMed
Zeng F, Baldwin DA, Schultz RM, 2004. Transcript profiling during preimplantation mouse development. Dev. Biol. 272, 483–496. PubMed
CHK1-CDC25A-CDK1 regulate cell cycle progression and protect genome integrity in early mouse embryos