Increased Expression of Maturation Promoting Factor Components Speeds Up Meiosis in Oocytes from Aged Females
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
EXCELLENCECZ.02.1.01/0.0/0.0/15_003/0000460 OP RDE, GACR18-19395S, GACR15-22765S, MC EIF - 708255, GACR18-02891S, Institutional Research Concept RVO67985904
MSMT, GACR, MC EIF
PubMed
30235877
PubMed Central
PMC6164426
DOI
10.3390/ijms19092841
PII: ijms19092841
Knihovny.cz E-zdroje
- Klíčová slova
- MPF, aging, lamin A/C, meiosis, oocyte, translation,
- MeSH
- faktor podporující zrání genetika metabolismus MeSH
- fosforylace MeSH
- jaderný obal metabolismus ultrastruktura MeSH
- meióza * MeSH
- mezotelin MeSH
- myši MeSH
- oocyty cytologie metabolismus MeSH
- posttranslační úpravy proteinů MeSH
- stárnutí genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- faktor podporující zrání MeSH
- mezotelin MeSH
- Msln protein, mouse MeSH Prohlížeč
The rate of chromosome segregation errors that emerge during meiosis I in the mammalian female germ line are known to increase with maternal age; however, little is known about the underlying molecular mechanism. The objective of this study was to analyze meiotic progression of mouse oocytes in relation to maternal age. Using the mouse as a model system, we analyzed the timing of nuclear envelope breakdown and the morphology of the nuclear lamina of oocytes obtained from young (2 months old) and aged females (12 months old). Oocytes obtained from older females display a significantly faster progression through meiosis I compared to the ones obtained from younger females. Furthermore, in oocytes from aged females, lamin A/C structures exhibit rapid phosphorylation and dissociation. Additionally, we also found an increased abundance of MPF components and increased translation of factors controlling translational activity in the oocytes of aged females. In conclusion, the elevated MPF activity observed in aged female oocytes affects precocious meiotic processes that can multifactorially contribute to chromosomal errors in meiosis I.
Zobrazit více v PubMed
Colegrove-Otero L.J., Devaux A., Standart N. The Xenopus ELAV protein ElrB represses Vg1 mRNA translation during oogenesis. Mol. Cell. Biol. 2005;25:9028–9039. doi: 10.1128/MCB.25.20.9028-9039.2005. PubMed DOI PMC
Schuh M., Ellenberg J. Self-organization of MTOCs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes. Cell. 2007;130:484–498. doi: 10.1016/j.cell.2007.06.025. PubMed DOI
Hassold T., Jacobs P., Kline J., Stein Z., Warburton D. Effect of maternal age on autosomal trisomies. Ann. Hum. Genet. 1980;44:29–36. doi: 10.1111/j.1469-1809.1980.tb00943.x. PubMed DOI
Pan H., Ma P., Zhu W., Schultz R.M. Age-associated increase in aneuploidy and changes in gene expression in mouse eggs. Dev. Biol. 2008;316:397–407. doi: 10.1016/j.ydbio.2008.01.048. PubMed DOI PMC
Sebestova J., Danylevska A., Novakova L., Kubelka M., Anger M. Lack of response to unaligned chromosomes in mammalian female gametes. Cell Cycle. 2012;11:3011–3018. doi: 10.4161/cc.21398. PubMed DOI PMC
Hassold T., Hunt P. To err (meiotically) is human: The genesis of human aneuploidy. Nat. Rev. Genet. 2001;2:280–291. doi: 10.1038/35066065. PubMed DOI
Hunt P. Oocyte Biology: Do the Wheels Fall Off with Age? Curr. Biol. 2017;27:R266–R269. doi: 10.1016/j.cub.2017.02.035. PubMed DOI
Chiang T., Duncan F.E., Schindler K., Schultz R.M., Lampson M.A. Evidence that weakened centromere cohesion is a leading cause of age-related aneuploidy in oocytes. Curr. Biol. 2010;20:1522–1528. doi: 10.1016/j.cub.2010.06.069. PubMed DOI PMC
Merriman J.A., Jennings P.C., McLaughlin E.A., Jones K.T. Effect of aging on superovulation efficiency, aneuploidy rates, and sister chromatid cohesion in mice aged up to 15 months. Biol. Reprod. 2012;86 doi: 10.1095/biolreprod.111.095711. PubMed DOI
Chiang T., Schultz R.M., Lampson M.A. Meiotic Origins of Maternal Age-Related Aneuploidy. Biol. Reprod. 2012;86 doi: 10.1095/biolreprod.111.094367. PubMed DOI PMC
Dechat T., Pfleghaar K., Sengupta K., Shimi T., Shumaker D.K., Solimando L., Goldman R.D. Nuclear lamins: Major factors in the structural organization and function of the nucleus and chromatin. Genes Dev. 2008;22:832–853. doi: 10.1101/gad.1652708. PubMed DOI PMC
Heald R., McKeon F. Mutations of phosphorylation sites in lamin A that prevent nuclear lamina disassembly in mitosis. Cell. 1990;61:579–589. doi: 10.1016/0092-8674(90)90470-Y. PubMed DOI
Susor A., Jansova D., Cerna R., Danylevska A., Anger M., Toralova T., Malik R., Supolikova J., Cook M.S., Oh J.S., et al. Temporal and spatial regulation of translation in the mammalian oocyte via the mTOR-eIF4F pathway. Nat. Commun. 2015;6 doi: 10.1038/ncomms7078. PubMed DOI PMC
Sanfins A., Plancha C.E., Overstrom E.W., Albertini D.F. Meiotic spindle morphogenesis in in vivo and in vitro matured mouse oocytes: Insights into the relationship between nuclear and cytoplasmic quality. Hum. Reprod. 2004;19:2889–2899. doi: 10.1093/humrep/deh528. PubMed DOI
Haithcock E., Dayani Y., Neufeld E., Zahand A.J., Feinstein N., Mattout A., Gruenbaum Y., Liu J. Age-related changes of nuclear architecture in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA. 2005;102:16690–16695. doi: 10.1073/pnas.0506955102. PubMed DOI PMC
Righolt C.H., van ’t Hoff M.L.R., Vermolen B.J., Young I.T., Raz V. Robust nuclear lamina-based cell classification of aging and senescent cells. Aging. 2011;3:1192–1201. doi: 10.18632/aging.100414. PubMed DOI PMC
Adhikari D., Zheng W., Shen Y., Gorre N., Ning Y., Halet G., Kaldis P., Liu K. Cdk1, but not Cdk2, is the sole Cdk that is essential and sufficient to drive resumption of meiosis in mouse oocytes. Hum. Mol. Genet. 2012;21:2476–2484. doi: 10.1093/hmg/dds061. PubMed DOI
Peter M., Nakagawa J., Dorée M., Labbé J.C., Nigg E.A. In vitro disassembly of the nuclear lamina and M phase-specific phosphorylation of lamins by cdc2 kinase. Cell. 1990;61:591–602. doi: 10.1016/0092-8674(90)90471-P. PubMed DOI
Jones K.T. Turning it on and off: M-phase promoting factor during meiotic maturation and fertilization. Mol. Hum. Reprod. 2004;10:1–5. doi: 10.1093/molehr/gah009. PubMed DOI
Morgan D.O. Principles of CDK regulation. Nature. 1995;374:131–134. doi: 10.1038/374131a0. PubMed DOI
Ducommun B., Brambilla P., Félix M.A., Franza B.R., Karsenti E., Draetta G. cdc2 phosphorylation is required for its interaction with cyclin. EMBO J. 1991;10:3311–3319. doi: 10.1002/j.1460-2075.1991.tb04895.x. PubMed DOI PMC
Solomon M.J. Activation of the various cyclin/cdc2 protein kinases. Curr. Opin. Cell Biol. 1993;5:180–186. doi: 10.1016/0955-0674(93)90100-5. PubMed DOI
Hampl A., Eppig J.J. Translational regulation of the gradual increase in histone H1 kinase activity in maturing mouse oocytes. Mol. Reprod. Dev. 1995;40:9–15. doi: 10.1002/mrd.1080400103. PubMed DOI
Lévesque J.T., Sirard M.A. Resumption of meiosis is initiated by the accumulation of cyclin B in bovine oocytes. Biol. Reprod. 1996;55:1427–1436. doi: 10.1095/biolreprod55.6.1427. PubMed DOI
Davydenko O., Schultz R.M., Lampson M.A. Increased CDK1 activity determines the timing of kinetochore-microtubule attachments in meiosis I. J. Cell Biol. 2013;202:221–229. doi: 10.1083/jcb.201303019. PubMed DOI PMC
Rieder C.L. The structure of the cold-stable kinetochore fiber in metaphase PtK1 cells. Chromosoma. 1981;84:145–158. doi: 10.1007/BF00293368. PubMed DOI
Eichenlaub-Ritter U., Boll I. Age-related non-disjunction, spindle formation and progression through maturation of mammalian oocytes. Prog. Clin. Biol. Res. 1989;318:259–269. PubMed
Zuccotti M., Boiani M., Garagna S., Redi C.A. Analysis of aneuploidy rate in antral and ovulated mouse oocytes during female aging. Mol. Reprod. Dev. 1998;50:305–312. doi: 10.1002/(SICI)1098-2795(199807)50:3<305::AID-MRD6>3.0.CO;2-N. PubMed DOI
Liu L., Keefe D.L. Ageing-associated aberration in meiosis of oocytes from senescence-accelerated mice. Hum. Reprod. 2002;17:2678–2685. doi: 10.1093/humrep/17.10.2678. PubMed DOI
Cukurcam S., Betzendahl I., Michel G., Vogt E., Hegele-Hartung C., Lindenthal B., Eichenlaub-Ritter U. Influence of follicular fluid meiosis-activating sterol on aneuploidy rate and precocious chromatid segregation in aged mouse oocytes. Hum. Reprod. 2007;22:815–828. doi: 10.1093/humrep/del442. PubMed DOI
Chiang T., Schultz R.M., Lampson M.A. Age-Dependent Susceptibility of Chromosome Cohesion to Premature Separase Activation in Mouse Oocytes. Biol. Reprod. 2011;85:1279–1283. doi: 10.1095/biolreprod.111.094094. PubMed DOI PMC
Eichenlaub-Ritter U., Chandley A.C., Gosden R.G. The CBA mouse as a model for age-related aneuploidy in man: Studies of oocyte maturation, spindle formation and chromosome alignment during meiosis. Chromosoma. 1988;96:220–226. doi: 10.1007/BF00302361. PubMed DOI
Eichenlaub-Ritter U., Boll I. Nocodazole sensitivity, age-related aneuploidy, and alterations in the cell cycle during maturation of mouse oocytes. Cytogenet. Genome Res. 1989;52:170–176. doi: 10.1159/000132871. PubMed DOI
Duncan F.E., Chiang T., Schultz R.M., Lampson M.A. Evidence That a Defective Spindle Assembly Checkpoint Is Not the Primary Cause of Maternal Age-Associated Aneuploidy in Mouse Eggs1. Biol. Reprod. 2009;81:768–776. doi: 10.1095/biolreprod.109.077909. PubMed DOI PMC
Lister L.M., Kouznetsova A., Hyslop L.A., Kalleas D., Pace S.L., Barel J.C., Nathan A., Floros V., Adelfalk C., Watanabe Y., et al. Age-Related Meiotic Segregation Errors in Mammalian Oocytes Are Preceded by Depletion of Cohesin and Sgo2. Curr. Biol. 2010;20:1511–1521. doi: 10.1016/j.cub.2010.08.023. PubMed DOI
Cui L.-B., Zhou X.-Y., Zhao Z.-J., Li Q., Huang X.-Y., Sun F.-Z. The Kunming mouse: As a model for age-related decline in female fertility in human. Zygote. 2013;21:367–376. doi: 10.1017/S0967199412000123. PubMed DOI
Gui L., Homer H. Hec1-dependent cyclin B2 stabilization regulates the G2-M transition and early prometaphase in mouse oocytes. Dev. Cell. 2013;25:43–54. doi: 10.1016/j.devcel.2013.02.008. PubMed DOI PMC
De Smedt V., Poulhe R., Cayla X., Dessauge F., Karaiskou A., Jessus C., Ozon R. Thr-161 phosphorylation of monomeric Cdc2. Regulation by protein phosphatase 2C in Xenopus oocytes. J. Biol. Chem. 2002;277:28592–28600. doi: 10.1074/jbc.M202742200. PubMed DOI
Félix M.A., Cohen P., Karsenti E. Cdc2 H1 kinase is negatively regulated by a type 2A phosphatase in the Xenopus early embryonic cell cycle: Evidence from the effects of okadaic acid. EMBO J. 1990;9:675–683. doi: 10.1002/j.1460-2075.1990.tb08159.x. PubMed DOI PMC
Li J., Tang J.-X., Cheng J.-M., Hu B., Wang Y.-Q., Aalia B., Li X.-Y., Jin C., Wang X.-X., Deng S.-L., et al. Cyclin B2 can compensate for Cyclin B1 in oocyte meiosis I. J. Cell Biol. 2018 doi: 10.1083/jcb.201802077. PubMed DOI PMC
Duncan F.E., Jasti S., Paulson A., Kelsh J.M., Fegley B., Gerton J.L. Age-associated dysregulation of protein metabolism in the mammalian oocyte. Aging Cell. 2017;16:1381–1393. doi: 10.1111/acel.12676. PubMed DOI PMC
Xue S., Barna M. Specialized ribosomes: A new frontier in gene regulation and organismal biology. Nat. Rev. Mol. Cell Biol. 2012;13:355–369. doi: 10.1038/nrm3359. PubMed DOI PMC
Tao X., Landis J.N., Krisher R.L., Duncan F.E., Silva E., Lonczak A., Scott R.T., Zhan Y., Chu T., Scott R.T., et al. Mitochondrial DNA content is associated with ploidy status, maternal age, and oocyte maturation methods in mouse blastocysts. J. Assist. Reprod. Genet. 2017;34:1587–1594. doi: 10.1007/s10815-017-1070-8. PubMed DOI PMC
Fragouli E., Spath K., Alfarawati S., Kaper F., Craig A., Michel C.-E., Kokocinski F., Cohen J., Munne S., Wells D. Altered Levels of Mitochondrial DNA Are Associated with Female Age, Aneuploidy, and Provide an Independent Measure of Embryonic Implantation Potential. PLoS Genet. 2015;11 doi: 10.1371/journal.pgen.1005241. PubMed DOI PMC
Raz V., Vermolen B.J., Garini Y., Onderwater J.J.M., Mommaas-Kienhuis M.A., Koster A.J., Young I.T., Tanke H., Dirks R.W. The nuclear lamina promotes telomere aggregation and centromere peripheral localization during senescence of human mesenchymal stem cells. J. Cell. Sci. 2008;121:4018–4028. doi: 10.1242/jcs.034876. PubMed DOI
Maiato H., Hergert P.J., Moutinho-Pereira S., Dong Y., Vandenbeldt K.J., Rieder C.L., McEwen B.F. The ultrastructure of the kinetochore and kinetochore fiber in Drosophila somatic cells. Chromosoma. 2006;115:469–480. doi: 10.1007/s00412-006-0076-2. PubMed DOI PMC
Schweizer N., Pawar N., Weiss M., Maiato H. An organelle-exclusion envelope assists mitosis and underlies distinct molecular crowding in the spindle region. J. Cell Biol. 2015;210:695–704. doi: 10.1083/jcb.201506107. PubMed DOI PMC
Katsani K.R., Karess R.E., Dostatni N., Doye V. In vivo dynamics of Drosophila nuclear envelope components. Mol. Biol. Cell. 2008;19:3652–3666. doi: 10.1091/mbc.e07-11-1162. PubMed DOI PMC
Tetkova A., Hancova M. Mouse Oocyte Isolation, Cultivation and RNA Microinjection. Bio-Protocol. 2016;6 doi: 10.21769/BioProtoc.1729. DOI
McGuinness B.E., Anger M., Kouznetsova A., Gil-Bernabé A.M., Helmhart W., Kudo N.R., Wuensche A., Taylor S., Hoog C., Novak B., et al. Regulation of APC/C activity in oocytes by a Bub1-dependent spindle assembly checkpoint. Curr. Biol. 2009;19:369–380. doi: 10.1016/j.cub.2009.01.064. PubMed DOI
Eden E., Lipson D., Yogev S., Yakhini Z. Discovering Motifs in Ranked Lists of DNA Sequences. PLoS Comput. Biol. 2007;3:e39. doi: 10.1371/journal.pcbi.0030039. PubMed DOI PMC
Eden E., Navon R., Steinfeld I., Lipson D., Yakhini Z. GOrilla: A tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinform. 2009;10:48. doi: 10.1186/1471-2105-10-48. PubMed DOI PMC
Motlík J., Sutovský P., Kalous J., Kubelka M., Moos J., Schultz R.M. Co-culture with pig membrana granulosa cells modulates the activity of cdc2 and MAP kinase in maturing cattle oocytes. Zygote. 1996;4:247–256. doi: 10.1017/S0967199400003166. PubMed DOI
Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. PubMed DOI
Multiple Roles of PLK1 in Mitosis and Meiosis
SGK1 is essential for meiotic resumption in mammalian oocytes
Age-related differences in the translational landscape of mammalian oocytes
Role of Cyclin-Dependent Kinase 1 in Translational Regulation in the M-Phase