Role of Cyclin-Dependent Kinase 1 in Translational Regulation in the M-Phase

. 2020 Jun 27 ; 9 (7) : . [epub] 20200627

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32605021

Cyclin dependent kinase 1 (CDK1) has been primarily identified as a key cell cycle regulator in both mitosis and meiosis. Recently, an extramitotic function of CDK1 emerged when evidence was found that CDK1 is involved in many cellular events that are essential for cell proliferation and survival. In this review we summarize the involvement of CDK1 in the initiation and elongation steps of protein synthesis in the cell. During its activation, CDK1 influences the initiation of protein synthesis, promotes the activity of specific translational initiation factors and affects the functioning of a subset of elongation factors. Our review provides insights into gene expression regulation during the transcriptionally silent M-phase and describes quantitative and qualitative translational changes based on the extramitotic role of the cell cycle master regulator CDK1 to optimize temporal synthesis of proteins to sustain the division-related processes: mitosis and cytokinesis.

Zobrazit více v PubMed

Adhikari D., Zheng W., Shen Y., Gorre N., Ning Y., Halet G., Kaldis P., Liu K. Cdk1, but not Cdk2, is the sole Cdk that is essential and sufficient to drive resumption of meiosis in mouse oocytes. Hum. Mol. Genet. 2012;21:2476–2484. doi: 10.1093/hmg/dds061. PubMed DOI

Diril M.K., Ratnacaram C.K., Padmakumar V.C., Du T., Wasser M., Coppola V., Tessarollo L., Kaldis P. Cyclin-dependent kinase 1 (Cdk1) is essential for cell division and suppression of DNA re-replication but not for liver regeneration. Proc. Natl. Acad. Sci. USA. 2012;109:3826–3831. doi: 10.1073/pnas.1115201109. PubMed DOI PMC

Dorée M., Peaucellier G., Picard A. Activity of the maturation-promoting factor and the extent of protein phosphorylation oscillate simultaneously during meiotic maturation of starfish oocytes. Dev. Biol. 1983;99:489–501. doi: 10.1016/0012-1606(83)90298-1. PubMed DOI

Picard A., Labbe J.C., Doree M. The cell cycle can occur in starfish oocytes and embryos without the production of transferable MPF (maturation-promoting factor) Dev. Biol. 1988;128:129–135. doi: 10.1016/0012-1606(88)90274-6. PubMed DOI

Wasserman W., Masui Y. Effects of cycloheximide on a cytoplasmic factor initiating meiotic maturation in Xenopus oocytes. Exp. Cell Res. 1975;91:381–388. doi: 10.1016/0014-4827(75)90118-4. PubMed DOI

Enserink J.M., Kolodner R.D. An overview of Cdk1-controlled targets and processes. Cell Div. 2010;5:1–41. doi: 10.1186/1747-1028-5-11. PubMed DOI PMC

Jansova D., Koncicka M., Tetkova A., Cerna R., Malik R., del Llano E., Kubelka M., Susor A. Regulation of 4E-BP1 activity in the mammalian oocyte. Cell Cycle. 2017;16:927–939. doi: 10.1080/15384101.2017.1295178. PubMed DOI PMC

Velásquez C., Cheng E., Shuda M., Lee-Oesterreich P.J., Von Strandmann L.P., Gritsenko M.A., Jacobs J.M., Moore P.S., Chang Y. Mitotic protein kinase CDK1 phosphorylation of mRNA translation regulator 4E-BP1 Ser83 may contribute to cell transformation. Proc. Natl. Acad. Sci. USA. 2016;113:8466–8471. doi: 10.1073/pnas.1607768113. PubMed DOI PMC

Krek W., Nigg E.A. Mutations of p34cdc2 phosphorylation sites induce premature mitotic events in HeLa cells: Evidence for a double block to p34cdc2 kinase activation in vertebrates. EMBO J. 1991;10:3331–3341. doi: 10.1002/j.1460-2075.1991.tb04897.x. PubMed DOI PMC

Solomon M.J., Glotzer M., Lee T.H., Philippe M., Kirschner M.W. Cyclin activation of p34cdc2. Cell. 1990;63:1013–1024. doi: 10.1016/0092-8674(90)90504-8. PubMed DOI

Tachibana K., Ishiura M., Uchida T., Kishimoto T. The starfish egg mRNA responsible for meiosis reinitiation encodes cyclin. Dev. Biol. 1990;140:241–252. doi: 10.1016/0012-1606(90)90074-S. PubMed DOI

Li J., Tang J.X., Cheng J.M., Hu B., Wang Y.Q., Aalia B., Li X.Y., Jin C., Wang X.X., Deng S.L., et al. Cyclin B2 can compensate for Cyclin B1 in oocyte meiosis I. J. Cell Biol. 2018;217:3901–3911. doi: 10.1083/jcb.201802077. PubMed DOI PMC

Haneke K., Schott J., Lindner D., Hollensen A.K., Damgaard C.K., Mongis C., Knop M., Palm W., Ruggieri A., Stoecklin G. CDK1 couples proliferation with protein synthesis. J. Cell Biol. 2020;219:e201906147. doi: 10.1083/jcb.201906147. PubMed DOI PMC

Li Y., Wang L., Zhang L., He Z., Feng G., Sun H., Wang J., Li Z., Liu C., Han J., et al. Cyclin b3 is required for metaphase to anaphase transition in oocyte meiosis I. J. Cell Biol. 2019;218:1553–1563. doi: 10.1083/jcb.201808088. PubMed DOI PMC

Karasu M.E., Bouftas N., Keeney S., Wassmann K. Cyclin B3 promotes anaphase i onset in oocyte meiosis. J. Cell Biol. 2019;218:1265–1281. doi: 10.1083/jcb.201808091. PubMed DOI PMC

Kozak M. How do eucaryotic ribosomes select initiation regions in messenger RNA? Cell. 1978;15:1109–1123. doi: 10.1016/0092-8674(78)90039-9. PubMed DOI

Merrick W.C., Pavitt G.D. Protein synthesis initiation in eukaryotic cells. Cold Spring Harb. Perspect. Biol. 2018;10 doi: 10.1101/cshperspect.a033092. PubMed DOI PMC

Shirokikh N.E., Preiss T. Translation initiation by cap-dependent ribosome recruitment: Recent insights and open questions. Wiley Interdiscip. Rev. RNA. 2018;9 doi: 10.1002/wrna.1473. PubMed DOI

Hinnebusch A.G., Ivanov I.P., Sonenberg N. Translational control by 5′-untranslated regions of eukaryotic mRNAs. Science. 2016;352:1413–1416. doi: 10.1126/science.aad9868. PubMed DOI PMC

Imataka H., Gradi A., Sonenberg N. A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. EMBO J. 1998;17:7480–7489. doi: 10.1093/emboj/17.24.7480. PubMed DOI PMC

Sonenberg N., Morgan M.A., Merrick W.C., Shatkin A.J. A polypeptide in eukaryotic initiation factors that crosslinks specifically to the 5′-terminal cap in mRNA. Proc. Natl. Acad. Sci. USA. 1978;75:4843–4847. doi: 10.1073/pnas.75.10.4843. PubMed DOI PMC

Sachs A.B., Davis R.W. The poly(A) binding protein is required for poly(A) shortening and 60S ribosomal subunit-dependent translation initiation. Cell. 1989;58:857–867. doi: 10.1016/0092-8674(89)90938-0. PubMed DOI

Wells S.E., Hillner P.E., Vale R.D., Sachs A.B. Circularization of mRNA by eukaryotic translation initiation factors. Mol. Cell. 1998;2:135–140. doi: 10.1016/S1097-2765(00)80122-7. PubMed DOI

Sun R., Cheng E., Velásquez C., Chang Y., Moore P.S. Mitosis-related phosphorylation of the eukaryotic translation suppressor 4E-BP1 and its interaction with eukaryotic translation initiation factor 4E (eIF4E) J. Biol. Chem. 2019;294:11840–11852. doi: 10.1074/jbc.RA119.008512. PubMed DOI PMC

Sengupta C., Peterson T.R., Sabatini D.M., Sengupta S. Regulation of the mTOR Complex 1 pathway by nutrients, growth factors, and stress. Mol. Cell. 2010;40:310–322. doi: 10.1016/j.molcel.2010.09.026. PubMed DOI PMC

Ellederova Z., Kovarova H., Melo-Sterza F., Livingstone M., Tomek W., Kubelka M. Suppression of translation during in vitro maturation of pig oocytes despite enhanced formation of cap-binding protein complex eIF4F and 4E-BP1 hyperphosphorylation. Mol. Reprod. Dev. 2006;73:68–76. doi: 10.1002/mrd.20368. PubMed DOI

Susor A., Jansova D., Cerna R., Danylevska A., Anger M., Toralova T., Malik R., Supolikova J., Cook M.S., Oh J.S., et al. Temporal and spatial regulation of translation in the mammalian oocyte via the mTOR-eIF4F pathway. Nat. Commun. 2015;6:6078. doi: 10.1038/ncomms7078. PubMed DOI PMC

Pyronnet S., Dostie J., Sonenberg N. Suppression of cap-dependent translation in mitosis. Genes Dev. 2001;15:2083–2093. doi: 10.1101/gad.889201. PubMed DOI PMC

Tanenbaum M.E., Stern-Ginossar N., Weissman J.S., Vale R.D. Regulation of mRNA translation during mitosis. eLife. 2015;4:e07957. doi: 10.7554/eLife.07957. PubMed DOI PMC

Fan H., Penman S. Regulation of protein synthesis in mammalian cells. II. Inhibition of protein synthesis at the level of initiation during mitosis. J. Mol. Biol. 1970;50:655–670. doi: 10.1016/0022-2836(70)90091-4. PubMed DOI

Tarnowka M.A., Baglioni C. Regulation of protein synthesis in mitotic HeLa cells. J. Cell. Physiol. 1979;99:359–367. doi: 10.1002/jcp.1040990311. PubMed DOI

Coldwell M.J., Cowan J.L., Vlasak M., Mead A., Willett M., Perry L.S., Morley S.J. Phosphorylation of eIF4GII and 4E-BP1 in response to nocodazole treatment: A reappraisal of translation initiation during mitosis. Cell Cycle. 2013;12:3615–3628. doi: 10.4161/cc.26588. PubMed DOI PMC

Shuda M., Velásquez C., Cheng E., Cordek D.G., Kwun H.J., Chang Y., Moore P.S. CDK1 substitutes for mTOR kinase to activate mitotic cap-dependent protein translation. Proc. Natl. Acad. Sci. USA. 2015;112:5875–5882. doi: 10.1073/pnas.1505787112. PubMed DOI PMC

Anda S., Grallert B. Cell-Cycle-Dependent Regulation of Translation: New interpretations of old observations in light of new approaches. BioEssays. 2019;41:e1900022. doi: 10.1002/bies.201900022. PubMed DOI

Silva R.C., Dautel M., Di Genova B.M., Amberg D.C., Castilho B.A., Sattlegger E. The Gcn2 Regulator Yih1 Interacts with the cyclin dependent kinase Cdc28 and promotes cell cycle progression through G2/M in budding yeast. PLoS ONE. 2015;10:e0131070. doi: 10.1371/journal.pone.0131070. PubMed DOI PMC

Stonyte V., Boye E., Grallert B. Regulation of global translation during the cell cycle. J. Cell Sci. 2018;131 doi: 10.1242/jcs.220327. PubMed DOI

Uppala J.K., Ghosh C., Sathe L., Dey M. Phosphorylation of translation initiation factor eIF2α at Ser51 depends on site- and context-specific information. FEBS Lett. 2018;592:3116–3125. doi: 10.1002/1873-3468.13214. PubMed DOI PMC

Gordiyenko Y., Llácer J.L., Ramakrishnan V. Structural basis for the inhibition of translation through eIF2α phosphorylation. Nat. Commun. 2019;10:1–11. doi: 10.1038/s41467-019-10606-1. PubMed DOI PMC

De La Fuente R., Viveiros M.M., Burns K.H., Adashi E.Y., Matzuk M.M., Eppig J.J. Major chromatin remodeling in the germinal vesicle (GV) of mammalian oocytes is dispensable for global transcriptional silencing but required for centromeric heterochromatin function. Dev. Biol. 2004;275:447–458. doi: 10.1016/j.ydbio.2004.08.028. PubMed DOI

Eppig J.J., Schroeder A.C. Capacity of Mouse Oocytes from Preantral Follicles to Undergo Embryogenesis and Development to Live Young after Growth, Maturation, and Fertilization in Vitro1. Biol. Reprod. 1989;41:268–276. doi: 10.1095/biolreprod41.2.268. PubMed DOI

Šušor A., Jelínková L., Karabínová P., Torner H., Tomek W., Kovářová H., Kubelka M. Regulation of cap-dependent translation initiation in the early stage porcine parthenotes. Mol. Reprod. Dev. 2008;75:1716–1725. doi: 10.1002/mrd.20913. PubMed DOI

Ellederová Z., Cais O., Šušor A., Uhlířová K., Kovářová H., Jelínková L., Tomek W., Kubelka M. ERK1/2 map kinase metabolic pathway is responsible for phosphorylation of translation initiation factor eIF4E during in vitro maturation of pig oocytes. Mol. Reprod. Dev. 2008;75:309–317. doi: 10.1002/mrd.20690. PubMed DOI

Tomek W., Sterza F.A.M., Kubelka M., Wollenhaupt K., Torner H., Anger M., Kanitz W. Regulation of Translation During In Vitro Maturation of Bovine Oocytes: The Role of MAP Kinase, eIF4E (Cap Binding Protein) Phosphorylation, and eIF4E-BP11. Biol. Reprod. 2002;66:1274–1282. doi: 10.1095/biolreprod66.5.1274. PubMed DOI

Ramírez-Valle F., Badura M.L., Braunstein S., Narasimhan M., Schneider R.J. Mitotic Raptor Promotes mTORC1 Activity, G2/M Cell Cycle Progression, and Internal Ribosome Entry Site-Mediated mRNA Translation. Mol. Cell. Biol. 2010;30:3151–3164. doi: 10.1128/MCB.00322-09. PubMed DOI PMC

Fromont-Racine M., Senger B., Saveanu C., Fasiolo F. Ribosome assembly in eukaryotes. Gene. 2003;313:17–42. doi: 10.1016/S0378-1119(03)00629-2. PubMed DOI

Yoon I.S., Chung J.H., Hahm S.H., Park M.J., Lee Y.R., Ko S.I., Kang L.W., Kim T.S., Kim J., Han Y.S. Ribosomal protein S3 is phosphorylated by Cdk1/cdc2 during G2/M phase. BMB Rep. 2011;44:529–534. doi: 10.5483/BMBRep.2011.44.8.529. PubMed DOI

Susor A., Kubelka M. Results and Problems in Cell Differentiation. Volume 63. Springer; Berlin/Heidelberg, Germany: 2017. Translational regulation in the mammalian oocyte; pp. 257–295. PubMed

Jang C.Y., Kim H.D., Zhang X., Chang J.S., Kim J. Ribosomal protein S3 localizes on the mitotic spindle and functions as a microtubule associated protein in mitosis. Biochem. Biophys. Res. Commun. 2012;429:57–62. doi: 10.1016/j.bbrc.2012.10.093. PubMed DOI

Simsek D., Tiu G.C., Flynn R.A., Byeon G.W., Leppek K., Xu A.F., Chang H.Y., Barna M. The Mammalian Ribo-interactome Reveals Ribosome Functional Diversity and Heterogeneity. Cell. 2017;169:1051–1065. doi: 10.1016/j.cell.2017.05.022. PubMed DOI PMC

Imami K., Milek M., Bogdanow B., Yasuda T., Kastelic N., Zauber H., Ishihama Y., Landthaler M., Selbach M. Phosphorylation of the Ribosomal Protein RPL12/uL11 Affects Translation during Mitosis. Mol. Cell. 2018;72:84–98. doi: 10.1016/j.molcel.2018.08.019. PubMed DOI

Odle R.I., Walker S.A., Oxley D., Kidger A.M., Balmanno K., Gilley R., Okkenhaug H., Florey O., Ktistakis N.T., Cook S.J. An mTORC1-to-CDK1 Switch Maintains Autophagy Suppression during Mitosis. Mol. Cell. 2020;77:228–240. doi: 10.1016/j.molcel.2019.10.016. PubMed DOI PMC

Berman A.J., Thoreen C.C., Dedeic Z., Chettle J., Roux P.P., Sarah B.P. Controversies around the function of LARP1. RNA Biol. 2020;1:1–11. doi: 10.1080/15476286.2020.1733787. PubMed DOI PMC

Dobrikov M.I., Shveygert M., Brown M.C., Gromeier M. Mitotic Phosphorylation of Eukaryotic Initiation Factor 4G1 (eIF4G1) at Ser1232 by Cdk1:Cyclin B Inhibits eIF4A Helicase Complex Binding with RNA. Mol. Cell. Biol. 2014;34:439–451. doi: 10.1128/MCB.01046-13. PubMed DOI PMC

Sivan G., Aviner R., Elroy-Stein O. Mitotic modulation of translation elongation factor 1 leads to hindered tRNA delivery to ribosomes. J. Biol. Chem. 2011;286:27927–27935. doi: 10.1074/jbc.M111.255810. PubMed DOI PMC

Mulner-Lorillon O., Minella O., Cormier P., Capony J.P., Cavadore J.C., Morales J., Poulhe R., Bellé R. Elongation factor EF-1 delta, a new target for maturation-promoting factor in Xenopus oocytes. J. Biol. Chem. 1994;269:20201–20207. PubMed

Smith E.M., Proud C.G. cdc2-cyclin B regulates eEF2 kinase activity in a cell cycle and amino acid-dependent manner. EMBO J. 2008;27:1005–1016. doi: 10.1038/emboj.2008.39. PubMed DOI PMC

Gnad F., Gunawardena J., Mann M. PHOSIDA 2011: The posttranslational modification database. Nucleic Acids Res. 2011;39:D253–D260. doi: 10.1093/nar/gkq1159. PubMed DOI PMC

Olsen J.V., Vermeulen M., Santamaria A., Kumar C., Miller M.L., Jensen L.J., Gnad F., Cox J., Jensen T.S., Nigg E.A., et al. Quantitative phosphoproteomics revealswidespread full phosphorylation site occupancy during mitosis. Sci. Signal. 2010;3:ra3. doi: 10.1126/scisignal.2000475. PubMed DOI

Hernandez-Verdun D. Assembly and disassembly of the nucleolus during the cell cycle. Nucleus. 2011;2:189–194. doi: 10.4161/nucl.2.3.16246. PubMed DOI PMC

Murano K., Okuwaki M., Hisaoka M., Nagata K. Transcription regulation of the rRNA gene by a multifunctional nucleolar protein, B23/nucleophosmin, through its histone chaperone activity. Mol. Cell. Biol. 2008;28:3114–3126. doi: 10.1128/MCB.02078-07. PubMed DOI PMC

Okuwaki M., Matsumoto K., Tsujimoto M., Nagata K. Function of nucleophosmin/B23, a nucleolar acidic protein, as a histone chaperone. FEBS Lett. 2001;506:272–276. doi: 10.1016/S0014-5793(01)02939-8. PubMed DOI

Yu Y., Maggi L.B., Brady S.N., Apicelli A.J., Dai M.-S., Lu H., Weber J.D. Nucleophosmin is essential for ribosomal protein L5 nuclear export. Mol. Cell. Biol. 2006;26:3798–3809. doi: 10.1128/MCB.26.10.3798-3809.2006. PubMed DOI PMC

Hisaoka M., Ueshima S., Murano K., Nagata K., Okuwaki M. Regulation of nucleolar chromatin by B23/nucleophosmin jointly depends upon its RNA binding activity and transcription factor UBF. Mol. Cell. Biol. 2010;30:4952–4964. doi: 10.1128/MCB.00299-10. PubMed DOI PMC

Hagting A., Jackman M., Simpson K., Pines J. Translocation of cyclin B1 to the nucleus at prophase requires a phosphorylation-dependent nuclear import signal. Curr. Biol. 1999;9:680–689. doi: 10.1016/S0960-9822(99)80308-X. PubMed DOI

Lindqvist A., van Zon W., Karlsson Rosenthal C., Wolthuis R.M.F. Cyclin B1–Cdk1 activation continues after centrosome separation to control mitotic progression. PLoS Biol. 2007;5:e123. doi: 10.1371/journal.pbio.0050123. PubMed DOI PMC

Jackman M., Lindon C., Niggt E.A., Pines J. Active cyclin B1-Cdk1 first appears on centrosomes in prophase. Nat. Cell Biol. 2003;5:143–148. doi: 10.1038/ncb918. PubMed DOI

Gavet O., Pines J. Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis. Dev. Cell. 2010;18:533–543. doi: 10.1016/j.devcel.2010.02.013. PubMed DOI PMC

Karabinova P., Kubelka M., Susor A. Proteasomal degradation of ubiquitinated proteins in oocyte meiosis and fertilization in mammals. Cell Tissue Res. 2011;346:1. doi: 10.1007/s00441-011-1235-1. PubMed DOI

Pines J., Hunter T. Cyclin-dependent kinases: A new cell cycle motif? Trends Cell Biol. 1991;1:117–121. doi: 10.1016/0962-8924(91)90116-Q. PubMed DOI

Koncicka M., Tetkova A., Jansova D., Del Llano E., Gahurova L., Kracmarova J., Prokesova S., Masek T., Pospisek M., Bruce A.W., et al. Increased expression of maturation promoting factor components speeds up meiosis in oocytes from aged females. Int. J. Mol. Sci. 2018;19:2841. doi: 10.3390/ijms19092841. PubMed DOI PMC

Schweizer N., Pawar N., Weiss M., Maiato H. An organelle-exclusion envelope assists mitosis and underlies distinct molecular crowding in the spindle region. J. Cell Biol. 2015;210:695–704. doi: 10.1083/jcb.201506107. PubMed DOI PMC

Wang X., Proud C.G. mTORC1 Signaling: What We Still Don’t Know. J. Mol. Cell Biol. 2011;3 doi: 10.1093/jmcb/mjq038. PubMed DOI

Truitt M.L., Ruggero D. New frontiers in translational control of the cancer genome. Nat. Rev. Cancer. 2016;16:288–304. doi: 10.1038/nrc.2016.27. PubMed DOI PMC

Qin X., Jiang B., Zhang Y. 4E-BP1, a multifactor regulated multifunctional protein. Cell Cycle. 2016;15:781–786. doi: 10.1080/15384101.2016.1151581. PubMed DOI PMC

Sonenberg N., Hinnebusch A.G. Regulation of translation initiation in eukaryotes: Mechanisms and biological targets. Cell. 2009;136:731–745. doi: 10.1016/j.cell.2009.01.042. PubMed DOI PMC

Meyuhas O., Kahan T. The race to decipher the top secrets of TOP mRNAs. Biochim. Biophys. Acta. 2015;1849:801–811. doi: 10.1016/j.bbagrm.2014.08.015. PubMed DOI

Yamashita R., Suzuki Y., Takeuchi N., Wakaguri H., Ueda T., Sugano S., Nakai K. Comprehensive detection of human terminal oligo-pyrimidine (TOP) genes and analysis of their characteristics. Nucleic Acids Res. 2008;36:3707–3715. doi: 10.1093/nar/gkn248. PubMed DOI PMC

Fingar D.C., Richardson C.J., Tee A.R., Cheatham L., Tsou C., Blenis J. mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/Eukaryotic translation initiation factor 4E. Mol. Cell. Biol. 2004;24:200–216. doi: 10.1128/MCB.24.1.200-216.2004. PubMed DOI PMC

Miettinen T.P., Kang J.H., Yang L.F., Manalis S.R. Mammalian cell growth dynamics in mitosis. eLife. 2019;8:e44700. doi: 10.7554/eLife.44700. PubMed DOI PMC

Livingstone M., Bidinosti M. Rapamycin-insensitive mTORC1 activity controls eIF4E:4E-BP1 binding. F1000Research. 2012;1:4. doi: 10.12688/f1000research.1-4.v1. PubMed DOI PMC

Burnett P.E., Barrow R.K., Cohen N.A., Snyder S.H., Sabatini D.M. RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc. Natl. Acad. Sci. USA. 1998;95:1432–1437. doi: 10.1073/pnas.95.4.1432. PubMed DOI PMC

Romasko E.J., Amarnath D., Midic U., Latham K.E. Association of maternal mRNA and phosphorylated EIF4EBP1 variants with the spindle in mouse oocytes: Localized translational control supporting female meiosis in mammals. Genetics. 2013;195:349–358. doi: 10.1534/genetics.113.154005. PubMed DOI PMC

Papst P.J., Sugiyama H., Nagasawa M., Lucas J.J., Maller J.L., Terada N. Cdc2-cyclin B phosphorylates p70 S6 kinase on Ser411 at mitosis. J. Biol. Chem. 1998;273:15077–15084. doi: 10.1074/jbc.273.24.15077. PubMed DOI

Shah O.J., Ghosh S., Hunter T. Mitotic regulation of ribosomal S6 kinase 1 involves Ser/Thr, Pro phosphorylation of consensus and non-consensus sites by Cdc2. J. Biol. Chem. 2003;278:16433–16442. doi: 10.1074/jbc.M300435200. PubMed DOI

Jakobsson M.E., Małecki J., Falnes P. Regulation of eukaryotic elongation factor 1 alpha (eEF1A) by dynamic lysine methylation. RNA Biol. 2018;15:314–319. doi: 10.1080/15476286.2018.1440875. PubMed DOI PMC

Sivan G., Elroy-Stein O. Regulation of mRNA Translation during cellular division. Cell Cycle. 2008;7:741–744. doi: 10.4161/cc.7.6.5596. PubMed DOI

Monnier A., Bellé R., Morales J., Cormier P., Boulben S., Mulner-Lorillon O. Evidence for regulation of protein synthesis at the elongation step by CDK1/cyclin B phosphorylation. Nucleic Acids Res. 2001;29:1453–1457. doi: 10.1093/nar/29.7.1453. PubMed DOI PMC

Bellé R., Derancourt J., Poulhe R., Capony J.P., Ozon R., Mulner-Lorillon O. A purified complex from Xenopus oocytes contains a p47 protein, an in vivo substrate of MPF, and a p30 protein respectively homologous to elongation factors EF-1γ and EF-1β. FEBS Lett. 1989;255:101–104. doi: 10.1016/0014-5793(89)81069-5. PubMed DOI

Kawaguchi Y., Kato K., Tanaka M., Kanamori M., Nishiyama Y., Yamanashi Y. Conserved protein kinases encoded by herpesviruses and cellular protein kinase cdc2 target the same phosphorylation site in eukaryotic elongation factor 1dekta. J. Virol. 2003;77:2359–2368. doi: 10.1128/JVI.77.4.2359-2368.2003. PubMed DOI PMC

Tcherkezian J., Cargnello M., Romeo Y., Huttlin E.L., Lavoie G., Gygi S.P., Roux P.P. Proteomic analysis of cap-dependent translation identifies LARP1 as a key regulator of 5′TOP mRNA translation. Genes Dev. 2014;28:357–371. doi: 10.1101/gad.231407.113. PubMed DOI PMC

Aoki K., Adachi S., Homoto M., Kusano H., Koike K., Natsume T. LARP1 specifically recognizes the 3′ terminus of poly(A) mRNA. FEBS Lett. 2013;587:2173–2178. doi: 10.1016/j.febslet.2013.05.035. PubMed DOI

Hsu P.P., Kang S.A., Rameseder J., Zhang Y., Ottina K.A., Lim D., Peterson T.R., Choi Y., Gray N.S., Yaffe M.B., et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science. 2011;332:1317–1322. doi: 10.1126/science.1199498. PubMed DOI PMC

Yu Y., Yoon S.O., Poulogiannis G., Yang Q., Ma X.M., Villén J., Kubica N., Hoffman G.R., Cantley L.C., Gygi S.P., et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science. 2011;332:1322–1326. doi: 10.1126/science.1199484. PubMed DOI PMC

Hong S., Freeberg M.A., Han T., Kamath A., Yao Y., Fukuda T., Suzuki T., Kim J.K., Inoki K. LARP1 functions as a molecular switch for mTORC1-mediated translation of an essential class of mRNAs. eLife. 2017;6:e25237. doi: 10.7554/eLife.25237. PubMed DOI PMC

Mura M., Hopkins T.G., Michael T., Abd-Latip N., Weir J., Aboagye E., Mauri F., Jameson C., Sturge J., Gabra H., et al. LARP1 post-transcriptionally regulates mTOR and contributes to cancer progression. Oncogene. 2015;34:5025–5036. doi: 10.1038/onc.2014.428. PubMed DOI PMC

Xie C., Huang L., Xie S., Xie D., Zhang G., Wang P., Peng L., Gao Z. LARP1 predict the prognosis for early-stage and AFP-normal hepatocellular carcinoma. J. Transl. Med. 2013;11:272. doi: 10.1186/1479-5876-11-272. PubMed DOI PMC

Ye L., Lin S.T., Mi Y.S., Liu Y., Ma Y., Sun H.M., Peng Z.H., Fan J.W. Overexpression of LARP1 predicts poor prognosis of colorectal cancer and is expected to be a potential therapeutic target. Tumor Biol. 2016;37:14585–14594. doi: 10.1007/s13277-016-5332-3. PubMed DOI PMC

Xu Z., Xu J., Lu H., Lin B., Cai S., Guo J., Zang F., Chen R. LARP1 is regulated by the XIST/miR-374a axis and functions as an oncogene in non-small cell lung carcinoma. Oncol. Rep. 2017;38:3659–3667. doi: 10.3892/or.2017.6040. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace