An Interplay between Epigenetics and Translation in Oocyte Maturation and Embryo Development: Assisted Reproduction Perspective

. 2022 Jul 13 ; 10 (7) : . [epub] 20220713

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35884994

Grantová podpora
CZ.02.1.01/0.0/0.0/15_003/0000460 European Structural and Investment fonds
22-27301S Grant Agency of the Czech Republic
RVO67985904 Institutional Research Concept

Odkazy

PubMed 35884994
PubMed Central PMC9313063
DOI 10.3390/biomedicines10071689
PII: biomedicines10071689
Knihovny.cz E-zdroje

Germ cell quality is a key prerequisite for successful fertilization and early embryo development. The quality is determined by the fine regulation of transcriptomic and proteomic profiles, which are prone to alteration by assisted reproduction technology (ART)-introduced in vitro methods. Gaining evidence shows the ART can influence preset epigenetic modifications within cultured oocytes or early embryos and affect their developmental competency. The aim of this review is to describe ART-determined epigenetic changes related to the oogenesis, early embryogenesis, and further in utero development. We confront the latest epigenetic, related epitranscriptomic, and translational regulation findings with the processes of meiotic maturation, fertilization, and early embryogenesis that impact the developmental competency and embryo quality. Post-ART embryo transfer, in utero implantation, and development (placentation, fetal development) are influenced by environmental and lifestyle factors. The review is emphasizing their epigenetic and ART contribution to fetal development. An epigenetic parallel among mouse, porcine, and bovine animal models and human ART is drawn to illustrate possible future mechanisms of infertility management as well as increase the awareness of the underlying mechanisms governing oocyte and embryo developmental complexity under ART conditions.

Zobrazit více v PubMed

Ivanova E., Canovas S., Garcia-Martínez S., Romar R., Lopes J.S., Rizos D., Sanchez-Calabuig M.J., Krueger F., Andrews S., Perez-Sanz F., et al. DNA methylation changes during preimplantation development reveal inter-species differences and reprogramming events at imprinted genes. Clin. Epigenet. 2020;12:64. doi: 10.1186/s13148-020-00857-x. PubMed DOI PMC

Susor A., Jansova D., Cerna R., Danylevska A., Anger M., Toralova T., Malik R., Supolikova J., Cook M.S., Oh J.S., et al. Temporal and spatial regulation of translation in the mammalian oocyte via the mTOR–eIF4F pathway. Nat. Commun. 2015;6:6078. doi: 10.1038/ncomms7078. PubMed DOI PMC

Asami M., Lam B.Y.H., Ma M.K., Rainbow K., Braun S., VerMilyea M.D., Yeo G.S.H., Perry A.C.F. Human embryonic genome activation initiates at the one-cell stage. Cell Stem Cell. 2022;29:209–216. doi: 10.1016/j.stem.2021.11.012. PubMed DOI PMC

Bird A., Taggart M., Frommer M., Miller O.J., Macleod D. A fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA. Cell. 1985;40:91–99. doi: 10.1016/0092-8674(85)90312-5. PubMed DOI

Illingworth R.S., Gruenewald-Schneider U., Webb S., Kerr A.R.W., James K.D., Turner D.J., Smith C., Harrison D.J., Andrews R., Bird A.P. Orphan CpG Islands Identify numerous conserved promoters in the mammalian genome. PLoS Genet. 2010;6:e1001134. doi: 10.1371/journal.pgen.1001134. PubMed DOI PMC

Ehrlich M., Wang R.Y.H. 5-Methylcytosine in eukaryotic DNA. Science. 1981;212:1350–1357. doi: 10.1126/science.6262918. PubMed DOI

Friso S., Choi S.-W., Girelli D., Mason J.B., Dolnikowski G.G., Bagley P.J., Olivieri O., Jacques P.F., Rosenberg I.H., Corrocher R., et al. A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc. Natl. Acad. Sci. USA. 2002;99:5606–5611. doi: 10.1073/pnas.062066299. PubMed DOI PMC

Hermann A., Goyal R., Jeltsch A. The Dnmt1 DNA-(cytosine-C5)-methyltransferase methylates DNA processively with high preference for hemimethylated target sites. J. Biol. Chem. 2004;279:48350–48359. doi: 10.1074/jbc.M403427200. PubMed DOI

Kaneda M., Okano M., Hata K., Sado T., Tsujimoto N., Li E., Sasaki H. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature. 2004;429:900–903. doi: 10.1038/nature02633. PubMed DOI

Okano M., Bell D.W., Haber D.A., Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99:247–257. doi: 10.1016/S0092-8674(00)81656-6. PubMed DOI

Cedar H., Bergman Y. Linking DNA methylation and histone modification: Patterns and paradigms. Nat. Rev. Genet. 2009;10:295–304. doi: 10.1038/nrg2540. PubMed DOI

Hackett J.A., Sengupta R., Zylicz J.J., Murakami K., Lee C., Down T.A., Surani M.A. Germline DNA Demethylation Dynamics and Imprint Erasure Through 5-Hydroxymethylcytosine. Science. 2013;339:448–452. doi: 10.1126/science.1229277. PubMed DOI PMC

Boyes J., Bird A. DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell. 1991;64:1123–1134. doi: 10.1016/0092-8674(91)90267-3. PubMed DOI

Hark A.T., Schoenherr C.J., Katz D.J., Ingram R.S., Levorse J.M., Tilghman S.M. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature. 2000;405:486–489. doi: 10.1038/35013106. PubMed DOI

Arechederra M., Daian F., Yim A., Bazai S.K., Richelme S., Dono R., Saurin A.J., Habermann B.H., Maina F. Hypermethylation of gene body CpG islands predicts high dosage of functional oncogenes in liver cancer. Nat. Commun. 2018;9:3164. doi: 10.1038/s41467-018-05550-5. PubMed DOI PMC

Christopher M.A., Kyle S.M., Katz D.J. Neuroepigenetic mechanisms in disease. Epigenet. Chromatin. 2017;10:47. doi: 10.1186/s13072-017-0150-4. PubMed DOI PMC

Rottman F., Shatkin A.J., Perry R.P. Sequences containing methylated nucleotides at the 5’ termini of messenger RNAs: Possible implications for processing. Cell. 1974;3:197–199. doi: 10.1016/0092-8674(74)90131-7. PubMed DOI

Wang X., Zhao B.S., Roundtree I.A., Lu Z., Han D., Ma H., Weng X., Chen K., Shi H., He C. N6-methyladenosine Modulates Messenger RNA Translation Efficiency. Cell. 2015;161:1388–1399. doi: 10.1016/j.cell.2015.05.014. PubMed DOI PMC

Dominissini D., Moshitch-Moshkovitz S., Schwartz S., Salmon-Divon M., Ungar L., Osenberg S., Cesarkas K., Jacob-Hirsch J., Amariglio N., Kupiec M., et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485:201–206. doi: 10.1038/nature11112. PubMed DOI

Meyer K.D., Patil D.P., Zhou J., Zinoviev A., Skabkin M.A., Elemento O., Pestova T.V., Qian S.-B., Jaffrey S.R. 5′ UTR m6A Promotes Cap-Independent Translation. Cell. 2015;163:999–1010. doi: 10.1016/j.cell.2015.10.012. PubMed DOI PMC

Bodi Z., Bottley A., Archer N., May S.T., Fray R.G. Yeast m6A Methylated mRNAs Are Enriched on Translating Ribosomes during Meiosis, and under Rapamycin Treatment. PLoS ONE. 2015;10:e0132090. doi: 10.1371/JOURNAL.PONE.0132090. PubMed DOI PMC

Esteller M. Non-coding RNAs in human disease. Nat. Rev. Genet. 2011;12:861–874. doi: 10.1038/nrg3074. PubMed DOI

Wei J.-W., Huang K., Yang C., Kang C.-S. Non-coding RNAs as regulators in epigenetics. Oncol. Rep. 2017;37:3–9. doi: 10.3892/or.2016.5236. PubMed DOI

Peschansky V.J., Wahlestedt C. Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics. 2014;9:3–12. doi: 10.4161/epi.27473. PubMed DOI PMC

Robles V., Valcarce D.G., Riesco M.F. Non-coding RNA regulation in reproduction: Their potential use as biomarkers. Non-coding RNA Res. 2019;4:54–62. doi: 10.1016/j.ncrna.2019.04.001. PubMed DOI PMC

Aleshkina D., Iyyappan R., Lin C.J., Masek T., Pospisek M., Susor A. ncRNA BC1 influences translation in the oocyte. RNA Biol. 2021;18:1893–1904. doi: 10.1080/15476286.2021.1880181. PubMed DOI PMC

Kalish J.M., Jiang C., Bartolomei M.S. Epigenetics and imprinting in human disease. Int. J. Dev. Biol. 2014;58:291–298. doi: 10.1387/ijdb.140077mb. PubMed DOI

Bouckenheimer J., Assou S., Riquier S., Hou C., Philippe N., Sansac C., Lavabre-Bertrand T., Commes T., Lemaître J.-M., Boureux A., et al. Long non-coding RNAs in human early embryonic development and their potential in ART. Hum. Reprod. Update. 2016;23:19–40. doi: 10.1093/humupd/dmw035. PubMed DOI

Seisenberger S., Andrews S., Krueger F., Arand J., Walter J., Santos F., Popp C., Thienpont B., Dean W., Reik W. The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol. Cell. 2012;48:849–862. doi: 10.1016/j.molcel.2012.11.001. PubMed DOI PMC

Saadeh H., Schulz R. Protection of CpG islands against de novo DNA methylation during oogenesis is associated with the recognition site of E2f1 and E2f2. Epigenet. Chromatin. 2014;7:26. doi: 10.1186/1756-8935-7-26. PubMed DOI PMC

Tomizawa S.-I.I., Nowacka-Woszuk J., Kelsey G. DNA methylation establishment during oocyte growth: Mechanisms and significance. Int. J. Dev. Biol. 2012;56:867–875. doi: 10.1387/ijdb.120152gk. PubMed DOI

Zamudio N.M., Chong S., O’Bryan M.K. Epigenetic regulation in male germ cells. Reproduction. 2008;136:131–146. doi: 10.1530/REP-07-0576. PubMed DOI

Langenstroth-Röwer D., Gromoll J., Wistuba J., Tröndle I., Laurentino S., Schlatt S., Neuhaus N. De novo methylation in male germ cells of the common marmoset monkey occurs during postnatal development and is maintained in vitro. Epigenetics. 2017;12:527–539. doi: 10.1080/15592294.2016.1248007. PubMed DOI PMC

Smallwood S.A., Kelsey G. De novo DNA methylation: A germ cell perspective. Trends Genet. 2012;28:33–42. doi: 10.1016/j.tig.2011.09.004. PubMed DOI

von Meyenn F., Berrens R.V., Andrews S., Santos F., Collier A.J., Krueger F., Osorno R., Dean W., Rugg-Gunn P.J., Reik W. Comparative Principles of DNA Methylation Reprogramming during Human and Mouse In Vitro Primordial Germ Cell Specification. Dev. Cell. 2016;39:104–115. doi: 10.1016/j.devcel.2016.09.015. PubMed DOI PMC

Stewart K.R., Veselovska L., Kelsey G. Establishment and functions of DNA methylation in the germline. Epigenomics. 2016;8:1399–1413. doi: 10.2217/epi-2016-0056. PubMed DOI PMC

De La Fuente R., Eppig J.J. Transcriptional Activity of the Mouse Oocyte Genome: Companion Granulosa Cells Modulate Transcription and Chromatin Remodeling. Dev. Biol. 2001;229:224–236. doi: 10.1006/dbio.2000.9947. PubMed DOI

Mira A. Why is Meiosis Arrested? J. Theor. Biol. 1998;194:275–287. doi: 10.1006/jtbi.1998.0761. PubMed DOI

Kaneda M., Hirasawa R., Chiba H., Okano M., Li E., Sasaki H. Genetic evidence for Dnmt3a-dependent imprinting during oocyte growth obtained by conditional knockout with Zp3-Cre and complete exclusion of Dnmt3b by chimera formation. Genes Cells. 2010;15:169–179. doi: 10.1111/j.1365-2443.2009.01374.x. PubMed DOI

Branco M.R., King M., Perez-Garcia V., Bogutz A.B., Caley M., Fineberg E., Lefebvre L., Cook S.J., Dean W., Hemberger M., et al. Maternal DNA Methylation Regulates Early Trophoblast Development. Dev. Cell. 2016;36:152–163. doi: 10.1016/j.devcel.2015.12.027. PubMed DOI PMC

He M., Zhang T., Yang Y., Wang C. Mechanisms of Oocyte Maturation and Related Epigenetic Regulation. Front. Cell Dev. Biol. 2021;9:654028. doi: 10.3389/fcell.2021.654028. PubMed DOI PMC

Haberland M., Montgomery R.L., Olson E.N. The many roles of histone deacetylases in development and physiology: Implications for disease and therapy. Nat. Rev. Genet. 2009;10:32–42. doi: 10.1038/nrg2485. PubMed DOI PMC

Kim J.M., Liu H., Tazaki M., Nagata M., Aoki F. Changes in histone acetylation during mouse oocyte meiosis. J. Cell Biol. 2003;162:37–46. doi: 10.1083/jcb.200303047. PubMed DOI PMC

Li X., Liu X., Gao M., Han L., Qiu D., Wang H., Xiong B., Sun S.C., Liu H., Gu L. HDAC3 promotes meiotic apparatus assembly in mouse oocytes by modulating tubulin acetylation. Development. 2017;144:3789–3797. doi: 10.1242/dev.153353. PubMed DOI

Gu L., Li X., Liu X., Gao M., He Y., Xiong B., Liu H. HDAC3 inhibition disrupts the assembly of meiotic apparatus during porcine oocyte maturation. J. Cell. Physiol. 2019;234:10178–10183. doi: 10.1002/jcp.27687. PubMed DOI

Zhou D., Choi Y.J., Kim J.H. Histone deacetylase 6 (HDAC6) is an essential factor for oocyte maturation and asymmetric division in mice. Sci. Rep. 2017;7:8131. doi: 10.1038/s41598-017-08650-2. PubMed DOI PMC

Ling L., Hu F., Ying X., Ge J., Wang Q. HDAC6 inhibition disrupts maturational progression and meiotic apparatus assembly in mouse oocytes. Cell Cycle. 2018;17:550–556. doi: 10.1080/15384101.2017.1329067. PubMed DOI PMC

Zhang T., He M., Zhao L., Qin S., Zhu Z., Du X., Zhou B., Yang Y., Liu X., Xia G., et al. HDAC6 regulates primordial follicle activation through mTOR signaling pathway. Cell Death Dis. 2021;12:559. doi: 10.1038/s41419-021-03842-1. PubMed DOI PMC

Zhang K., Lu Y., Jiang C., Liu W., Shu J., Chen X., Shi Y., Wang E., Wang L., Hu Q., et al. HDAC8 functions in spindle assembly during mouse oocyte meiosis. Oncotarget. 2017;8:20092–20102. doi: 10.18632/oncotarget.15383. PubMed DOI PMC

Chen Y., Pan C., Lu Y., Miao Y., Xiong B. HDAC8 drives spindle organization during meiotic maturation of porcine oocytes. Cell Prolif. 2021;54:e13119. doi: 10.1111/cpr.13119. PubMed DOI PMC

Zhao P., Wang H., Wang H., Dang Y., Luo L., Li S., Shi Y., Wang L., Wang S., Mager J., et al. Essential roles of HDAC1 and 2 in lineage development and genome-wide DNA methylation during mouse preimplantation development. Epigenetics. 2020;15:369–385. doi: 10.1080/15592294.2019.1669375. PubMed DOI PMC

Sui L., Zhang S., Huang R., Li Z. HDAC11 promotes meiotic apparatus assembly during mouse oocyte maturation via decreasing H4K16 and α-tubulin acetylation. Cell Cycle. 2020;19:354–362. doi: 10.1080/15384101.2019.1711315. PubMed DOI PMC

Tatone C., di Emidio G., Barbonetti A., Carta G., Luciano A.M., Falone S., Amicarelli F. Sirtuins in gamete biology and reproductive physiology: Emerging roles and therapeutic potential in female and male infertility. Hum. Reprod. Update. 2018;24:267–289. doi: 10.1093/humupd/dmy003. PubMed DOI

Zhang T., Du X., Zhao L., He M., Lin L., Guo C., Zhang X., Han J., Yan H., Huang K., et al. SIRT1 facilitates primordial follicle recruitment independent of deacetylase activity through directly modulating Akt1 and mTOR transcription. FASEB J. 2019;33:14703–14716. doi: 10.1096/fj.201900782R. PubMed DOI

Iljas J.D., Wei Z., Homer H.A. Sirt1 sustains female fertility by slowing age-related decline in oocyte quality required for post-fertilization embryo development. Aging Cell. 2020;19:e13204. doi: 10.1111/acel.13204. PubMed DOI PMC

Xing X., Zhang J., Wu T., Zhang J., Wang Y., Su J., Zhang Y. SIRT1 reduces epigenetic and non-epigenetic changes to maintain the quality of postovulatory aged oocytes in mice. Exp. Cell Res. 2021;399:112421. doi: 10.1016/j.yexcr.2020.112421. PubMed DOI

Xu D., He H., Liu D., Geng G., Li Q. A novel role of SIRT2 in regulating gap junction communications via connexin-43 in bovine cumulus-oocyte complexes. J. Cell. Physiol. 2020;235:7332–7343. doi: 10.1002/jcp.29634. PubMed DOI

Shen W.-B., Ni J., Yao R., Goetzinger K.R., Harman C., Reece E.A., Wang B., Yang P. Maternal obesity increases DNA methylation and decreases RNA methylation in the human placenta. Reprod. Toxicol. 2022;107:90–96. doi: 10.1016/j.reprotox.2021.12.002. PubMed DOI

Gao M., Li X., He Y., Han L., Qiu D., Ling L., Liu H., Liu J., Gu L. SIRT7 functions in redox homeostasis and cytoskeletal organization during oocyte maturation. FASEB J. 2018;32:6228–6238. doi: 10.1096/fj.201800078RR. PubMed DOI

Zeng J., Jiang M., Wu X., Diao F., Qiu D., Hou X., Wang H., Li L., Li C., Ge J., et al. SIRT4 is essential for metabolic control and meiotic structure during mouse oocyte maturation. Aging Cell. 2018;17:e12789. doi: 10.1111/acel.12789. PubMed DOI PMC

Ge J., Li C., Li C., Huang Z., Zeng J., Han L., Wang Q. SIRT6 participates in the quality control of aged oocytes via modulating telomere function. Aging. 2019;11:1965–1976. doi: 10.18632/aging.101885. PubMed DOI PMC

Kumar S., Lombard D.B. Mitochondrial Sirtuins and Their Relationships with Metabolic Disease and Cancer. Antioxid. Redox Signal. 2015;22:1060–1077. doi: 10.1089/ars.2014.6213. PubMed DOI PMC

Tatone C., Di Emidio G., Vitti M., Di Carlo M., Santini S., D’Alessandro A.M., Falone S., Amicarelli F. Sirtuin Functions in Female Fertility: Possible Role in Oxidative Stress and Aging. Oxid. Med. Cell. Longev. 2015;2015:659687. doi: 10.1155/2015/659687. PubMed DOI PMC

Di Emidio G., Falone S., Vitti M., D’Alessandro A.M., Vento M., Di Pietro C., Amicarelli F., Tatone C. SIRT1 signalling protects mouse oocytes against oxidative stress and is deregulated during aging. Hum. Reprod. 2014;29:2006–2017. doi: 10.1093/humrep/deu160. PubMed DOI

Guo L., Liu X., Chen H., Wang W., Gu C., Li B. Decrease in ovarian reserve through the inhibition of SIRT1-mediated oxidative phosphorylation. Aging. 2022;14:2335–2347. doi: 10.18632/aging.203942. PubMed DOI PMC

Kawamura Y., Uchijima Y., Horike N., Tonami K., Nishiyama K., Amano T., Asano T., Kurihara Y., Kurihara H. Sirt3 protects in vitro–fertilized mouse preimplantation embryos against oxidative stress–induced p53-mediated developmental arrest. J. Clin. Investig. 2010;120:2817–2828. doi: 10.1172/JCI42020. PubMed DOI PMC

Zhao H.-C., Ding T., Ren Y., Li T.-J., Li R., Fan Y., Yan J., Zhao Y., Li M., Yu Y., et al. Role of Sirt3 in mitochondrial biogenesis and developmental competence of human in vitro matured oocytes. Hum. Reprod. 2016;31:607–622. doi: 10.1093/humrep/dev345. PubMed DOI

Hatefi Y. The mitochondrial electron transport and oxidative phosphorylation system. Annu. Rev. Biochem. 1985;54:1015–1069. doi: 10.1146/annurev.bi.54.070185.005055. PubMed DOI

McBride H.M., Neuspiel M., Wasiak S. Mitochondria: More Than Just a Powerhouse. Curr. Biol. 2006;16:R551–R560. doi: 10.1016/j.cub.2006.06.054. PubMed DOI

Shutt T.E., Shadel G.S. A compendium of human mitochondrial gene expression machinery with links to disease. Environ. Mol. Mutagen. 2010;51:360–379. doi: 10.1002/em.20571. PubMed DOI PMC

Wallace D.C. A Mitochondrial Paradigm of Metabolic and Degenerative Diseases, Aging, and Cancer: A Dawn for Evolutionary Medicine. Annu. Rev. Genet. 2005;39:359–407. doi: 10.1146/annurev.genet.39.110304.095751. PubMed DOI PMC

Van Blerkom J. Mitochondrial function in the human oocyte and embryo and their role in developmental competence. Mitochondrion. 2011;11:797–813. doi: 10.1016/j.mito.2010.09.012. PubMed DOI

Chappel S. The Role of Mitochondria from Mature Oocyte to Viable Blastocyst. Obstet. Gynecol. Int. 2013;2013:183024. doi: 10.1155/2013/183024. PubMed DOI PMC

Reynier P., May-Panloup P., Chretien M.-F., Morgan C.J., Jean M., Savagner F., Barriere P., Malthiery Y. Mitochondrial DNA content affects the fertilizability of human oocytes. Mol. Hum. Reprod. 2001;7:425–429. doi: 10.1093/molehr/7.5.425. PubMed DOI

Santos T.A., El Shourbagy S., John J.C.S. Mitochondrial content reflects oocyte variability and fertilization outcome. Fertil. Steril. 2006;85:584–591. doi: 10.1016/j.fertnstert.2005.09.017. PubMed DOI

Al Rawi S., Louvet-Vallée S., Djeddi A., Sachse M., Culetto E., Hajjar C., Boyd L., Legouis R., Galy V. Postfertilization Autophagy of Sperm Organelles Prevents Paternal Mitochondrial DNA Transmission. Science. 2011;334:1144–1147. doi: 10.1126/science.1211878. PubMed DOI

Cummins J.M., Wakayama T., Yanagimachi R. Fate of microinjected sperm components in the mouse oocyte and embryo. Zygote. 1997;5:301–308. doi: 10.1017/S0967199400003889. PubMed DOI

Perry J.R.B., Murray A., Day F.R., Ong K.K. Molecular insights into the aetiology of female reproductive ageing. Nat. Rev. Endocrinol. 2015;11:725–734. doi: 10.1038/nrendo.2015.167. PubMed DOI PMC

Ben-Meir A., Burstein E., Borrego-Alvarez A., Chong J., Wong E., Yavorska T., Naranian T., Chi M., Wang Y., Bentov Y., et al. Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging. Aging Cell. 2015;14:887–895. doi: 10.1111/acel.12368. PubMed DOI PMC

Harris S.E., Adriaens I., Leese H.J., Gosden R.G., Picton H.M. Carbohydrate metabolism by murine ovarian follicles and oocytes grown in vitro. Reproduction. 2007;134:415–424. doi: 10.1530/REP-07-0061. PubMed DOI

Benkhalifa M., Ferreira Y.J., Chahine H., Louanjli N., Miron P., Merviel P., Copin H. Mitochondria: Participation to infertility as source of energy and cause of senescence. Int. J. Biochem. Cell Biol. 2014;55:60–64. doi: 10.1016/j.biocel.2014.08.011. PubMed DOI

Wakefield S.L., Lane M., Mitchell M. Impaired Mitochondrial Function in the Preimplantation Embryo Perturbs Fetal and Placental Development in the Mouse1. Biol. Reprod. 2011;84:572–580. doi: 10.1095/biolreprod.110.087262. PubMed DOI

Wai T., Ao A., Zhang X., Cyr D., Dufort D., Shoubridge E.A. The Role of Mitochondrial DNA Copy Number in Mammalian Fertility1. Biol. Reprod. 2010;83:52–62. doi: 10.1095/biolreprod.109.080887. PubMed DOI PMC

Guillaumet-Adkins A., Yañez Y., Peris-Diaz M.D., Calabria I., Palanca-Ballester C., Sandoval J. Epigenetics and Oxidative Stress in Aging. Oxid. Med. Cell. Longev. 2017;2017:9175806. doi: 10.1155/2017/9175806. PubMed DOI PMC

Zhang X., Wu X.Q., Lu S., Guo Y.L., Ma X. Deficit of mitochondria-derived ATP during oxidative stress impairs mouse MII oocyte spindles. Cell Res. 2006;16:841–850. doi: 10.1038/sj.cr.7310095. PubMed DOI

Smeets H.J.M., Sallevelt S.C.E.H., Dreesen J.C.F.M., de Die-Smulders C.E.M., de Coo I.F.M. Preventing the transmission of mitochondrial DNA disorders using prenatal or preimplantation genetic diagnosis. Ann. N. Y. Acad. Sci. 2015;1350:29–36. doi: 10.1111/nyas.12866. PubMed DOI

Wolf D.P., Mitalipov N., Mitalipov S. Mitochondrial replacement therapy in reproductive medicine. Trends Mol. Med. 2015;21:68–76. doi: 10.1016/j.molmed.2014.12.001. PubMed DOI PMC

Babayev E., Wang T., Szigeti-Buck K., Lowther K., Taylor H.S., Horvath T., Seli E. Reproductive aging is associated with changes in oocyte mitochondrial dynamics, function, and mtDNA quantity. Maturitas. 2016;93:121–130. doi: 10.1016/j.maturitas.2016.06.015. PubMed DOI PMC

Spikings E.C., Alderson J., John J.C.S. Regulated Mitochondrial DNA Replication During Oocyte Maturation Is Essential for Successful Porcine Embryonic Development. Biol. Reprod. 2007;76:327–335. doi: 10.1095/biolreprod.106.054536. PubMed DOI

Rambags B.P.B., van Boxtel D.C.J., Tharasanit T., Lenstra J.A., Colenbrander B., Stout T.A.E. Advancing maternal age predisposes to mitochondrial damage and loss during maturation of equine oocytes in vitro. Theriogenology. 2014;81:959–965. doi: 10.1016/j.theriogenology.2014.01.020. PubMed DOI

Igarashi H., Takahashi T., Takahashi E., Tezuka N., Nakahara K., Takahashi K., Kurachi H. Aged Mouse Oocytes Fail to Readjust Intracellular Adenosine Triphosphates at Fertilization1. Biol. Reprod. 2005;72:1256–1261. doi: 10.1095/biolreprod.104.034926. PubMed DOI

Lim J., Luderer U. Oxidative Damage Increases and Antioxidant Gene Expression Decreases with Aging in the Mouse Ovary. Biol. Reprod. 2011;84:775–782. doi: 10.1095/biolreprod.110.088583. PubMed DOI PMC

Cree L.M., Hammond E.R., Shelling A.N., Berg M.C., Peek J.C., Green M.P. Maternal age and ovarian stimulation independently affect oocyte mtDNA copy number and cumulus cell gene expression in bovine clones. Hum. Reprod. 2015;30:1410–1420. doi: 10.1093/humrep/dev066. PubMed DOI

Ferreira A.F., Soares M., Almeida Reis S., Ramalho-Santos J., Sousa A.P., Almeida-Santos T. Does supplementation with mitochondria improve oocyte competence? A systematic review. Reproduction. 2021;161:269–287. doi: 10.1530/REP-20-0351. PubMed DOI

Sobek A., Tkadlec E., Klaskova E., Prochazka M. Cytoplasmic Transfer Improves Human Egg Fertilization and Embryo Quality: An Evaluation of Sibling Oocytes in Women with Low Oocyte Quality. Reprod. Sci. 2021;28:1362–1369. doi: 10.1007/s43032-020-00371-8. PubMed DOI PMC

Ferguson-Smith A.C. Genomic imprinting: The emergence of an epigenetic paradigm. Nat. Rev. Genet. 2011;12:565–575. doi: 10.1038/nrg3032. PubMed DOI

Santos F., Hendrich B., Reik W., Dean W. Dynamic Reprogramming of DNA Methylation in the Early Mouse Embryo. Dev. Biol. 2002;241:172–182. doi: 10.1006/dbio.2001.0501. PubMed DOI

Tucci V., Isles A.R., Kelsey G., Ferguson-Smith A.C., Tucci V., Bartolomei M.S., Benvenisty N., Bourc’his D., Charalambous M., Dulac C., et al. Genomic Imprinting and Physiological Processes in Mammals. Cell. 2019;176:952–965. doi: 10.1016/j.cell.2019.01.043. PubMed DOI

McGrath J., Solter D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell. 1984;37:179–183. doi: 10.1016/0092-8674(84)90313-1. PubMed DOI

Surani M.A. Imprinting and the Initiation of Gene Silencing in the Germ Line. Cell. 1998;93:309–312. doi: 10.1016/S0092-8674(00)81156-3. PubMed DOI

Goovaerts T., Steyaert S., Vandenbussche C.A., Galle J., Thas O., Van Criekinge W., De Meyer T. A comprehensive overview of genomic imprinting in breast and its deregulation in cancer. Nat. Commun. 2018;9:4120. doi: 10.1038/s41467-018-06566-7. PubMed DOI PMC

Kato N., Kamataki A., Kurotaki H. Methylation profile of imprinted genes provides evidence for teratomatous origin of a subset of mucinous ovarian tumours. J. Pathol. 2021;254:567–574. doi: 10.1002/path.5702. PubMed DOI

Paulsen M., Ferguson-Smith A.C. DNA methylation in genomic imprinting, development, and disease. J. Pathol. 2001;195:97–110. doi: 10.1002/path.890. PubMed DOI

Elhamamsy A.R. Role of DNA methylation in imprinting disorders: An updated review. J. Assist. Reprod. Genet. 2017;34:549–562. doi: 10.1007/s10815-017-0895-5. PubMed DOI PMC

Kobayashi H., Sakurai T., Imai M., Takahashi N., Fukuda A., Yayoi O., Sato S., Nakabayashi K., Hata K., Sotomaru Y., et al. Contribution of Intragenic DNA Methylation in Mouse Gametic DNA Methylomes to Establish Oocyte-Specific Heritable Marks. PLoS Genet. 2012;8:e1002440. doi: 10.1371/journal.pgen.1002440. PubMed DOI PMC

Paczkowski M., Schoolcraft W.B., Krisher R.L. Dysregulation of methylation and expression of imprinted genes in oocytes and reproductive tissues in mice of advanced maternal age. J. Assist. Reprod. Genet. 2015;32:713–723. doi: 10.1007/s10815-015-0463-9. PubMed DOI PMC

Duranthon V., Watson A.J., Lonergan P. Preimplantation embryo programming: Transcription, epigenetics, and culture environment. Reproduction. 2008;135:141–150. doi: 10.1530/REP-07-0324. PubMed DOI

Guo H., Zhu P., Yan L., Li R., Hu B., Lian Y., Yan J., Ren X., Lin S., Li J., et al. The DNA methylation landscape of human early embryos. Nature. 2014;511:606–610. doi: 10.1038/nature13544. PubMed DOI

Smith Z.D., Chan M.M., Mikkelsen T.S., Gu H., Gnirke A., Regev A., Meissner A. A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature. 2012;484:339–344. doi: 10.1038/nature10960. PubMed DOI PMC

Duan J.E., Jiang Z.C., Alqahtani F., Mandoiu I., Dong H., Zheng X., Marjani S.L., Chen J., Tian X.C. Methylome Dynamics of Bovine Gametes and in vivo Early Embryos. Front. Genet. 2019;10:512. doi: 10.3389/fgene.2019.00512. PubMed DOI PMC

Deng M., Zhang G., Cai Y., Liu Z., Zhang Y., Meng F., Wang F., Wan Y. DNA methylation dynamics during zygotic genome activation in goat. Theriogenology. 2020;156:144–154. doi: 10.1016/j.theriogenology.2020.07.008. PubMed DOI

Hanna C.W., Demond H., Kelsey G. Epigenetic regulation in development: Is the mouse a good model for the human? Hum. Reprod. Update. 2018;24:556–576. doi: 10.1093/humupd/dmy021. PubMed DOI PMC

Amouroux R., Nashun B., Shirane K., Nakagawa S., Hill P.W.S., D’Souza Z., Nakayama M., Matsuda M., Turp A., Ndjetehe E., et al. De novo DNA methylation drives 5hmC accumulation in mouse zygotes. Nat. Cell Biol. 2016;18:225–233. doi: 10.1038/ncb3296. PubMed DOI PMC

Haaf T. The battle of the sexes after fertilization: Behaviour of paternal and maternal chromosomes in the early mammalian embryo. Chromosome Res. 2001;9:263–271. doi: 10.1023/A:1016686312142. PubMed DOI

Messerschmidt D.M., Knowles B.B., Solter D. DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev. 2014;28:812–828. doi: 10.1101/gad.234294.113. PubMed DOI PMC

Yu B., Jayavelu N.D., Battle S.L., Mar J.C., Schimmel T., Cohen J., Hawkins R.D. Single-cell analysis of transcriptome and DNA methylome in human oocyte maturation. PLoS ONE. 2020;15:e0241698. doi: 10.1371/journal.pone.0241698. PubMed DOI PMC

Zeng Y., Ren R., Kaur G., Hardikar S., Ying Z., Babcock L., Gupta E., Zhang X., Chen T., Cheng X. The inactive Dnmt3b3 isoform preferentially enhances Dnmt3b-mediated DNA methylation. Genes Dev. 2020;34:1546–1558. doi: 10.1101/gad.341925.120. PubMed DOI PMC

Sabag O., Zamir A., Keshet I., Hecht M., Ludwig G., Tabib A., Moss J., Cedar H. Establishment of methylation patterns in ES cells. Nat. Struct. Mol. Biol. 2014;21:110–112. doi: 10.1038/nsmb.2734. PubMed DOI

Li E., Bestor T.H., Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 1992;69:915–926. doi: 10.1016/0092-8674(92)90611-F. PubMed DOI

Ginsburg M., Snow M.H.L., McLaren A. Primordial germ cells in the mouse embryo during gastrulation. Development. 1990;110:521–528. doi: 10.1242/dev.110.2.521. PubMed DOI

Pepling M.E., Spradling A.C. Mouse Ovarian Germ Cell Cysts Undergo Programmed Breakdown to Form Primordial Follicles. Dev. Biol. 2001;234:339–351. doi: 10.1006/dbio.2001.0269. PubMed DOI

Pepling M.E., Spradling A.C. Female mouse germ cells form synchronously dividing cysts. Development. 1998;125:3323–3328. doi: 10.1242/dev.125.17.3323. PubMed DOI

Skinner M.K. Regulation of primordial follicle assembly and development. Hum. Reprod. Update. 2005;11:461–471. doi: 10.1093/humupd/dmi020. PubMed DOI

HSUEH A.J.W., BILLIG H., TSAFRIRI A. Ovarian Follicle Atresia: A Hormonally Controlled Apoptotic Process*. Endocr. Rev. 1994;15:707–724. doi: 10.1210/edrv-15-6-707. PubMed DOI

Wang Z., Liu C.Y., Zhao Y., Dean J. FIGLA, LHX8 and SOHLH1 transcription factor networks regulate mouse oocyte growth and differentiation. Nucleic Acids Res. 2020;48:3525–3541. doi: 10.1093/nar/gkaa101. PubMed DOI PMC

Driancourt M.A., Reynaud K., Cortvrindt R., Smitz J. Roles of KIT and KIT LIGAND in ovarian function. Rev. Reprod. 2000;5:143–152. doi: 10.1530/ror.0.0050143. PubMed DOI

Jin X., Han C.S., Yu F.Q., Wei P., Hu Z.Y., Liu Y.X. Anti-apoptotic action of stem cell factor on oocytes in primordial follicles and its signal transduction. Mol. Reprod. Dev. 2005;70:82–90. doi: 10.1002/mrd.20142. PubMed DOI

Eppig J.J. Oocyte control of ovarian follicular development and function in mammals. Reproduction. 2001;122:829–838. doi: 10.1530/rep.0.1220829. PubMed DOI

Gilchrist R.B., Ritter L.J., Myllymaa S., Kaivo-Oja N., Dragovic R.A., Hickey T.E., Ritvos O., Mottershead D.G. Molecular basis of oocyte-paracrine signalling that promotes granulosa cell proliferation. J. Cell Sci. 2006;119:3811–3821. doi: 10.1242/jcs.03105. PubMed DOI

Macaulay A.D., Gilbert I., Caballero J., Barreto R., Fournier E., Tossou P., Sirard M.A., Clarke H.J., Khandjian É.W., Richard F.J., et al. The gametic synapse: RNA transfer to the bovine oocyte. Biol. Reprod. 2014;91:1–12. doi: 10.1095/biolreprod.114.119867. PubMed DOI

Macaulay A.D., Gilbert I., Scantland S., Fournier E., Ashkar F., Bastien A., Shojaei Saadi H.A., Gagné D., Sirard M.A., Khandjian É.W., et al. Cumulus cell transcripts transit to the bovine oocyte in preparation for maturation. Biol. Reprod. 2016;94:16–17. doi: 10.1095/biolreprod.114.127571. PubMed DOI PMC

Sternlicht A.L., Schultz R.M. Biochemical studies of mammalian oogenesis: Kinetics of accumulation of total and poly(A)-containing RNA during growth of the mouse oocyte. J. Exp. Zool. 1981;215:191–200. doi: 10.1002/jez.1402150209. PubMed DOI

Sánchez F., Smitz J. Molecular control of oogenesis. Biochim. Biophys. Acta Mol. Basis Dis. 2012;1822:1896–1912. doi: 10.1016/j.bbadis.2012.05.013. PubMed DOI

Fernández-Gonzalez R., Moreira P.N., Pérez-Crespo M., Sánchez-Martín M., Ramirez M.A., Pericuesta E., Bilbao A., Bermejo-Alvarez P., Hourcade J.D., Fonseca F.R., et al. Long-Term Effects of Mouse Intracytoplasmic Sperm Injection with DNA-Fragmented Sperm on Health and Behavior of Adult Offspring1. Biol. Reprod. 2008;78:761–772. doi: 10.1095/biolreprod.107.065623. PubMed DOI

Jia J.-J., Lahr R.M., Solgaard M.T., Moraes B.J., Pointet R., Yang A.-D., Celucci G., Graber T.E., Hoang H.-D., Niklaus M.R., et al. mTORC1 promotes TOP mRNA translation through site-specific phosphorylation of LARP1. Nucleic Acids Res. 2021;49:3461–3489. doi: 10.1093/nar/gkaa1239. PubMed DOI PMC

Clegg K.B., Pikó L. Quantitative aspects of RNA synthesis and polyadenylation in 1-cell and 2-cell mouse embryos. J. Embryol. Exp. Morphol. 1983;74:169–182. doi: 10.1242/dev.74.1.169. PubMed DOI

Martins J.P.S., Liu X., Oke A., Arora R., Franciosi F., Viville S., Laird D.J., Fung J.C., Conti M. DAZL and CPEB1 regulate mRNA translation synergistically during oocyte maturation. J. Cell Sci. 2016;129:1271–1282. doi: 10.1242/jcs.179218. PubMed DOI PMC

Jansova D., Koncicka M., Tetkova A., Cerna R., Malik R., del Llano E., Kubelka M., Susor A. Regulation of 4E-BP1 activity in the mammalian oocyte. Cell Cycle. 2017;16:927–939. doi: 10.1080/15384101.2017.1295178. PubMed DOI PMC

Kim J., Guan K.-L.L. mTOR as a central hub of nutrient signalling and cell growth. Nat. Cell Biol. 2019;21:63–71. doi: 10.1038/s41556-018-0205-1. PubMed DOI

Kalous J., Jansová D., Šušor A. Role of Cyclin-Dependent Kinase 1 in Translational Regulation in the M-Phase. Cells. 2020;9:1568. doi: 10.3390/cells9071568. PubMed DOI PMC

Guo J., Zhang T., Guo Y., Sun T., Li H., Zhang X., Yin H., Cao G., Yin Y., Wang H., et al. Oocyte stage-specific effects of MTOR determine granulosa cell fate and oocyte quality in mice. Proc. Natl. Acad. Sci. USA. 2018;115:E5326–E5333. doi: 10.1073/pnas.1800352115. PubMed DOI PMC

Schisa J.A. Germ Cell Responses to Stress: The Role of RNP Granules. Front. Cell Dev. Biol. 2019;7:220. doi: 10.3389/fcell.2019.00220. PubMed DOI PMC

Standart N., Weil D. P-Bodies: Cytosolic Droplets for Coordinated mRNA Storage. Trends Genet. 2018;34:612–626. doi: 10.1016/j.tig.2018.05.005. PubMed DOI

Blatt P., Wong-Deyrup S.W., McCarthy A., Breznak S., Hurton M.D., Upadhyay M., Bennink B., Camacho J., Lee M.T., Rangan P. RNA degradation is required for the germ-cell to maternal transition in Drosophila. Curr. Biol. 2021;31:2984–2994. doi: 10.1016/j.cub.2021.04.052. PubMed DOI PMC

Qi S.T., Ma J.Y., Wang Z.B., Guo L., Hou Y., Sun Q.Y. N6-Methyladenosine Sequencing Highlights the Involvement of mRNA Methylation in Oocyte Meiotic Maturation and Embryo Development by Regulating Translation in Xenopus laevis. J. Biol. Chem. 2016;291:23020–23026. doi: 10.1074/jbc.M116.748889. PubMed DOI PMC

Sui X., Hu Y., Ren C., Cao Q., Zhou S., Cao Y., Li M., Shu W., Huo R. METTL3-mediated m6A is required for murine oocyte maturation and maternal-to-zygotic transition. Cell Cycle. 2020;19:391–404. doi: 10.1080/15384101.2019.1711324. PubMed DOI PMC

Zhang M., Zhang S., Zhai Y., Han Y., Huang R., An X., Dai X., Li Z. Cycloleucine negatively regulates porcine oocyte maturation and embryo development by modulating N6-methyladenosine and histone modifications. Theriogenology. 2022;179:128–140. doi: 10.1016/j.theriogenology.2021.11.024. PubMed DOI

Kwon J., Jo Y.J., Namgoong S., Kim N.H. Functional roles of hnRNPA2/B1 regulated by METTL3 in mammalian embryonic development. Sci. Rep. 2019;9:8640. doi: 10.1038/s41598-019-44714-1. PubMed DOI PMC

Meng T.G., Lu X., Guo L., Hou G.M., Ma X.S., Li Q.N., Huang L., Fan L.H., Zhao Z.H., Ou X.H., et al. Mettl14 is required for mouse postimplantation development by facilitating epiblast maturation. FASEB J. 2019;33:1179–1187. doi: 10.1096/fj.201800719R. PubMed DOI

Shi H., Zhang X., Weng Y.-L., Lu Z., Liu Y., Lu Z., Li J., Hao P., Zhang Y., Zhang F., et al. m6A facilitates hippocampus-dependent learning and memory through YTHDF1. Nature. 2018;563:249–253. doi: 10.1038/s41586-018-0666-1. PubMed DOI PMC

Yang Y., Hsu P.J., Chen Y.-S., Yang Y.-G. Dynamic transcriptomic m6A decoration: Writers, erasers, readers and functions in RNA metabolism. Cell Res. 2018;28:616–624. doi: 10.1038/s41422-018-0040-8. PubMed DOI PMC

Ping X.-L., Sun B.-F., Wang L., Xiao W., Yang X., Wang W.-J., Adhikari S., Shi Y., Lv Y., Chen Y.-S., et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 2014;24:177–189. doi: 10.1038/cr.2014.3. PubMed DOI PMC

Mu H., Zhang T., Yang Y., Zhang D., Gao J., Li J., Yue L., Gao D., Shi B., Han Y., et al. METTL3-mediated mRNA N6-methyladenosine is required for oocyte and follicle development in mice. Cell Death Dis. 2021;12:989. doi: 10.1038/s41419-021-04272-9. PubMed DOI PMC

Raj N., Wang M., Seoane J.A., Zhao R.L., Kaiser A.M., Moonie N.A., Demeter J., Boutelle A.M., Kerr C.H., Mulligan A.S., et al. The Mettl3 epitranscriptomic writer amplifies p53 stress responses. Mol. Cell. 2022 doi: 10.1016/j.molcel.2022.04.010. in press . PubMed DOI PMC

Dong S., Wu Y., Liu Y., Weng H., Huang H. N 6 -methyladenosine Steers RNA Metabolism and Regulation in Cancer. Cancer Commun. 2021;41:538–559. doi: 10.1002/cac2.12161. PubMed DOI PMC

Parial R., Li H., Li J., Archacki S., Yang Z., Wang I.Z., Chen Q., Xu C., Wang Q.K. Role of epigenetic m 6 A RNA methylation in vascular development: Mettl3 regulates vascular development through PHLPP2/mTOR-AKT. signaling. FASEB J. 2021;35:e21465. doi: 10.1096/fj.202000516RR. PubMed DOI

Fan L.H., Wang Z.B., Li Q.N., Meng T.G., Dong M.Z., Hou Y., Ouyang Y.C., Schatten H., Sun Q.Y. Absence of mitochondrial DNA methylation in mouse oocyte maturation, aging and early embryo development. Biochem. Biophys. Res. Commun. 2019;513:912–918. doi: 10.1016/j.bbrc.2019.04.100. PubMed DOI

Zaccara S., Jaffrey S.R. A Unified Model for the Function of YTHDF Proteins in Regulating m6A-Modified mRNA. Cell. 2020;181:1582–1595. doi: 10.1016/j.cell.2020.05.012. PubMed DOI PMC

Dong G., Yu J., Shan G., Su L., Yu N., Yang S. N6-Methyladenosine Methyltransferase METTL3 Promotes Angiogenesis and Atherosclerosis by Upregulating the JAK2/STAT3 Pathway via m6A Reader IGF2BP1. Front. Cell Dev. Biol. 2021;9:731810. doi: 10.3389/fcell.2021.731810. PubMed DOI PMC

Shi H., Wang X., Lu Z., Zhao B.S., Ma H., Hsu P.J., Liu C., He C. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res. 2017;27:315–328. doi: 10.1038/cr.2017.15. PubMed DOI PMC

Ivanova I., Much C., Di Giacomo M., Azzi C., Morgan M., Moreira P.N., Monahan J., Carrieri C., Enright A.J., O’Carroll D. The RNA m 6 A Reader YTHDF2 Is Essential for the Post-transcriptional Regulation of the Maternal Transcriptome and Oocyte Competence. Mol. Cell. 2017;67:1059–1067. doi: 10.1016/j.molcel.2017.08.003. PubMed DOI PMC

Guo Y., Sun J., Bu S., Li B., Zhang Q., Wang Q., Lai D. Melatonin protects against chronic stress-induced oxidative meiotic defects in mice MII oocytes by regulating SIRT1. Cell Cycle. 2020;19:1677–1695. doi: 10.1080/15384101.2020.1767403. PubMed DOI PMC

Rosario F.J., Powell T.L., Jansson T. Activation of placental insulin and mTOR signaling in a mouse model of maternal obesity associated with fetal overgrowth. Am. J. Physiol. Integr. Comp. Physiol. 2016;310:R87–R93. doi: 10.1152/ajpregu.00356.2015. PubMed DOI PMC

Shi H., Wei J., He C. Where, When, and How: Context-Dependent Functions of RNA Methylation Writers, Readers, and Erasers. Mol. Cell. 2019;74:640–650. doi: 10.1016/j.molcel.2019.04.025. PubMed DOI PMC

Ding L., Yan G., Wang B., Xu L., Gu Y., Ru T., Cui X., Lei L., Liu J., Sheng X., et al. Transplantation of UC-MSCs on collagen scaffold activates follicles in dormant ovaries of POF patients with long history of infertility. Sci. China Life Sci. 2018;61:1554–1565. doi: 10.1007/s11427-017-9272-2. PubMed DOI

He J., Li X., Lü M., Wang J., Tang J., Luo S., Qian Y. ALKBH5 suppresses migration and invasion of human trophoblast cells by inhibiting epithelial-mesenchymal transition. Nan Fang Yi Ke Da Xue Xue Bao. 2020;40:1720–1725. doi: 10.12122/j.issn.1673-4254.2020.12.04. PubMed DOI PMC

Marshall K.L., Rivera R.M. The effects of superovulation and reproductive aging on the epigenome of the oocyte and embryo. Mol. Reprod. Dev. 2018;85:90–105. doi: 10.1002/mrd.22951. PubMed DOI

Xu Y.-W., Peng Y.-T., Wang B., Zeng Y.-H., Zhuang G.-L., Zhou C.-Q. High follicle-stimulating hormone increases aneuploidy in human oocytes matured in vitro. Fertil. Steril. 2011;95:99–104. doi: 10.1016/j.fertnstert.2010.04.037. PubMed DOI

Uysal F., Ozturk S., Akkoyunlu G. Superovulation alters DNA methyltransferase protein expression in mouse oocytes and early embryos. J. Assist. Reprod. Genet. 2018;35:503–513. doi: 10.1007/s10815-017-1087-z. PubMed DOI PMC

Ozturk S., Yaba-Ucar A., Sozen B., Mutlu D., Demir N. Superovulation alters embryonic poly(A)-binding protein (Epab) and poly(A)-binding protein, cytoplasmic 1 (Pabpc1) gene expression in mouse oocytes and early embryos. Reprod. Fertil. Dev. 2016;28:375. doi: 10.1071/RD14106. PubMed DOI

Market-Velker B.A., Zhang L., Magri L.S., Bonvissuto A.C., Mann M.R.W. Dual effects of superovulation: Loss of maternal and paternal imprinted methylation in a dose-dependent manner. Hum. Mol. Genet. 2010;19:36–51. doi: 10.1093/hmg/ddp465. PubMed DOI

Huo Y., Yan Z.Q., Yuan P., Qin M., Kuo Y., Li R., Yan L.Y., Feng H.L., Qiao J. Single-cell DNA methylation sequencing reveals epigenetic alterations in mouse oocytes superovulated with different dosages of gonadotropins. Clin. Epigenet. 2020;12:75. doi: 10.1186/s13148-020-00866-w. PubMed DOI PMC

Fauque P., Jouannet P., Lesaffre C., Ripoche M.-A., Dandolo L., Vaiman D., Jammes H. Assisted Reproductive Technology affects developmental kinetics, H19 Imprinting Control Region methylation and H19 gene expression in individual mouse embryos. BMC Dev. Biol. 2007;7:116. doi: 10.1186/1471-213X-7-116. PubMed DOI PMC

Wang L.-Y., Wang N., Le F., Li L., Lou H.-Y., Liu X.-Z., Zheng Y.-M., Qian Y.-Q., Chen Y.-L., Jiang X.-H., et al. Superovulation Induced Changes of Lipid Metabolism in Ovaries and Embryos and Its Probable Mechanism. PLoS ONE. 2015;10:e0132638. doi: 10.1371/journal.pone.0132638. PubMed DOI PMC

Xie J.-K., Wang Q., Zhang T.-T., Yin S., Zhang C.-L., Ge Z.-J. Repeated superovulation may affect mitochondrial functions of cumulus cells in mice. Sci. Rep. 2016;6:31368. doi: 10.1038/srep31368. PubMed DOI PMC

Kalthur G., Salian S.R., Nair R., Mathew J., Adiga S.K., Kalthur S.G., Zeegers D., Hande M.P. Distribution pattern of cytoplasmic organelles, spindle integrity, oxidative stress, octamer-binding transcription factor 4 (Oct4) expression and developmental potential of oocytes following multiple superovulation. Reprod. Fertil. Dev. 2016;28:2027. doi: 10.1071/RD15184. PubMed DOI

Lee M., Ahn J.I., Lee A.R., Ko D.W., Yang W.S., Lee G., Ahn J.Y., Lim J.M. Adverse Effect of Superovulation Treatment on Maturation, Function and Ultrastructural Integrity of Murine Oocytes. Mol. Cells. 2017;40:558–566. doi: 10.14348/molcells.2017.0058. PubMed DOI PMC

Bui A.D., Sharma R., Henkel R., Agarwal A. Reactive oxygen species impact on sperm DNA and its role in male infertility. Andrologia. 2018;50:e13012. doi: 10.1111/and.13012. PubMed DOI

Bomfim M.M., Andrade G.M., del Collado M., Sangalli J.R., Fontes P.K., Nogueira M.F.G., Meirelles F.V., da Silveira J.C., Perecin F. Antioxidant responses and deregulation of epigenetic writers and erasers link oxidative stress and DNA methylation in bovine blastocysts. Mol. Reprod. Dev. 2017;84:1296–1305. doi: 10.1002/mrd.22929. PubMed DOI

Li W., Goossens K., Van Poucke M., Forier K., Braeckmans K., Van Soom A., Peelman L.J. High oxygen tension increases global methylation in bovine 4-cell embryos and blastocysts but does not affect general retrotransposon expression. Reprod. Fertil. Dev. 2016;28:948. doi: 10.1071/RD14133. PubMed DOI

Marei W.F.A., Van den Bosch L., Pintelon I., Mohey-Elsaeed O., Bols P.E.J., Leroy J.L.M.R. Mitochondria-targeted therapy rescues development and quality of embryos derived from oocytes matured under oxidative stress conditions: A bovine in vitro model. Hum. Reprod. 2019;34:1984–1998. doi: 10.1093/humrep/dez161. PubMed DOI

van den Berg M.M.J., van Maarle M.C., van Wely M., Goddijn M. Genetics of early miscarriage. Biochim. Biophys. Acta. Mol. Basis Dis. 2012;1822:1951–1959. doi: 10.1016/j.bbadis.2012.07.001. PubMed DOI

Xu D., Wu L., Jiang X., Yang L., Cheng J., Chen H., Hua R., Geng G., Yang L., Li Q. SIRT2 Inhibition Results in Meiotic Arrest, Mitochondrial Dysfunction, and Disturbance of Redox Homeostasis during Bovine Oocyte Maturation. Int. J. Mol. Sci. 2019;20:1365. doi: 10.3390/ijms20061365. PubMed DOI PMC

Reis e Silva A.R., Bruno C., Fleurot R., Daniel N., Archilla C., Peynot N., Lucci C.M., Beaujean N., Duranthon V. Alteration of DNA demethylation dynamics by in vitro culture conditions in rabbit pre-implantation embryos. Epigenetics. 2012;7:440–446. doi: 10.4161/epi.19563. PubMed DOI

Estill M.S., Bolnick J.M., Waterland R.A., Bolnick A.D., Diamond M.P., Krawetz S.A. Assisted reproductive technology alters deoxyribonucleic acid methylation profiles in bloodspots of newborn infants. Fertil. Steril. 2016;106:629–639. doi: 10.1016/j.fertnstert.2016.05.006. PubMed DOI

Bauersachs S., Mermillod P., Almiñana C. The Oviductal Extracellular Vesicles’ RNA Cargo Regulates the Bovine Embryonic Transcriptome. Int. J. Mol. Sci. 2020;21:1303. doi: 10.3390/ijms21041303. PubMed DOI PMC

Ghosh J., Coutifaris C., Sapienza C., Mainigi M. Global DNA methylation levels are altered by modifiable clinical manipulations in assisted reproductive technologies. Clin. Epigenet. 2017;9:14. doi: 10.1186/s13148-017-0318-6. PubMed DOI PMC

El Hajj N., Haaf T. Epigenetic disturbances in in vitro cultured gametes and embryos: Implications for human assisted reproduction. Fertil. Steril. 2013;99:632–641. doi: 10.1016/j.fertnstert.2012.12.044. PubMed DOI

de Waal E., Vrooman L.A., Fischer E., Ord T., Mainigi M.A., Coutifaris C., Schultz R.M., Bartolomei M.S. The cumulative effect of assisted reproduction procedures on placental development and epigenetic perturbations in a mouse model. Hum. Mol. Genet. 2015;24:6975–6985. doi: 10.1093/hmg/ddv400. PubMed DOI PMC

Pliushch G., Schneider E., Schneider T., El Hajj N., Rösner S., Strowitzki T., Haaf T. In vitro maturation of oocytes is not associated with altered deoxyribonucleic acid methylation patterns in children from in vitro fertilization or intracytoplasmic sperm injection. Fertil. Steril. 2015;103:720–727. doi: 10.1016/j.fertnstert.2014.12.096. PubMed DOI

Horánszky A., Becker J.L., Zana M., Ferguson-Smith A.C., Dinnyés A. Epigenetic Mechanisms of ART-Related Imprinting Disorders: Lessons From iPSC and Mouse Models. Genes. 2021;12:1704. doi: 10.3390/genes12111704. PubMed DOI PMC

Jiang Z., Wang Y., Lin J., Xu J., Ding G., Huang H. Genetic and epigenetic risks of assisted reproduction. Best Pract. Res. Clin. Obstet. Gynaecol. 2017;44:90–104. doi: 10.1016/j.bpobgyn.2017.07.004. PubMed DOI

La Bastide-Van Gemert S., Seggers J., Haadsma M.L., Heineman M.J., Middelburg K.J., Roseboom T.J., Schendelaar P., Hadders-Algra M., Van den Heuvel E.R. Is ovarian hyperstimulation associated with higher blood pressure in 4-year-old IVF offspring? Part II: An explorative causal inference approach. Hum. Reprod. 2014;29:510–517. doi: 10.1093/humrep/det448. PubMed DOI

Ceelen M., van Weissenbruch M.M., Vermeiden J.P.W., van Leeuwen F.E., Delemarre-van de Waal H.A. Growth and development of children born after in vitro fertilization. Fertil. Steril. 2008;90:1662–1673. doi: 10.1016/j.fertnstert.2007.09.005. PubMed DOI

Håberg S.E., Page C.M., Lee Y., Nustad H.E., Magnus M.C., Haftorn K.L., Carlsen E.Ø., Denault W.R.P., Bohlin J., Jugessur A., et al. DNA methylation in newborns conceived by assisted reproductive technology. Nat. Commun. 2022;13:1896. doi: 10.1038/s41467-022-29540-w. PubMed DOI PMC

Chen Z., Hagen D.E., Elsik C.G., Ji T., Morris C.J., Moon L.E., Rivera R.M. Characterization of global loss of imprinting in fetal overgrowth syndrome induced by assisted reproduction. Proc. Natl. Acad. Sci. USA. 2015;112:4618–4623. doi: 10.1073/pnas.1422088112. PubMed DOI PMC

Tetkova A., Susor A., Kubelka M., Nemcova L., Jansova D., Dvoran M., Del Llano E., Holubcova Z., Kalous J. Follicle-stimulating hormone administration affects amino acid metabolism in mammalian oocytes. Biol. Reprod. 2019;101:719–732. doi: 10.1093/biolre/ioz117. PubMed DOI

Saenz-De-Juano M.D., Ivanova E., Romero S., Lolicato F., Sánchez F., Van Ranst H., Krueger F., Segonds-Pichon A., De Vos M., Andrews S., et al. DNA methylation and mRNA expression of imprinted genes in blastocysts derived from an improved in vitro maturation method for oocytes from small antral follicles in polycystic ovary syndrome patients. Hum. Reprod. 2019;34:1640–1649. doi: 10.1093/humrep/dez121. PubMed DOI

Fortier A.L., Lopes F.L., Darricarrère N., Martel J., Trasler J.M. Superovulation alters the expression of imprinted genes in the midgestation mouse placenta. Hum. Mol. Genet. 2008;17:1653–1665. doi: 10.1093/hmg/ddn055. PubMed DOI

Vuong L.N., Le A.H., Ho V.N.A., Pham T.D., Sanchez F., Romero S., De Vos M., Ho T.M., Gilchrist R.B., Smitz J. Live births after oocyte in vitro maturation with a prematuration step in women with polycystic ovary syndrome. J. Assist. Reprod. Genet. 2020;37:347–357. doi: 10.1007/s10815-019-01677-6. PubMed DOI PMC

Huang J., Li T., Ding C.-H., Brosens J., Zhou C.-Q., Wang H.-H., Xu Y.-W. Insufficient histone-3 lysine-9 deacetylation in human oocytes matured in vitro is associated with aberrant meiosis. Fertil. Steril. 2012;97:178–184. doi: 10.1016/j.fertnstert.2011.10.023. PubMed DOI

Yao L.-N., Zhang T.-F., Lin W.-Q., Jiang N., Cao H.-F., Li H., Qian J.-H. Value of serum and follicular fluid sirtuin (SIRT)1 and SIRT2 protein levels in predicting the outcome of assisted reproduction. Ann. Transl. Med. 2021;9:343. doi: 10.21037/atm-21-63. PubMed DOI PMC

Escobar-Morreale H.F. Polycystic ovary syndrome: Definition, aetiology, diagnosis and treatment. Nat. Rev. Endocrinol. 2018;14:270–284. doi: 10.1038/nrendo.2018.24. PubMed DOI

Stener-Victorin E., Deng Q. Epigenetic inheritance of polycystic ovary syndrome—challenges and opportunities for treatment. Nat. Rev. Endocrinol. 2021;17:521–533. doi: 10.1038/s41574-021-00517-x. PubMed DOI

Bruni V., Capozzi A., Lello S. The Role of Genetics, Epigenetics and Lifestyle in Polycystic Ovary Syndrome Development: The State of the Art. Reprod. Sci. 2022;29:668–679. doi: 10.1007/s43032-021-00515-4. PubMed DOI

Mimouni N.E.H., Paiva I., Barbotin A.-L., Timzoura F.E., Plassard D., Le Gras S., Ternier G., Pigny P., Catteau-Jonard S., Simon V., et al. Polycystic ovary syndrome is transmitted via a transgenerational epigenetic process. Cell Metab. 2021;33:513–530. doi: 10.1016/j.cmet.2021.01.004. PubMed DOI PMC

Schatten H., Sun Q.-Y., Prather R. The impact of mitochondrial function/dysfunction on IVF and new treatment possibilities for infertility. Reprod. Biol. Endocrinol. 2014;12:111. doi: 10.1186/1477-7827-12-111. PubMed DOI PMC

Wang Q., Moley K.H. Maternal diabetes and oocyte quality. Mitochondrion. 2010;10:403–410. doi: 10.1016/j.mito.2010.03.002. PubMed DOI PMC

May-Panloup P., Boucret L., Chao de la Barca J.-M., Desquiret-Dumas V., Ferré-L’Hotellier V., Morinière C., Descamps P., Procaccio V., Reynier P. Ovarian ageing: The role of mitochondria in oocytes and follicles. Hum. Reprod. Update. 2016;22:725–743. doi: 10.1093/humupd/dmw028. PubMed DOI

Craven L., Tang M.-X., Gorman G.S., De Sutter P., Heindryckx B. Novel reproductive technologies to prevent mitochondrial disease. Hum. Reprod. Update. 2017;23:501–519. doi: 10.1093/humupd/dmx018. PubMed DOI

Tachibana M., Amato P., Sparman M., Woodward J., Sanchis D.M., Ma H., Gutierrez N.M., Tippner-Hedges R., Kang E., Lee H.-S., et al. Towards germline gene therapy of inherited mitochondrial diseases. Nature. 2013;493:627–631. doi: 10.1038/nature11647. PubMed DOI PMC

Kang E., Wu J., Gutierrez N.M., Koski A., Tippner-Hedges R., Agaronyan K., Platero-Luengo A., Martinez-Redondo P., Ma H., Lee Y., et al. Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations. Nature. 2016;540:270–275. doi: 10.1038/nature20592. PubMed DOI

Zhang J., Liu H., Luo S., Lu Z., Chávez-Badiola A., Liu Z., Yang M., Merhi Z., Silber S.J., Munné S., et al. Live birth derived from oocyte spindle transfer to prevent mitochondrial disease. Reprod. Biomed. Online. 2017;34:361–368. doi: 10.1016/j.rbmo.2017.01.013. PubMed DOI

de Paula W.B.M., Lucas C.H., Agip A.-N.A., Vizcay-Barrena G., Allen J.F. Energy, ageing, fidelity and sex: Oocyte mitochondrial DNA as a protected genetic template. Philos. Trans. R. Soc. B Biol. Sci. 2013;368:20120263. doi: 10.1098/rstb.2012.0263. PubMed DOI PMC

Hyslop L.A., Blakeley P., Craven L., Richardson J., Fogarty N.M.E., Fragouli E., Lamb M., Wamaitha S.E., Prathalingam N., Zhang Q., et al. Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease. Nature. 2016;534:383–386. doi: 10.1038/nature18303. PubMed DOI PMC

Ma H., O’Neil R.C., Marti Gutierrez N., Hariharan M., Zhang Z.Z., He Y., Cinnioglu C., Kayali R., Kang E., Lee Y., et al. Functional Human Oocytes Generated by Transfer of Polar Body Genomes. Cell Stem Cell. 2017;20:112–119. doi: 10.1016/j.stem.2016.10.001. PubMed DOI PMC

Zhang S.-P., Lu C.-F., Gong F., Xie P.-Y., Hu L., Zhang S.-J., Lu G.-X., Lin G. Polar body transfer restores the developmental potential of oocytes to blastocyst stage in a case of repeated embryo fragmentation. J. Assist. Reprod. Genet. 2017;34:563–571. doi: 10.1007/s10815-017-0881-y. PubMed DOI PMC

Yuan P., Guo Q., Guo H., Lian Y., Zhai F., Yan Z., Long C., Zhu P., Tang F., Qiao J., et al. The methylome of a human polar body reflects that of its sibling oocyte and its aberrance may indicate poor embryo development. Hum. Reprod. 2021;36:318–330. doi: 10.1093/humrep/deaa292. PubMed DOI

Takeo S., Sato D., Kimura K., Monji Y., Kuwayama T., Kawahara-miki R., Iwata H. Resveratrol Improves the Mitochondrial Function and Fertilization Outcome of Bovine Oocytes. J. Reprod. Dev. 2014;60:92–99. doi: 10.1262/jrd.2013-102. PubMed DOI PMC

Liu Y., Li X., Chen S., Wang L., Tan Y., Li X., Tang L., Zhang J., Wu D., Wu Y., et al. Comparison of Genome-Wide DNA Methylation Profiles of Human Fetal Tissues Conceived by in vitro Fertilization and Natural Conception. Front. Cell Dev. Biol. 2021;9:694769. doi: 10.3389/fcell.2021.694769. PubMed DOI PMC

Yang H., Ma Z., Peng L., Kuhn C., Rahmeh M., Mahner S., Jeschke U., von Schönfeldt V. Comparison of Histone H3K4me3 between IVF and ICSI Technologies and between Boy and Girl Offspring. Int. J. Mol. Sci. 2021;22:8574. doi: 10.3390/ijms22168574. PubMed DOI PMC

Gardner D.K., Lane M., Stevens J., Schoolcraft W.B. Noninvasive assessment of human embryo nutrient consumption as a measure of developmental potential. Fertil. Steril. 2001;76:1175–1180. doi: 10.1016/S0015-0282(01)02888-6. PubMed DOI

Bolton V.N., Cutting R., Clarke H., Brison D.R. ACE consensus meeting report: Culture systems. Hum. Fertil. 2014;17:239–251. doi: 10.3109/14647273.2014.944417. PubMed DOI

Pöhland R., Souza-Cácares M.B., Datta T.K., Vanselow J., Martins M.I.M., da Silva W.A.L., Cardoso C.J.T., de Andrade Melo-Sterza A. Influence of long-term thermal stress on the in vitro maturation on embryo development and Heat Shock Protein abundance in zebu cattle. Anim. Reprod. 2020;17:e20190085. doi: 10.1590/1984-3143-ar2019-0085. PubMed DOI PMC

Swain J.E. Is there an optimal pH for culture media used in clinical IVF? Hum. Reprod. Update. 2012;18:333–339. doi: 10.1093/humupd/dmr053. PubMed DOI

Shi W., Haaf T. Aberrant methylation patterns at the two-cell stage as an indicator of early developmental failure. Mol. Reprod. Dev. 2002;63:329–334. doi: 10.1002/mrd.90016. PubMed DOI

Takamura M., Zhou W., Rombauts L., Dimitriadis E. The long noncoding RNA PTENP1 regulates human endometrial epithelial adhesive capacity in vitro: Implications in infertility. Biol. Reprod. 2020;102:53–62. doi: 10.1093/biolre/ioz173. PubMed DOI

Ibrahim S., Salilew-Wondim D., Rings F., Hoelker M., Neuhoff C., Tholen E., Looft C., Schellander K., Tesfaye D. Expression Pattern of Inflammatory Response Genes and Their Regulatory MicroRNAs in Bovine Oviductal Cells in Response to Lipopolysaccharide: Implication for Early Embryonic Development. PLoS ONE. 2015;10:e0119388. doi: 10.1371/journal.pone.0119388. PubMed DOI PMC

Barrera A.D., García E.V., Hamdi M., Sánchez-Calabuig M.J., López-Cardona Á.P., Balvís N.F., Rizos D., Gutiérrez-Adán A. Embryo culture in presence of oviductal fluid induces DNA methylation changes in bovine blastocysts. Reproduction. 2017;154:1–12. doi: 10.1530/REP-16-0651. PubMed DOI

Capalbo A., Ubaldi F.M., Cimadomo D., Noli L., Khalaf Y., Farcomeni A., Ilic D., Rienzi L. MicroRNAs in spent blastocyst culture medium are derived from trophectoderm cells and can be explored for human embryo reproductive competence assessment. Fertil. Steril. 2016;105:225–235. doi: 10.1016/j.fertnstert.2015.09.014. PubMed DOI

Naillat F., Saadeh H., Nowacka-Woszuk J., Gahurova L., Santos F., Tomizawa S., Kelsey G. Oxygen concentration affects de novo DNA methylation and transcription in in vitro cultured oocytes. Clin. Epigenet. 2021;13:132. doi: 10.1186/s13148-021-01116-3. PubMed DOI PMC

Fischer B., Bavister B.D. Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. Reproduction. 1993;99:673–679. doi: 10.1530/jrf.0.0990673. PubMed DOI

Kasterstein E., Strassburger D., Komarovsky D., Bern O., Komsky A., Raziel A., Friedler S., Ron-El R. The effect of two distinct levels of oxygen concentration on embryo development in a sibling oocyte study. J. Assist. Reprod. Genet. 2013;30:1073–1079. doi: 10.1007/s10815-013-0032-z. PubMed DOI PMC

Nastri C.O., Nóbrega B.N., Teixeira D.M., Amorim J., Diniz L.M.M., Barbosa M.W.P., Giorgi V.S.I., Pileggi V.N., Martins W.P. Low versus atmospheric oxygen tension for embryo culture in assisted reproduction: A systematic review and meta-analysis. Fertil. Steril. 2016;106:95–104. doi: 10.1016/j.fertnstert.2016.02.037. PubMed DOI

Rodríguez-Varela C., Labarta E. Clinical Application of Antioxidants to Improve Human Oocyte Mitochondrial Function: A Review. Antioxidants. 2020;9:1197. doi: 10.3390/antiox9121197. PubMed DOI PMC

Martín-Romero F.J., Miguel-Lasobras E.M., Domínguez-Arroyo J.A., González-Carrera E., Álvarez I.S. Contribution of culture media to oxidative stress and its effect on human oocytes. Reprod. Biomed. Online. 2008;17:652–661. doi: 10.1016/S1472-6483(10)60312-4. PubMed DOI

Menezo Y., Clément P., Dale B. DNA methylation patterns in the early human embryo and the epigenetic/imprinting problems: A plea for a more careful approach to human assisted reproductive technology (ART) Int. J. Mol. Sci. 2019;20:1342. doi: 10.3390/ijms20061342. PubMed DOI PMC

Menezo Y., Clement P., Dale B., Elder K. Modulating oxidative stress and epigenetic homeostasis in preimplantation IVF embryos. Zygote. 2022;30:149–158. doi: 10.1017/S0967199421000356. PubMed DOI

Korsmo H.W., Jiang X. One carbon metabolism and early development: A diet-dependent destiny. Trends Endocrinol. Metab. 2021;32:579–593. doi: 10.1016/j.tem.2021.05.011. PubMed DOI PMC

Burgess K., Bennett C., Mosnier H., Kwatra N., Bethel F., Jadavji N.M. The Antioxidant Role of One-Carbon Metabolism on Stroke. Antioxidants. 2020;9:1141. doi: 10.3390/antiox9111141. PubMed DOI PMC

Clare C.E., Brassington A.H., Kwong W.Y., Sinclair K.D. One-Carbon Metabolism: Linking Nutritional Biochemistry to Epigenetic Programming of Long-Term Development. Annu. Rev. Anim. Biosci. 2019;7:263–287. doi: 10.1146/annurev-animal-020518-115206. PubMed DOI

Schachter M. Insulin resistance in patients with polycystic ovary syndrome is associated with elevated plasma homocysteine. Hum. Reprod. 2003;18:721–727. doi: 10.1093/humrep/deg190. PubMed DOI

Berker B., Kaya C., Aytac R., Satiroglu H. Homocysteine concentrations in follicular fluid are associated with poor oocyte and embryo qualities in polycystic ovary syndrome patients undergoing assisted reproduction. Hum. Reprod. 2009;24:2293–2302. doi: 10.1093/humrep/dep069. PubMed DOI

Razi Y., Eftekhar M., Fesahat F., Dehghani Firouzabadi R., Razi N., Sabour M., Razi M.H. Concentrations of homocysteine in follicular fluid and embryo quality and oocyte maturity in infertile women: A prospective cohort. J. Obstet. Gynaecol. 2021;41:588–593. doi: 10.1080/01443615.2020.1785409. PubMed DOI

Jia L., Zeng Y., Hu Y., Liu J., Yin C., Niu Y., Wang C., Li J., Jia Y., Hong J., et al. Homocysteine impairs porcine oocyte quality via deregulation of one-carbon metabolism and hypermethylation of mitochondrial DNA. Biol. Reprod. 2019;100:907–916. doi: 10.1093/biolre/ioy238. PubMed DOI

Li Z., Wang Y.A., Ledger W., Edgar D.H., Sullivan E.A. Clinical outcomes following cryopreservation of blastocysts by vitrification or slow freezing: A population-based cohort study. Hum. Reprod. 2014;29:2794–2801. doi: 10.1093/humrep/deu246. PubMed DOI

Fasano G., Fontenelle N., Vannin A.-S., Biramane J., Devreker F., Englert Y., Delbaere A. A randomized controlled trial comparing two vitrification methods versus slow-freezing for cryopreservation of human cleavage stage embryos. J. Assist. Reprod. Genet. 2014;31:241–247. doi: 10.1007/s10815-013-0145-4. PubMed DOI PMC

Zhao X.-M., Du W.-H., Wang D., Hao H.-S., Liu Y., Qin T., Zhu H.-B. Effect of cyclosporine pretreatment on mitochondrial function in vitrified bovine mature oocytes. Fertil. Steril. 2011;95:2786–2788. doi: 10.1016/j.fertnstert.2011.04.089. PubMed DOI

Wang N., Hao H.-S., Li C.-Y., Zhao Y.-H., Wang H.-Y., Yan C.-L., Du W.-H., Wang D., Liu Y., Pang Y.-W., et al. Calcium ion regulation by BAPTA-AM and ruthenium red improved the fertilisation capacity and developmental ability of vitrified bovine oocytes. Sci. Rep. 2017;7:10652. doi: 10.1038/s41598-017-10907-9. PubMed DOI PMC

Yao J., Geng L., Huang R., Peng W., Chen X., Jiang X., Yu M., Li M., Huang Y., Yang X. Effect of vitrification on in vitro development and imprinted gene Grb10 in mouse embryos. Reproduction. 2017;154:197–205. doi: 10.1530/REP-16-0480. PubMed DOI

Saenz-de-Juano M.D., Billooye K., Smitz J., Anckaert E. The loss of imprinted DNA methylation in mouse blastocysts is inflicted to a similar extent by in vitro follicle culture and ovulation induction. Mol. Hum. Reprod. 2016;22:427–441. doi: 10.1093/molehr/gaw013. PubMed DOI

Shirazi A., Naderi M.M., Hassanpour H., Heidari M., Borjian S., Sarvari A., Akhondi M.M. The effect of ovine oocyte vitrification on expression of subset of genes involved in epigenetic modifications during oocyte maturation and early embryo development. Theriogenology. 2016;86:2136–2146. doi: 10.1016/j.theriogenology.2016.07.005. PubMed DOI

Xu T., Liu C., Zhang M., Wang X., Yan Y., Liu Q., Ma Y., Yu T., Sathanawongs A., Jiao J., et al. Vitrification of Pronuclear Zygotes Perturbs Porcine Zygotic Genome Activation. Animals. 2022;12:610. doi: 10.3390/ani12050610. PubMed DOI PMC

Verheijen M., Lienhard M., Schrooders Y., Clayton O., Nudischer R., Boerno S., Timmermann B., Selevsek N., Schlapbach R., Gmuender H., et al. DMSO induces drastic changes in human cellular processes and epigenetic landscape in vitro. Sci. Rep. 2019;9:4641. doi: 10.1038/s41598-019-40660-0. PubMed DOI PMC

Sales V.M., Ferguson-Smith A.C., Patti M.-E. Epigenetic Mechanisms of Transmission of Metabolic Disease across Generations. Cell Metab. 2017;25:559–571. doi: 10.1016/j.cmet.2017.02.016. PubMed DOI PMC

Pathare A.D.S., Hinduja I. Aberrant DNA methylation profiling affecting the endometrial receptivity in recurrent implantation failure patients undergoing in vitro fertilization. Am. J. Reprod. Immunol. 2020;83:e13196. doi: 10.1111/aji.13196. PubMed DOI

Jiang N.-X., Li X.-L. The Complicated Effects of Extracellular Vesicles and Their Cargos on Embryo Implantation. Front. Endocrinol. 2021;12:681266. doi: 10.3389/fendo.2021.681266. PubMed DOI PMC

Chen C.-W., Huang R.-L., Do A.Q., Wang H.-C., Lee Y.-X., Wang C.-W., Hsieh C.-C., Tzeng C.-R., Hu Y.-M., Chen C.-H., et al. Genome-wide analysis of cervical secretions obtained during embryo transfer reveals the association between deoxyribonucleic acid methylation and pregnancy outcomes. F&S Sci. 2022;3:74–83. doi: 10.1016/j.xfss.2021.12.004. PubMed DOI

Qu X., Fang Y., Zhuang S., Zhang Y. Micro-RNA miR-542-3p suppresses decidualization by targeting ILK pathways in human endometrial stromal cells. Sci. Rep. 2021;11:7186. doi: 10.1038/s41598-021-85295-2. PubMed DOI PMC

Zhang Y.-P., Huang Y.-T., Huang T.-S., Pang W., Zhu J.-J., Liu Y.-F., Tang R.-Z., Zhao C.-R., Yao W.-J., Li Y.-S., et al. The Mammalian Target of Rapamycin and DNA methyltransferase 1 axis mediates vascular endothelial dysfunction in response to disturbed flow. Sci. Rep. 2017;7:14996. doi: 10.1038/s41598-017-15387-5. PubMed DOI PMC

Jing M., Rech L., Wu Y., Goltz D., Taylor C.G., House J.D. Effects of zinc deficiency and zinc supplementation on homocysteine levels and related enzyme expression in rats. J. Trace Elem. Med. Biol. 2015;30:77–82. doi: 10.1016/j.jtemb.2014.10.013. PubMed DOI

Friso S., Udali S., De Santis D., Choi S.-W. One-carbon metabolism and epigenetics. Mol. Aspects Med. 2017;54:28–36. doi: 10.1016/j.mam.2016.11.007. PubMed DOI

Ben-Sahra I., Hoxhaj G., Ricoult S.J.H., Asara J.M., Manning B.D. mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle. Science. 2016;351:728–733. doi: 10.1126/science.aad0489. PubMed DOI PMC

Jansson N., Rosario F.J., Gaccioli F., Lager S., Jones H.N., Roos S., Jansson T., Powell T.L. Activation of Placental mTOR Signaling and Amino Acid Transporters in Obese Women Giving Birth to Large Babies. J. Clin. Endocrinol. Metab. 2013;98:105–113. doi: 10.1210/jc.2012-2667. PubMed DOI PMC

Cheng M., Lv X., Zhang C., Du W., Liu Y., Zhu L., Hao J. DNMT1, a Novel Regulator Mediating mTORC1/mTORC2 Pathway-Induced NGF Expression in Schwann Cells. Neurochem. Res. 2018;43:2141–2154. doi: 10.1007/s11064-018-2637-1. PubMed DOI

Zeng H., Yan L., Cheng W.-H., Uthus E.O. Dietary Selenomethionine Increases Exon-Specific DNA Methylation of the p53 Gene in Rat Liver and Colon Mucosa. J. Nutr. 2011;141:1464–1468. doi: 10.3945/jn.111.140715. PubMed DOI

Zhu Y., Lu L., Liao X., Li W., Zhang L., Ji C., Lin X., Liu H.-C., Odle J., Luo X. Maternal dietary manganese protects chick embryos against maternal heat stress via epigenetic-activated antioxidant and anti-apoptotic abilities. Oncotarget. 2017;8:89665–89680. doi: 10.18632/oncotarget.20804. PubMed DOI PMC

Kennedy E., Everson T.M., Punshon T., Jackson B.P., Hao K., Lambertini L., Chen J., Karagas M.R., Marsit C.J. Copper associates with differential methylation in placentae from two US birth cohorts. Epigenetics. 2020;15:215–230. doi: 10.1080/15592294.2019.1661211. PubMed DOI PMC

Tobi E.W., Slieker R.C., Luijk R., Dekkers K.F., Stein A.D., Xu K.M., Slagboom P.E., van Zwet E.W., Lumey L.H., Heijmans B.T. DNA methylation as a mediator of the association between prenatal adversity and risk factors for metabolic disease in adulthood. Sci. Adv. 2018;4:eaao4364. doi: 10.1126/sciadv.aao4364. PubMed DOI PMC

Tobi E.W., Lumey L.H., Talens R.P., Kremer D., Putter H., Stein A.D., Slagboom P.E., Heijmans B.T. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum. Mol. Genet. 2009;18:4046–4053. doi: 10.1093/hmg/ddp353. PubMed DOI PMC

Schutt A.K., Blesson C.S., Hsu J.W., Valdes C.T., Gibbons W.E., Jahoor F., Yallampalli C. Preovulatory exposure to a protein-restricted diet disrupts amino acid kinetics and alters mitochondrial structure and function in the rat oocyte and is partially rescued by folic acid. Reprod. Biol. Endocrinol. 2019;17:12. doi: 10.1186/s12958-019-0458-y. PubMed DOI PMC

Dahlhoff M., Pfister S., Blutke A., Rozman J., Klingenspor M., Deutsch M.J., Rathkolb B., Fink B., Gimpfl M., Hrabě de Angelis M., et al. Peri-conceptional obesogenic exposure induces sex-specific programming of disease susceptibilities in adult mouse offspring. Biochim. Biophys. Acta Mol. Basis Dis. 2014;1842:304–317. doi: 10.1016/j.bbadis.2013.11.021. PubMed DOI

O’Doherty A.M., O’Gorman A., al Naib A., Brennan L., Daly E., Duffy P., Fair T. Negative energy balance affects imprint stability in oocytes recovered from postpartum dairy cows. Genomics. 2014;104:177–185. doi: 10.1016/j.ygeno.2014.07.006. PubMed DOI

Fair T. DNA methylation dynamics during oocyte and embryo development and its association with environmental induced alterations. Anim. Reprod. 2016;13:250–256. doi: 10.21451/1984-3143-AR880. DOI

Desai M., Jellyman J.K., Han G., Beall M., Lane R.H., Ross M.G. Maternal obesity and high-fat diet program offspring metabolic syndrome. Am. J. Obstet. Gynecol. 2014;211:237. doi: 10.1016/j.ajog.2014.03.025. PubMed DOI PMC

Jansson N., Nilsfelt A., Gellerstedt M., Wennergren M., Rossander-Hultheén L., Powell T.L., Jansson T. Maternal hormones linking maternal body mass index and dietary intake to birth weight. Am. J. Clin. Nutr. 2008;87:1743–1749. doi: 10.1093/ajcn/87.6.1743. PubMed DOI

Morales E., Groom A., Lawlor D.A., Relton C.L. DNA methylation signatures in cord blood associated with maternal gestational weight gain: Results from the ALSPAC cohort. BMC Res. Notes. 2014;7:278. doi: 10.1186/1756-0500-7-278. PubMed DOI PMC

Igosheva N., Abramov A.Y., Poston L., Eckert J.J., Fleming T.P., Duchen M.R., McConnell J. Maternal Diet-Induced Obesity Alters Mitochondrial Activity and Redox Status in Mouse Oocytes and Zygotes. PLoS ONE. 2010;5:e10074. doi: 10.1371/journal.pone.0010074. PubMed DOI PMC

Aiken C.E., Tarry-Adkins J.L., Penfold N.C., Dearden L., Ozanne S.E. Decreased ovarian reserve, dysregulation of mitochondrial biogenesis, and increased lipid peroxidation in female mouse offspring exposed to an obesogenic maternal diet. FASEB J. 2016;30:1548–1556. doi: 10.1096/fj.15-280800. PubMed DOI PMC

Gemma C., Sookoian S., Alvariñas J., García S.I., Quintana L., Kanevsky D., González C.D., Pirola C.J. Maternal Pregestational BMI Is Associated With Methylation of the PPARGC1A Promoter in Newborns. Obesity. 2009;17:1032–1039. doi: 10.1038/oby.2008.605. PubMed DOI

Hoyme H.E., May P.A., Kalberg W.O., Kodituwakku P., Gossage J.P., Trujillo P.M., Buckley D.G., Miller J.H., Aragon A.S., Khaole N., et al. A Practical Clinical Approach to Diagnosis of Fetal Alcohol Spectrum Disorders: Clarification of the 1996 Institute of Medicine Criteria. Pediatrics. 2005;115:39–47. doi: 10.1542/peds.2004-0259. PubMed DOI PMC

Halsted C.H., Medici V. Aberrant Hepatic Methionine Metabolism and Gene Methylation in the Pathogenesis and Treatment of Alcoholic Steatohepatitis. Int. J. Hepatol. 2012;2012:959746. doi: 10.1155/2012/959746. PubMed DOI PMC

Chen C.-H., Pan C.-H., Chen C.-C., Huang M.-C. Increased Oxidative DNA Damage in Patients With Alcohol Dependence and Its Correlation With Alcohol Withdrawal Severity. Alcohol. Clin. Exp. Res. 2011;35:338–344. doi: 10.1111/j.1530-0277.2010.01349.x. PubMed DOI

Ungerer M., Knezovich J., Ramsay M. In utero alcohol exposure, epigenetic changes, and their consequences. Alcohol Res. 2013;35:37–46. PubMed PMC

Wang D., Jacobs S.A., Tsien J.Z. Targeting the NMDA receptor subunit NR2B for treating or preventing age-related memory decline. Expert Opin. Ther. Targets. 2014;18:1121–1130. doi: 10.1517/14728222.2014.941286. PubMed DOI

Qiang M., Denny A., Chen J., Ticku M.K., Yan B., Henderson G. The site specific demethylation in the 5’-regulatory area of NMDA receptor 2B subunit gene associated with CIE-induced up-regulation of transcription. PLoS ONE. 2010;5:e8798. doi: 10.1371/journal.pone.0008798. PubMed DOI PMC

Carpenter B.L., Remba T.K., Thomas S.L., Madaj Z., Brink L., Tiedemann R.L., Odendaal H.J., Jones P.A. Oocyte age and preconceptual alcohol use are highly correlated with epigenetic imprinting of a noncoding RNA (nc886) Proc. Natl. Acad. Sci. USA. 2021;118:e2026580118. doi: 10.1073/pnas.2026580118. PubMed DOI PMC

Haycock P.C., Ramsay M. Exposure of Mouse Embryos to Ethanol During Preimplantation Development: Effect on DNA Methylation in the H19 Imprinting Control Region1. Biol. Reprod. 2009;81:618–627. doi: 10.1095/biolreprod.108.074682. PubMed DOI

Liu Y., Balaraman Y., Wang G., Nephew K.P., Zhou F.C. Alcohol exposure alters DNA methylation profiles in mouse embryos at early neurulation. Epigenetics. 2009;4:500–511. doi: 10.4161/epi.4.7.9925. PubMed DOI PMC

Heijmans B.T., Tobi E.W., Stein A.D., Putter H., Blauw G.J., Susser E.S., Slagboom P.E., Lumey L.H. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl. Acad. Sci. USA. 2008;105:17046–17049. doi: 10.1073/pnas.0806560105. PubMed DOI PMC

Geraghty A.A., Lindsay K.L., Alberdi G., McAuliffe F.M., Gibney E.R. Nutrition during Pregnancy Impacts Offspring’s Epigenetic Status—Evidence from Human and Animal Studies. Nutr. Metab. Insights. 2015;8:S29527. doi: 10.4137/NMI.S29527. PubMed DOI PMC

Jousse C., Parry L., Lambert-Langlais S., Maurin A., Averous J., Bruhat A., Carraro V., Tost J., Letteron P., Chen P., et al. Perinatal undernutrition affects the methylation and expression of the leptin gene in adults: Implication for the understanding of metabolic syndrome. FASEB J. 2011;25:3271–3278. doi: 10.1096/fj.11-181792. PubMed DOI

Joubert B.R., Felix J.F., Yousefi P., Bakulski K.M., Just A.C., Breton C., Reese S.E., Markunas C.A., Richmond R.C., Xu C.-J., et al. DNA Methylation in Newborns and Maternal Smoking in Pregnancy: Genome-wide Consortium Meta-analysis. Am. J. Hum. Genet. 2016;98:680–696. doi: 10.1016/j.ajhg.2016.02.019. PubMed DOI PMC

Steuerwald N.M., Bermúdez M.G., Wells D., Munné S., Cohen J. Maternal age-related differential global expression profiles observed in human oocytes. Reprod. Biomed. Online. 2007;14:700–708. doi: 10.1016/S1472-6483(10)60671-2. PubMed DOI

Tsutsumi M., Fujiwara R., Nishizawa H., Ito M., Kogo H., Inagaki H., Ohye T., Kato T., Fujii T., Kurahashi H. Age-Related Decrease of Meiotic Cohesins in Human Oocytes. PLoS ONE. 2014;9:e96710. doi: 10.1371/journal.pone.0096710. PubMed DOI PMC

Ntostis P., Iles D., Kokkali G., Vaxevanoglou T., Kanavakis E., Pantou A., Huntriss J., Pantos K., Picton H.M. The impact of maternal age on gene expression during the GV to MII transition in euploid human oocytes. Hum. Reprod. 2021;37:80–92. doi: 10.1093/humrep/deab226. PubMed DOI PMC

Battaglia R., Vento M.E., Ragusa M., Barbagallo D., La Ferlita A., Di Emidio G., Borzi P., Artini P.G., Scollo P., Tatone C., et al. MicroRNAs Are Stored in Human MII Oocyte and Their Expression Profile Changes in Reproductive Aging. Biol. Reprod. 2016;95:131. doi: 10.1095/biolreprod.116.142711. PubMed DOI

Hamatani T., Falco G., Carter M.G., Akutsu H., Stagg C.A., Sharov A.A., Dudekula D.B., VanBuren V., Ko M.S.H. Age-associated alteration of gene expression patterns in mouse oocytes. Hum. Mol. Genet. 2004;13:2263–2278. doi: 10.1093/hmg/ddh241. PubMed DOI

Monk C., Feng T., Lee S., Krupska I., Champagne F.A., Tycko B. Distress During Pregnancy: Epigenetic Regulation of Placenta Glucocorticoid-Related Genes and Fetal Neurobehavior. Am. J. Psychiatry. 2016;173:705–713. doi: 10.1176/appi.ajp.2015.15091171. PubMed DOI PMC

Mulligan C., D’Errico N., Stees J., Hughes D. Methylation changes at NR3C1 in newborns associate with maternal prenatal stress exposure and newborn birth weight. Epigenetics. 2012;7:853–857. doi: 10.4161/epi.21180. PubMed DOI PMC

Hjort L., Martino D., Grunnet L.G., Naeem H., Maksimovic J., Olsson A.H., Zhang C., Ling C., Olsen S.F., Saffery R., et al. Gestational diabetes and maternal obesity are associated with epigenome-wide methylation changes in children. JCI Insight. 2018;3:e122572. doi: 10.1172/jci.insight.122572. PubMed DOI PMC

Jia L., Li J., He B., Jia Y., Niu Y., Wang C., Zhao R. Abnormally activated one-carbon metabolic pathway is associated with mtDNA hypermethylation and mitochondrial malfunction in the oocytes of polycystic gilt ovaries. Sci. Rep. 2016;6:19436. doi: 10.1038/srep19436. PubMed DOI PMC

Junge K.M., Leppert B., Jahreis S., Wissenbach D.K., Feltens R., Grützmann K., Thürmann L., Bauer T., Ishaque N., Schick M., et al. MEST mediates the impact of prenatal bisphenol A exposure on long-term body weight development. Clin. Epigenet. 2018;10:58. doi: 10.1186/s13148-018-0478-z. PubMed DOI PMC

Susiarjo M., Sasson I., Mesaros C., Bartolomei M.S. Bisphenol A Exposure Disrupts Genomic Imprinting in the Mouse. PLoS Genet. 2013;9:e1003401. doi: 10.1371/journal.pgen.1003401. PubMed DOI PMC

Park S., Jeon H.-J., Choi D.Y., Oh J.S. Polystyrene nanoparticles incorporate into the endoplasmic reticulum and disturb translation during meiotic maturation in mouse oocytes. Toxicol. In Vitro. 2022;82:105380. doi: 10.1016/j.tiv.2022.105380. PubMed DOI

Llonch S., Barragán M., Nieto P., Mallol A., Elosua-Bayes M., Lorden P., Ruiz S., Zambelli F., Heyn H., Vassena R., et al. Single human oocyte transcriptome analysis reveals distinct maturation stage-dependent pathways impacted by age. Aging Cell. 2021;20:e13360. doi: 10.1111/acel.13360. PubMed DOI PMC

Lebovitz O., Michaeli M., Aslih N., Poltov D., Estrada D., Atzmon Y., Shalom-Paz E. Embryonic Development in Relation to Maternal Age and Conception Probability. Reprod. Sci. 2021;28:2292–2300. doi: 10.1007/s43032-021-00488-4. PubMed DOI

Hassold T., Hunt P. Maternal age and chromosomally abnormal pregnancies: What we know and what we wish we knew. Curr. Opin. Pediatr. 2009;21:703–708. doi: 10.1097/MOP.0b013e328332c6ab. PubMed DOI PMC

Sanders K.D., Silvestri G., Gordon T., Griffin D.K. Analysis of IVF live birth outcomes with and without preimplantation genetic testing for aneuploidy (PGT-A): UK Human Fertilisation and Embryology Authority data collection 2016–2018. J. Assist. Reprod. Genet. 2021;38:3277–3285. doi: 10.1007/s10815-021-02349-0. PubMed DOI PMC

Ge Z.-J.J., Schatten H., Zhang C.-L.L., Sun Q.-Y.Y. Oocyte ageing and epigenetics. Reproduction. 2015;149:R103–R114. doi: 10.1530/REP-14-0242. PubMed DOI PMC

Ma J.-Y., Li S., Chen L.-N., Schatten H., Ou X.-H., Sun Q.-Y. Why is oocyte aneuploidy increased with maternal aging? J. Genet. Genom. 2020;47:659–671. doi: 10.1016/j.jgg.2020.04.003. PubMed DOI

Yue M.X., Fu X.W., Zhou G.B., Hou Y.P., Du M., Wang L., Zhu S.E. Abnormal DNA methylation in oocytes could be associated with a decrease in reproductive potential in old mice. J. Assist. Reprod. Genet. 2012;29:643–650. doi: 10.1007/s10815-012-9780-4. PubMed DOI PMC

Cimadomo D., Fabozzi G., Vaiarelli A., Ubaldi N., Ubaldi F.M., Rienzi L. Impact of Maternal Age on Oocyte and Embryo Competence. Front. Endocrinol. 2018;9:327. doi: 10.3389/fendo.2018.00327. PubMed DOI PMC

Nakamura A., François O., Lepeule J. Epigenetic Alterations of Maternal Tobacco Smoking during Pregnancy: A Narrative Review. Int. J. Environ. Res. Public Health. 2021;18:5083. doi: 10.3390/ijerph18105083. PubMed DOI PMC

Murphy S.K., Adigun A., Huang Z., Overcash F., Wang F., Jirtle R.L., Schildkraut J.M., Murtha A.P., Iversen E.S., Hoyo C. Gender-specific methylation differences in relation to prenatal exposure to cigarette smoke. Gene. 2012;494:36–43. doi: 10.1016/j.gene.2011.11.062. PubMed DOI PMC

Wiklund P., Karhunen V., Richmond R.C., Parmar P., Rodriguez A., De Silva M., Wielscher M., Rezwan F.I., Richardson T.G., Veijola J., et al. DNA methylation links prenatal smoking exposure to later life health outcomes in offspring. Clin. Epigenet. 2019;11:97. doi: 10.1186/s13148-019-0683-4. PubMed DOI PMC

Joubert B.R., Håberg S.E., Nilsen R.M., Wang X., Vollset S.E., Murphy S.K., Huang Z., Hoyo C., Midttun Ø., Cupul-Uicab L.A., et al. 450K Epigenome-Wide Scan Identifies Differential DNA Methylation in Newborns Related to Maternal Smoking during Pregnancy. Environ. Health Perspect. 2012;120:1425–1431. doi: 10.1289/ehp.1205412. PubMed DOI PMC

Chen B., Du Y.-R., Zhu H., Sun M.-L., Wang C., Cheng Y., Pang H., Ding G., Gao J., Tan Y., et al. Maternal inheritance of glucose intolerance via oocyte TET3 insufficiency. Nature. 2022;605:761–766. doi: 10.1038/s41586-022-04756-4. PubMed DOI

Gore A.C. Endocrine-Disrupting Chemicals. JAMA Intern. Med. 2016;176:1705. doi: 10.1001/jamainternmed.2016.5766. PubMed DOI

Prusinski L., Al-Hendy A., Yang Q. Developmental Exposure to Endocrine Disrupting Chemicals Alters the Epigenome: Identification of Reprogrammed Targets. Gynecol. Obstet. Res. Open J. 2016;3:1–6. doi: 10.17140/GOROJ-3-127. PubMed DOI PMC

McCabe C.F., Padmanabhan V., Dolinoy D.C., Domino S.E., Jones T.R., Bakulski K.M., Goodrich J.M. Maternal environmental exposure to bisphenols and epigenome-wide DNA methylation in infant cord blood. Environ. Epigenet. 2020;6:dvaa021. doi: 10.1093/eep/dvaa021. PubMed DOI PMC

Bromer J.G., Zhou Y., Taylor M.B., Doherty L., Taylor H.S. Bisphenol-A exposure in utero leads to epigenetic alterations in the developmental programming of uterine estrogen response. FASEB J. 2010;24:2273–2280. doi: 10.1096/fj.09-140533. PubMed DOI PMC

Hobel C.J., Goldstein A., Barrett E.S. Psychosocial Stress and Pregnancy Outcome. Clin. Obstet. Gynecol. 2008;51:333–348. doi: 10.1097/GRF.0b013e31816f2709. PubMed DOI

Hompes T., Izzi B., Gellens E., Morreels M., Fieuws S., Pexsters A., Schops G., Dom M., Van Bree R., Freson K., et al. Investigating the influence of maternal cortisol and emotional state during pregnancy on the DNA methylation status of the glucocorticoid receptor gene (NR3C1) promoter region in cord blood. J. Psychiatr. Res. 2013;47:880–891. doi: 10.1016/j.jpsychires.2013.03.009. PubMed DOI

Kertes D.A., Kamin H.S., Hughes D.A., Rodney N.C., Bhatt S., Mulligan C.J. Prenatal Maternal Stress Predicts Methylation of Genes Regulating the Hypothalamic–Pituitary–Adrenocortical System in Mothers and Newborns in the Democratic Republic of Congo. Child. Dev. 2016;87:61–72. doi: 10.1111/cdev.12487. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...