Cytoplasmic Transfer Improves Human Egg Fertilization and Embryo Quality: an Evaluation of Sibling Oocytes in Women with Low Oocyte Quality
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
33155170
PubMed Central
PMC8076124
DOI
10.1007/s43032-020-00371-8
PII: 10.1007/s43032-020-00371-8
Knihovny.cz E-zdroje
- Klíčová slova
- Cytoplasmic transfer, Egg quality, Embryo quality, Mitochondria, Mitochondrial donation, Ooplasmic transfer, Ooplasmic transplantation,
- MeSH
- cytoplazma MeSH
- dospělí MeSH
- fertilizace in vitro metody MeSH
- fertilizace * MeSH
- lidé středního věku MeSH
- lidé MeSH
- oocyty fyziologie MeSH
- přenos embrya metody MeSH
- těhotenství MeSH
- úhrn těhotenství na počet žen v reprodukčním věku MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The aim of this study was to evaluate if cytoplasmic transfer can improve fertilization and embryo quality of women with oocytes of low quality. During ICSI, 10-15% of the cytoplasm from a fresh or frozen young donor oocyte was added to the recipient oocyte. According to the embryo quality, we defined group A as patients in which the best embryo was evident after cytoplasmic transfer and group B as patients in which the best embryo was evident after a simple ICSI. We investigated in the period of 2002-2018, 125 in vitro fertilization cycles involving 1011 fertilized oocytes. Five hundred fifty-seven sibling oocytes were fertilized using ICSI only and 454 oocytes with cytoplasmic transfer. Fertilization rates of oocytes were 67.2% in the cytoplasmic transfer and 53.5% in the ICSI groups (P < 0.001). A reduction in fertilization rate was observed with increased women age in the ICSI but not in the cytoplasmic transfer groups. The best embryo quality was found after cytoplasmic transfer in 78 cycles (62.4%) and without cytoplasmic transfer in 40 cycles (32%, P < 0.001). No significant differences were detected between the age, hormonal levels, dose of stimulation drugs, number of transferred embryos, pregnancy rate and abortion rate between A and B groups. Cytoplasmic transfer improves fertilization rates and early embryo development in humans with low oocyte quality. All 28 children resulting from cytoplasmic transfer are healthy.
Zobrazit více v PubMed
Igarashi H, Takahashi T, Nagase S. Oocyte aging underlies female reproductive aging: biological mechanisms and therapeutic strategies. Reprod Med Biol. 2015;14:159–169. doi: 10.1007/s12522-015-0209-5. PubMed DOI PMC
Tarín JJ, Pérez-Albalá S, Cano A. Consequences on offspring of abnormal function in aging gametes. Hum Reprod Update. 2000;6:532–549. doi: 10.1093/humupd/6.6.532. PubMed DOI
Meldrum DR, Casper RF, Diez-Juan A, et al. Aging and the environment affect gamete and embryo potential: can we intervene? PLoS Genet. 2010;6:e1001066. doi: 10.1371/journal.pgen.1001066. PubMed DOI
Tachibana M, Sparman M, Sritanaudomchai H. Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature. 2009;491:367–372. doi: 10.1038/nature08368. PubMed DOI PMC
Chappel S. The role of mitochondria from mature oocyte to viable blastocyst. Obstet Gynecol Int. 2013;183024:1–10. doi: 10.1155/2013/183024. PubMed DOI PMC
Goud AP, Goud PT, Van Oostveldt P, et al. Dynamic changes in microtubular cytoskeleton of human postmature oocytes revert after ooplasm transfer. Fertil Steril. 2004;81:323–331. doi: 10.1016/j.fertnstert.2003.06.033. PubMed DOI
Cohen J, Scott R, Alikani M, Schimmel T, Munné S, Levron J, Wu L, Brenner C, Warner C, Willadsen S. Ooplasmic transfer in mature human oocytes. Mol Hum Reprod. 1998;4:269–280. doi: 10.1093/molehr/4.3.269. PubMed DOI
Blerkom J. Mitochondrial function in the human oocyte and embryo and their role in developmental competence. Mitochondrion. 2011;11:797–813. doi: 10.1016/j.mito.2010.09.012. PubMed DOI
Muggleton-Harris A, Whithingham D, Wilson L. Cytoplasmic control of preimplantation development development in vitro in mouse. Nature. 1982;299:460–462. doi: 10.1038/299460a0. PubMed DOI
Cohen J, Scott R, Schimmel T, Levron J, Willadsen S. Birth of infant after transfer of anucleate donor oocyte cytoplasma into recipient eggs. Lancet. 1997;350:186–187. doi: 10.1016/S0140-6736(05)62353-7. PubMed DOI
Lanzendorf SE, Mayer JF, Toner J, Oehninger S, Saffan DS, Muasher S. Pregnancy following transfer of ooplasm from cryopreserved-thawed donor oocytes into recipient oocytes. Fertil Steril. 1999;71:575–577. doi: 10.1016/S0015-0282(98)00504-4. PubMed DOI
Dale B, Wilding M, Botta G, Rasile M, Marino M, di Matteo L, de Placido G, Izzo A. Pregnancy after cytoplasmic transfer in a couple suffering from idiopathic infertility. Hum Reprod. 2001;16:1469–1472. doi: 10.1093/humrep/16.7.1469. PubMed DOI
Goud AP, Goud PT, Van Oostveldt P, et al. Dynamic changes in microtubular cytoskeleton of human postmature oocytes revert after ooplasm transfer. Fertil Steril. 2004;81:323–331. doi: 10.1016/j.fertnstert.2003.06.033. PubMed DOI
Gardner DK, Lane M, Schoolcraft WB. Physiology and culture of the human blastocyst. J Reprod Immunol. 2002;55:85–100. doi: 10.1016/S0165-0378(01)00136-X. PubMed DOI
Sperandei S. Understanding logistic regression analysis. Biochem Medica. 2014;24:12–18. doi: 10.11613/BM.2014.003. PubMed DOI PMC
R Core Team. R: A language and environment for statistical computing. 2017 Vienna, Austria: R Foundation for Statistical Computing.
Darbandi S, Darbandi M, Khorshid HRK, et al. Ooplasmic transfer in human oocytes: efficacy and concerns in assisted reproduction. Reprod Biol Endocrinol. 2017;15:77. doi: 10.1186/s12958-017-0292-z. PubMed DOI PMC
Chen SH, Pascale C, Jackson M, Szvetecz MA, Cohen J. A limited survey-based uncontrolled follow-up study of children born after ooplasmic transplantation in a single Centre. Reprod BioMed Online. 2016;33:737–744. doi: 10.1016/j.rbmo.2016.10.003. PubMed DOI
Cohen J, Alikani M. The biological baisis for defining bi-parental or tri-parental origin of offspring from cytoplasmic and spindle transfer. Reprod BioMed Online. 2013;26:515–537. PubMed
Caicedo A, Aponte PM, Cabrera F, et al. Artificial mitochondria transfer: current challenges, advances, and future applications. Stem Cells Int. 2017;7610414. PubMed PMC
Barrit JA, Brenner CA, Malter HE, et al. Mitochodnria in human offspring derived from ooplasmic transplantation: brief communication. Hum Reprod. 2001;16:513–516. doi: 10.1093/humrep/16.3.513. PubMed DOI
Malter HE, Cohen J. Ooplasmic transfer: animal models assist human studies. Reprod BioMed Online. 2002;5:26–35. doi: 10.1016/S1472-6483(10)61593-3. PubMed DOI
Sobek AJ, Tkadlec E, Hladíková B, et al. Is there a decling trend in ovarian function among infertility clinic patients? Hum Reprod. 2010;25:127–132. doi: 10.1093/humrep/dep372. PubMed DOI
Cree L, Loid P. Mitochondrial replacement: from basic research to assisted reproductive technology portfolio tool – technicalities and possible risks. Mol Hum Reprod. 2015;21:3–10. doi: 10.1093/molehr/gau082. PubMed DOI
Woods DC, Khrapko K, Tilly JL. Influence of maternal aging on mitochondrial heterogeneity, inheritance, and function in oocytes and preimplantation embryos. Genes. 2018; 9: piiE265. PubMed PMC
Hiendleder S, Wolf E. The mitochondrial genome in embryo technologies. Reprod Dom Anim. 2003;38:290–304. doi: 10.1046/j.1439-0531.2003.00448.x. PubMed DOI
Brenner CA, Barritt JA, Wiladsen S, et al. Mitochondrial DNA heteroplasmy after human ooplasmic transplantation. Fertil Steril. 2000;74:573–578. doi: 10.1016/S0015-0282(00)00681-6. PubMed DOI
Matthew VC, Kumiko T, Carl AP. Mitochondrial biology in reproduction. Reprod Med Biol. 2011;10:251–258. doi: 10.1007/s12522-011-0101-x. PubMed DOI PMC
Burgstaller JP, Johnston IG, Poulton J. Mitochondrial DNA disease and developmental implications for reproductive strategies. Mol Hum Reprod. 2015;21:11–22. doi: 10.1093/molehr/gau090. PubMed DOI PMC
Hoseini FS, Salsabili N, Akbari-Asbagh F, Aflatoonian R, Aghaee-Bakhtiari SH. Comparison of gene expression profiles in human germinal vesicle before and after cytoplasmic transfer from mature oocytes in Iranian infertile couples. J Family Reprod Health. 2016;10:71–79. PubMed PMC
Ivanov PL, Wadhams MJ, Roby RK, et al. Mitochondrial DNA sequence heteroplasmy in the grand Duke of Russia Georgij Romanov establishes the authenticity of the remains of tsar Nicholas II. Nat Genet. 1996;4:417–420. doi: 10.1038/ng0496-417. PubMed DOI
Poulton J, Chiaratti MR, Meirelles FV, et al. Transmission of Mitochondrial DNA Diseases and Ways to Prevent Them. PLoS Genet. 2010: 6(8): e1001066. 10.1371/journal.pgen.1001066. PubMed PMC
Ferreira CR, Burgstaller JP, Perecin F, Garcia JM, Chiaratti MR, Méo SC, Müller M, Smith LC, Meirelles FV, Steinborn R. Pronounced segregation of donor mitochondria introduced by bovine ooplasmic transfer to the female germ-line. Biol Reprod. 2010;82:563–571. doi: 10.1095/biolreprod.109.080564. PubMed DOI
Diot A, Dombi E, Lodge T, Liao C, Morten K, Carver J, Wells D, Child T, Johnston IG, Williams S, Poulton J. Modulationg mitochondrial quality in disease transmiaaion: towards enabling mitochondrial DNA disease carriers to have healthy children. Biochem Soc Trans. 2016;44:1091–1100. doi: 10.1042/BST20160095. PubMed DOI PMC
Edwards R. Causes of early pregnancy loss. Hum Reprod. 1986;1:185–198. doi: 10.1093/oxfordjournals.humrep.a136378. PubMed DOI