Temporal and spatial regulation of translation in the mammalian oocyte via the mTOR-eIF4F pathway
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25629602
PubMed Central
PMC4317492
DOI
10.1038/ncomms7078
PII: ncomms7078
Knihovny.cz E-zdroje
- MeSH
- časové faktory MeSH
- down regulace MeSH
- eukaryotický iniciační faktor 4F metabolismus MeSH
- fertilizace MeSH
- jaderný obal metabolismus MeSH
- lidé MeSH
- meióza MeSH
- messenger RNA genetika metabolismus MeSH
- myši MeSH
- nestabilita genomu MeSH
- oocyty metabolismus MeSH
- proteosyntéza * MeSH
- RNA čepičky metabolismus MeSH
- savčí chromozomy metabolismus MeSH
- savci metabolismus MeSH
- signální transdukce * MeSH
- TOR serin-threoninkinasy metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- eukaryotický iniciační faktor 4F MeSH
- messenger RNA MeSH
- RNA čepičky MeSH
- TOR serin-threoninkinasy MeSH
The fully grown mammalian oocyte is transcriptionally quiescent and utilizes only transcripts synthesized and stored during early development. However, we find that an abundant RNA population is retained in the oocyte nucleus and contains specific mRNAs important for meiotic progression. Here we show that during the first meiotic division, shortly after nuclear envelope breakdown, translational hotspots develop in the chromosomal area and in a region that was previously surrounded the nucleus. These distinct translational hotspots are separated by endoplasmic reticulum and Lamin, and disappear following polar body extrusion. Chromosomal translational hotspots are controlled by the activity of the mTOR-eIF4F pathway. Here we reveal a mechanism that-following the resumption of meiosis-controls the temporal and spatial translation of a specific set of transcripts required for normal spindle assembly, chromosome alignment and segregation.
CEITEC Veterinary Research Institute Hudcova 296 70 621 00 Brno Czech Republic
Department of Genetic Engineering Sungkyunkwan University Gyeonggi do Suwon 440 746 South Korea
Institute of Animal Physiology and Genetics ASCR Rumburska 89 277 21 Libechov Czech Republic
Institute of Molecular Genetics ASCR Videnska 1083 142 20 Prague Czech Republic
Zobrazit více v PubMed
Curtis D., Lehmann R. & Zamore P. D. Translational regulation in development. Cell 81, 171–178 (1995). PubMed
Raff R. A., Colot H. V., Selvig S. E. & Gross P. R. Oogenetic origin of messenger RNA for embryonic synthesis of microtubule proteins. Nature 235, 211–214 (1972). PubMed
Capco D. G. & Jeffery W. R. Origin and spatial distribution of maternal messenger RNA during oogenesis of an insect, Oncopeltus fasciatus. J. Cell Sci. 39, 63–76 (1979). PubMed
De La Fuente R. et al.. Major chromatin remodeling in the germinal vesicle (GV) of mammalian oocytes is dispensable for global transcriptional silencing but required for centromeric heterochromatin function. Dev. Biol. 275, 447–458 (2004). PubMed
Brandhorst B. P. Informational content of the echinoderm egg. Dev. Biol. (NY) 1, 525–576 (1985). PubMed
Nothias J. Y., Majumder S., Kaneko K. J. & DePamphilis M. L. Regulation of gene expression at the beginning of mammalian development. J. Biol. Chem. 270, 22077–22080 (1995). PubMed
Schuh M. & Ellenberg J. Self-organization of MTOCs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes. Cell 130, 484–498 (2007). PubMed
Kusch J., Liakopoulos D. & Barral Y. Spindle asymmetry: a compass for the cell. Trends Cell Biol. 13, 562–569 (2003). PubMed
King M. L., Messitt T. J. & Mowry K. L. Putting RNAs in the right place at the right time: RNA localization in the frog oocyte. Biol. Cell 97, 19–33 (2005). PubMed
Holt C. E. & Bullock S. L. Subcellular mRNA localization in animal cells and why it matters. Science 326, 1212–1216 (2009). PubMed PMC
Dubowy J. & Macdonald P. M. Localization of mRNAs to the oocyte is common in Drosophila ovaries. Mech. Dev. 70, 193–195 (2013). PubMed
Nieuwkoop P. D. Inductive interactions in early amphibian development and their general nature. J. Embryol. Exp. Morphol. 89, 333–347 (1985). PubMed
Li L., Baibakov B. & Dean J. A subcortical maternal complex essential for preimplantation mouse embryogenesis. Dev. Cell 15, 416–425 (2008). PubMed PMC
Flemr M., Ma J., Schultz R. M. & Svoboda P. P-body loss is concomitant with formation of a messenger RNA storage domain in mouse oocytes. Biol. Reprod. 82, 1008–1017 (2010). PubMed PMC
Mader S., Lee H., Pause A. & Sonenberg N. The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins. Mol. Cell. Biol. 15, 4990–4997 (1995). PubMed PMC
Joshi B. et al.. Phosphorylation of eukaryotic protein synthesis initiation factor 4E at Ser-209. J. Biol. Chem. 270, 14597–14603 (1995). PubMed
Minich W. B., Balasta M. L., Goss D. J. & Rhoads R. E. Chromatographic resolution of in vivo phosphorylated and nonphosphorylated eukaryotic translation initiation factor eIF-4E: increased cap affinity of the phosphorylated form. Proc. Natl Acad. Sci. USA 91, 7668–7672 (1994). PubMed PMC
Scheper G. C. & Proud C. G. Does phosphorylation of the cap-binding protein eIF4E play a role in translation initiation? Eur. J. Biochem. 269, 5350–5359 (2002). PubMed PMC
Gingras A. C. et al.. Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev. 13, 1422–1437 (1999). PubMed PMC
Feoktistova K. et al.. Human eIF4E promotes mRNA restructuring by stimulating eIF4A helicase activity. Proc. Natl Acad. Sci. USA 110, 13339–13344 (2013). PubMed PMC
Koromilas A. E., Lazaris-Karatzas A. & Sonenberg N. mRNAs containing extensive secondary structure in their 5′ non-coding region translate efficiently in cells overexpressing initiation factor eIF-4E. Embo. J. 11, 4153–4158 (1992). PubMed PMC
Jacinto E. et al.. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat. Cell Biol. 6, 1122–1128 (2004). PubMed
Heesom K. J., Gampel A., Mellor H. & Denton R. M. Cell cycle-dependent phosphorylation of the translational repressor eIF-4E binding protein-1 (4E-BP1). Curr. Biol. 11, 1374–1379 (2001). PubMed
Shang Z. F. et al.. 4E-BP1 participates in maintaining spindle integrity and genomic stability via interacting with PLK1. Cell Cycle 11, 3463–3471 (2012). PubMed PMC
Tomek W. et al.. Regulation of translation during in vitro maturation of bovine oocytes: the role of MAP kinase, eIF4E (cap binding protein) phosphorylation, and eIF4E-BP1. Biol. Reprod. 66, 1274–1282 (2002). PubMed
Ellederova Z. et al.. Suppression of translation during in vitro maturation of pig oocytes despite enhanced formation of cap-binding protein complex eIF4F and 4E-BP1 hyperphosphorylation. Mol. Reprod. Dev. 73, 68–76 (2006). PubMed
Romasko E. et al.. Association of maternal mRNA and phosphorylated EIF4EBP1 variants with the spindle in mouse oocytes: localized translational control supporting female meiosis in mammals. Genetics 195, 349–355 (2013). PubMed PMC
Thoreen C. C. et al.. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485, 109–113 (2012). PubMed PMC
Moerke N. J. et al.. Small-molecule inhibition of the interaction between the translation initiation factors eIF4E and eIF4G. Cell 128, 257–267 (2007). PubMed
Stern S., Rayyis A. & Kennedy J. F. Incoporation of amino acids during maturation in vitro by the mouse oocyte: effect of puromycin on protein synthesis. Biol. Reprod. 7, 341–346 (1972). PubMed
Oyadomari S., Harding H. P., Zhang Y., Oyadomari M. & Ron D. De-phosphorylation of translation initiation factor 2α (eIF2α) enhances glucose tolerance and attenuates hepato-steatosis in mice. Cell. Metab. 7, 520–532 (2008). PubMed PMC
Gingras A. C., Raught B. & Sonenberg N. Regulation of translation initiation by FRAP/mTOR. Genes Dev. 15, 807–826 (2001). PubMed
Yamashita R. et al.. Comprehensive detection of human terminal oligo-pyrimidine (TOP) gene and analysis of their characteristics. Nucleic Acids Res. 36, 3707–3715 (2008). PubMed PMC
Fenton T. R. & Gout I. T. Functions and regulation of the 70 kDa ribosomal S6 kinases. Int. J. Biochem. Cell Biol. 43, 47–59 (2011). PubMed
Gradi A. et al.. A novel functional human eukaryotic translation initiation factor 4G. Mol. Cell Biol. 18, 334–342 (1998). PubMed PMC
López de Quinto S., Lafuente E. & Martínez-Salas E. IRES interaction with translation initiation factors: functional characterization of novel RNA contacts with eIF3, eIF4B, and eIF4GII. RNA 7, 1213–1226 (2001). PubMed PMC
Dieterich D. C. et al.. In situ visualization and dynamics of newly synthesized proteins in rat hippocampal neurons. Nat. Neurosci. 13, 897–905 (2010). PubMed PMC
FitzHarris G., Marangos P. & Carroll J. Changes in endoplasmic reticulum structure during mouse oocyte maturation are controlled by the cytoskeleton and cytoplasmic dynein. Dev. Biol. 305, 133–144 (2007). PubMed
Dalton C. M. & Carroll J. Biased inheritance of mitochondria during asymmetric cell division in the mouse oocyte. J. Cell Sci. 126, 2955–2964 (2013). PubMed PMC
Schlaitz A.-L., Thompson J., Wong C. C. L., Yates J. R. 3rd & Heald R. REEP3/4 ensure endoplasmic reticulum clearance from metaphase chromatin and proper nuclear envelope architecture. Dev. Cell 26, 315–323 (2013). PubMed PMC
Navé B. T., Ouwens M., Withers D. J., Alessi D. R. & Shepherd P. R. Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem. J. 344, 427–431 (1999). PubMed PMC
Chiang G. G. & Abraham R. T. Phosphorylation of mammalian target of rapamycin (mTOR) at Ser-2448 is mediated by p70S6 kinase. J. Biol. Chem. 280, 25485–25490 (2005). PubMed
Dufner A. & Thomas G. Ribosomal S6 kinase signaling and the control of translation. Exp. Cell Res. 253, 100–109 (1999). PubMed
Hornsten O. & Meyuhas E. inTranslational Control of Gene Expression (eds Sonenberg N., Hershey J. W. B., Mathews M. B. 671–693Cold Spring Harbor Laboratory Press (2000).
Mamane Y. et al.. Epigenetic activation of a subset of mRNAs by eIF4E explains its effects on cell proliferation. PLoS ONE 2, e242 (2007). PubMed PMC
Pinkstaff J. K., Chappell S. A., Mauro V. P., Edelman G. M. & Krushel L. A. Internal initiation of translation of five dendritically localized neuronal mRNAs. Proc. Natl Acad. Sci. USA 98, 2770–2775 (2001). PubMed PMC
Dollar G., Struckhoff E., Michaud J. & Cohen R. S. Rab11 polarization of the Drosophila oocyte: a novel link between membrane trafficking, microtubule organization, and oskar mRNA localization and translation. Development 129, 517–526 (2002). PubMed
Håvik B., Røkke H., Bårdsen K., Davanger S. & Bramham C. R. Bursts of high-frequency stimulation trigger rapid delivery of pre-existing alpha-CaMKII mRNA to synapses: a mechanism in dendritic protein synthesis during long-term potentiation in adult awake rats. Eur. J. Neurosci. 17, 2679–2689 (2003). PubMed
Kugler J. M. & Lasko P. Localization, anchoring and translational control of oskar, gurken, bicoid and nanos mRNA during Drosophila oogenesis. Fly (Austin) 3, 15–28 (2009). PubMed
Bratu D. P., Catrina I. E. & Marras S. A. E. Tiny molecular beacons for in vivo mRNA detection. Methods Mol. Biol. 714, 141–157 (2011). PubMed
Hutchinson J. N. et al.. A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics 8, 39 (2007). PubMed PMC
König H., Matter N., Bader R., Thiele W. & Müller F. Splicing segregation: the minor spliceosome acts outside the nucleus and controls cell proliferation. Cell 131, 718–729 (2007). PubMed
Watson A. J., Wiemer K. E., Arcellana-Panlilio M. & Schultz G. A. U2 small nuclear RNA localization and expression during bovine preimplantation development. Mol. Reprod. Dev. 31, 231–240 (1992). PubMed
Hashimoto N. & Kishimoto T. Regulation of meiotic metaphase by a cytoplasmic maturation-promoting factor during mouse oocyte maturation. Dev. Biol. 126, 242–252 (1988). PubMed
Richter J. D. & Sonenberg N. Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature 433, 477–480 (2005). PubMed
Merrick W. C. Cap-dependent and cap-independent translation in eukaryotic systems. Gene 332, 1–11 (2004). PubMed
Kalitsis P., Earle E., Fowler K. J. & Choo K. H. Bub3 gene disruption in mice reveals essential mitotic spindle checkpoint function during early embryogenesis. Genes Dev. 14, 2277–2282 (2000). PubMed PMC
Cuomo M. E. et al.. p53-Driven apoptosis limits centrosome amplification and genomic instability downstream of NPM1 phosphorylation. Nat. Cell Biol. 10, 723–730 (2008). PubMed
Li M. et al.. Bub3 is a spindle assembly checkpoint protein regulating chromosome segregation during mouse oocyte meiosis. PLoS ONE 4, e7701 (2009). PubMed PMC
Van der Horst A. & Lens S. M. A. Cell division: control of the chromosomal passenger complex in time and space. Chromosoma 123, 25–42 (2013). PubMed PMC
Delacour-Larose M., Molla A., Skoufias D. A., Margolis R. L. & Dimitrov S. Distinct dynamics of Aurora B and Survivin during mitosis. Cell Cycle 3, 1418–1426 (2004). PubMed
Sebestova J., Danylevska A., Novakova L., Kubelka M. & Anger M. Lack of response to unaligned chromosomes in mammalian female gametes. Cell Cycle 11, 3011–3018 (2012). PubMed PMC
Nielsen P. J., Manchester K. L., Towbin H., Gordon J. & Thomas G. The phosphorylation of ribosomal protein S6 in rat tissues following cycloheximide injection, in diabetes, and after denervation of diaphragm. A simple immunological determination of the extent of S6 phosphorylation on protein blots. J. Biol. Chem. 257, 12316–12321 (1982). PubMed
Duncan R. & McConkey E. H. Rapid alterations in initiation rate and recruitment of inactive RNA are temporally correlated with S6 phosphorylation. Eur. J. Biochem. 123, 539–544 (1982). PubMed
Jefferies H. B. et al.. Rapamycin suppresses 5′TOP mRNA translation through inhibition of p70s6k. EMBO J. 16, 3693–3704 (1997). PubMed PMC
Peterson R. T. & Schreiber S. L. Translation control: connecting mitogens and the ribosome. Curr. Biol. 8, 248–250 (1998). PubMed
Shah O. J., Ghosh S. & Hunter T. Mitotic regulation of ribosomal S6 kinase 1 involves Ser/Thr, Pro phosphorylation of consensus and non-consensus sites by Cdc2. J. Biol. Chem. 278, 16433–16442 (2003). PubMed
Kang S. A. et al.. mTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin. Science 341, 1236566 (2013). PubMed PMC
Yu Y., Dumollard R., Rossbach A., Lai F. A. & Swann K. Redistribution of mitochondria leads to bursts of ATP production during spontaneous mouse oocyte maturation. J. Cell. Physiol. 224, 672–680 (2010). PubMed PMC
Yi K. et al.. Sequential actin-based pushing forces drive meiosis I chromosome migration and symmetry breaking in oocytes. J. Cell Biol. 200, 567–576 (2013). PubMed PMC
Amin M. A., Matsunaga S., Uchiyama S. & Fukui K. Nucleophosmin is required for chromosome congression, proper mitotic spindle formation, and kinetochore-microtubule attachment in HeLa cells. FEBS Lett. 582, 3839–3844 (2008). PubMed
Yue Z. et al.. Deconstructing Survivin: comprehensive genetic analysis of Survivin function by conditional knockout in a vertebrate cell line. J. Cell Biol. 183, 279–296 (2008). PubMed PMC
Braddock M. et al.. Intron-less RNA injected into the nucleus of Xenopus oocytes accesses a regulated translation control pathway. Nucleic Acids Res. 22, 5255–5264 (1994). PubMed PMC
Gao S. et al.. Germinal vesicle material is essential for nucleus remodeling after nuclear transfer. Biol. Reprod. 67, 928–934 (2002). PubMed
Polanski Z., Hoffmann S. & Tsurumi C. Oocyte nucleus controls progression through meiotic maturation. Dev. Biol. 281, 184–195 (2005). PubMed
Jones K. T. & Lane S. I. R. Molecular causes of aneuploidy in mammalian eggs. Development 140, 3719–3730 (2013). PubMed
Dieterich D. C. et al.. In situ visualization and dynamics of newly synthesized proteins in rat hippocampal neurons. Nat. Neurosci. 13, 897–905 (2010). PubMed PMC
Hodges C. A. & Hunt P. A. Simultaneous analysis of chromosomes and chromosome associated proteins in mammalian oocytes and embryos. Chromosoma 111, 165–169 (2002). PubMed
Susor A. et al.. Regulation of cap-dependent translation initiation in the early stage porcine parthenotes. Mol. Reprod. Dev. 75, 1716–1725 (2008). PubMed
Bhattacharyya T. et al.. Mechanistic basis of infertility of mouse intersubspecific hybrids. Proc. Natl Acad. Sci. USA 110, E468–E477 (2013). PubMed PMC
Thoreen C. C. et al.. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485, 109–113 (2012). PubMed PMC
Meijer H. A. et al.. Translational repression and eIF4A2 activity are critical for microRNA mediated gene regulation. Science 340, 82–85 (2013). PubMed
Raj A., van den Bogaard P., Rifkin S. A., van Oudenaarden A. & Tyagi S. Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods 5, 877–879 (2008). PubMed PMC
CPEB3 Maintains Developmental Competence of the Oocyte
The translational oscillation in oocyte and early embryo development
A Role of PI3K/Akt Signaling in Oocyte Maturation and Early Embryo Development
Multiple Roles of PLK1 in Mitosis and Meiosis
ncRNA BC1 influences translation in the oocyte
Age-related differences in the translational landscape of mammalian oocytes
Role of Cyclin-Dependent Kinase 1 in Translational Regulation in the M-Phase
Spatio-temporal expression of ANK2 promotes cytokinesis in oocytes
Localization of RNA and translation in the mammalian oocyte and embryo
Importance of ERK1/2 in Regulation of Protein Translation during Oocyte Meiosis
Regulation of 4E-BP1 activity in the mammalian oocyte
Bisphenol S negatively affects the meotic maturation of pig oocytes