Temporal and spatial regulation of translation in the mammalian oocyte via the mTOR-eIF4F pathway

. 2015 Jan 28 ; 6 () : 6078. [epub] 20150128

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25629602

The fully grown mammalian oocyte is transcriptionally quiescent and utilizes only transcripts synthesized and stored during early development. However, we find that an abundant RNA population is retained in the oocyte nucleus and contains specific mRNAs important for meiotic progression. Here we show that during the first meiotic division, shortly after nuclear envelope breakdown, translational hotspots develop in the chromosomal area and in a region that was previously surrounded the nucleus. These distinct translational hotspots are separated by endoplasmic reticulum and Lamin, and disappear following polar body extrusion. Chromosomal translational hotspots are controlled by the activity of the mTOR-eIF4F pathway. Here we reveal a mechanism that-following the resumption of meiosis-controls the temporal and spatial translation of a specific set of transcripts required for normal spindle assembly, chromosome alignment and segregation.

Zobrazit více v PubMed

Curtis D., Lehmann R. & Zamore P. D. Translational regulation in development. Cell 81, 171–178 (1995). PubMed

Raff R. A., Colot H. V., Selvig S. E. & Gross P. R. Oogenetic origin of messenger RNA for embryonic synthesis of microtubule proteins. Nature 235, 211–214 (1972). PubMed

Capco D. G. & Jeffery W. R. Origin and spatial distribution of maternal messenger RNA during oogenesis of an insect, Oncopeltus fasciatus. J. Cell Sci. 39, 63–76 (1979). PubMed

De La Fuente R. et al.. Major chromatin remodeling in the germinal vesicle (GV) of mammalian oocytes is dispensable for global transcriptional silencing but required for centromeric heterochromatin function. Dev. Biol. 275, 447–458 (2004). PubMed

Brandhorst B. P. Informational content of the echinoderm egg. Dev. Biol. (NY) 1, 525–576 (1985). PubMed

Nothias J. Y., Majumder S., Kaneko K. J. & DePamphilis M. L. Regulation of gene expression at the beginning of mammalian development. J. Biol. Chem. 270, 22077–22080 (1995). PubMed

Schuh M. & Ellenberg J. Self-organization of MTOCs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes. Cell 130, 484–498 (2007). PubMed

Kusch J., Liakopoulos D. & Barral Y. Spindle asymmetry: a compass for the cell. Trends Cell Biol. 13, 562–569 (2003). PubMed

King M. L., Messitt T. J. & Mowry K. L. Putting RNAs in the right place at the right time: RNA localization in the frog oocyte. Biol. Cell 97, 19–33 (2005). PubMed

Holt C. E. & Bullock S. L. Subcellular mRNA localization in animal cells and why it matters. Science 326, 1212–1216 (2009). PubMed PMC

Dubowy J. & Macdonald P. M. Localization of mRNAs to the oocyte is common in Drosophila ovaries. Mech. Dev. 70, 193–195 (2013). PubMed

Nieuwkoop P. D. Inductive interactions in early amphibian development and their general nature. J. Embryol. Exp. Morphol. 89, 333–347 (1985). PubMed

Li L., Baibakov B. & Dean J. A subcortical maternal complex essential for preimplantation mouse embryogenesis. Dev. Cell 15, 416–425 (2008). PubMed PMC

Flemr M., Ma J., Schultz R. M. & Svoboda P. P-body loss is concomitant with formation of a messenger RNA storage domain in mouse oocytes. Biol. Reprod. 82, 1008–1017 (2010). PubMed PMC

Mader S., Lee H., Pause A. & Sonenberg N. The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins. Mol. Cell. Biol. 15, 4990–4997 (1995). PubMed PMC

Joshi B. et al.. Phosphorylation of eukaryotic protein synthesis initiation factor 4E at Ser-209. J. Biol. Chem. 270, 14597–14603 (1995). PubMed

Minich W. B., Balasta M. L., Goss D. J. & Rhoads R. E. Chromatographic resolution of in vivo phosphorylated and nonphosphorylated eukaryotic translation initiation factor eIF-4E: increased cap affinity of the phosphorylated form. Proc. Natl Acad. Sci. USA 91, 7668–7672 (1994). PubMed PMC

Scheper G. C. & Proud C. G. Does phosphorylation of the cap-binding protein eIF4E play a role in translation initiation? Eur. J. Biochem. 269, 5350–5359 (2002). PubMed PMC

Gingras A. C. et al.. Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev. 13, 1422–1437 (1999). PubMed PMC

Feoktistova K. et al.. Human eIF4E promotes mRNA restructuring by stimulating eIF4A helicase activity. Proc. Natl Acad. Sci. USA 110, 13339–13344 (2013). PubMed PMC

Koromilas A. E., Lazaris-Karatzas A. & Sonenberg N. mRNAs containing extensive secondary structure in their 5′ non-coding region translate efficiently in cells overexpressing initiation factor eIF-4E. Embo. J. 11, 4153–4158 (1992). PubMed PMC

Jacinto E. et al.. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat. Cell Biol. 6, 1122–1128 (2004). PubMed

Heesom K. J., Gampel A., Mellor H. & Denton R. M. Cell cycle-dependent phosphorylation of the translational repressor eIF-4E binding protein-1 (4E-BP1). Curr. Biol. 11, 1374–1379 (2001). PubMed

Shang Z. F. et al.. 4E-BP1 participates in maintaining spindle integrity and genomic stability via interacting with PLK1. Cell Cycle 11, 3463–3471 (2012). PubMed PMC

Tomek W. et al.. Regulation of translation during in vitro maturation of bovine oocytes: the role of MAP kinase, eIF4E (cap binding protein) phosphorylation, and eIF4E-BP1. Biol. Reprod. 66, 1274–1282 (2002). PubMed

Ellederova Z. et al.. Suppression of translation during in vitro maturation of pig oocytes despite enhanced formation of cap-binding protein complex eIF4F and 4E-BP1 hyperphosphorylation. Mol. Reprod. Dev. 73, 68–76 (2006). PubMed

Romasko E. et al.. Association of maternal mRNA and phosphorylated EIF4EBP1 variants with the spindle in mouse oocytes: localized translational control supporting female meiosis in mammals. Genetics 195, 349–355 (2013). PubMed PMC

Thoreen C. C. et al.. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485, 109–113 (2012). PubMed PMC

Moerke N. J. et al.. Small-molecule inhibition of the interaction between the translation initiation factors eIF4E and eIF4G. Cell 128, 257–267 (2007). PubMed

Stern S., Rayyis A. & Kennedy J. F. Incoporation of amino acids during maturation in vitro by the mouse oocyte: effect of puromycin on protein synthesis. Biol. Reprod. 7, 341–346 (1972). PubMed

Oyadomari S., Harding H. P., Zhang Y., Oyadomari M. & Ron D. De-phosphorylation of translation initiation factor 2α (eIF2α) enhances glucose tolerance and attenuates hepato-steatosis in mice. Cell. Metab. 7, 520–532 (2008). PubMed PMC

Gingras A. C., Raught B. & Sonenberg N. Regulation of translation initiation by FRAP/mTOR. Genes Dev. 15, 807–826 (2001). PubMed

Yamashita R. et al.. Comprehensive detection of human terminal oligo-pyrimidine (TOP) gene and analysis of their characteristics. Nucleic Acids Res. 36, 3707–3715 (2008). PubMed PMC

Fenton T. R. & Gout I. T. Functions and regulation of the 70 kDa ribosomal S6 kinases. Int. J. Biochem. Cell Biol. 43, 47–59 (2011). PubMed

Gradi A. et al.. A novel functional human eukaryotic translation initiation factor 4G. Mol. Cell Biol. 18, 334–342 (1998). PubMed PMC

López de Quinto S., Lafuente E. & Martínez-Salas E. IRES interaction with translation initiation factors: functional characterization of novel RNA contacts with eIF3, eIF4B, and eIF4GII. RNA 7, 1213–1226 (2001). PubMed PMC

Dieterich D. C. et al.. In situ visualization and dynamics of newly synthesized proteins in rat hippocampal neurons. Nat. Neurosci. 13, 897–905 (2010). PubMed PMC

FitzHarris G., Marangos P. & Carroll J. Changes in endoplasmic reticulum structure during mouse oocyte maturation are controlled by the cytoskeleton and cytoplasmic dynein. Dev. Biol. 305, 133–144 (2007). PubMed

Dalton C. M. & Carroll J. Biased inheritance of mitochondria during asymmetric cell division in the mouse oocyte. J. Cell Sci. 126, 2955–2964 (2013). PubMed PMC

Schlaitz A.-L., Thompson J., Wong C. C. L., Yates J. R. 3rd & Heald R. REEP3/4 ensure endoplasmic reticulum clearance from metaphase chromatin and proper nuclear envelope architecture. Dev. Cell 26, 315–323 (2013). PubMed PMC

Navé B. T., Ouwens M., Withers D. J., Alessi D. R. & Shepherd P. R. Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem. J. 344, 427–431 (1999). PubMed PMC

Chiang G. G. & Abraham R. T. Phosphorylation of mammalian target of rapamycin (mTOR) at Ser-2448 is mediated by p70S6 kinase. J. Biol. Chem. 280, 25485–25490 (2005). PubMed

Dufner A. & Thomas G. Ribosomal S6 kinase signaling and the control of translation. Exp. Cell Res. 253, 100–109 (1999). PubMed

Hornsten O. & Meyuhas E. inTranslational Control of Gene Expression (eds Sonenberg N., Hershey J. W. B., Mathews M. B. 671–693Cold Spring Harbor Laboratory Press (2000).

Mamane Y. et al.. Epigenetic activation of a subset of mRNAs by eIF4E explains its effects on cell proliferation. PLoS ONE 2, e242 (2007). PubMed PMC

Pinkstaff J. K., Chappell S. A., Mauro V. P., Edelman G. M. & Krushel L. A. Internal initiation of translation of five dendritically localized neuronal mRNAs. Proc. Natl Acad. Sci. USA 98, 2770–2775 (2001). PubMed PMC

Dollar G., Struckhoff E., Michaud J. & Cohen R. S. Rab11 polarization of the Drosophila oocyte: a novel link between membrane trafficking, microtubule organization, and oskar mRNA localization and translation. Development 129, 517–526 (2002). PubMed

Håvik B., Røkke H., Bårdsen K., Davanger S. & Bramham C. R. Bursts of high-frequency stimulation trigger rapid delivery of pre-existing alpha-CaMKII mRNA to synapses: a mechanism in dendritic protein synthesis during long-term potentiation in adult awake rats. Eur. J. Neurosci. 17, 2679–2689 (2003). PubMed

Kugler J. M. & Lasko P. Localization, anchoring and translational control of oskar, gurken, bicoid and nanos mRNA during Drosophila oogenesis. Fly (Austin) 3, 15–28 (2009). PubMed

Bratu D. P., Catrina I. E. & Marras S. A. E. Tiny molecular beacons for in vivo mRNA detection. Methods Mol. Biol. 714, 141–157 (2011). PubMed

Hutchinson J. N. et al.. A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics 8, 39 (2007). PubMed PMC

König H., Matter N., Bader R., Thiele W. & Müller F. Splicing segregation: the minor spliceosome acts outside the nucleus and controls cell proliferation. Cell 131, 718–729 (2007). PubMed

Watson A. J., Wiemer K. E., Arcellana-Panlilio M. & Schultz G. A. U2 small nuclear RNA localization and expression during bovine preimplantation development. Mol. Reprod. Dev. 31, 231–240 (1992). PubMed

Hashimoto N. & Kishimoto T. Regulation of meiotic metaphase by a cytoplasmic maturation-promoting factor during mouse oocyte maturation. Dev. Biol. 126, 242–252 (1988). PubMed

Richter J. D. & Sonenberg N. Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature 433, 477–480 (2005). PubMed

Merrick W. C. Cap-dependent and cap-independent translation in eukaryotic systems. Gene 332, 1–11 (2004). PubMed

Kalitsis P., Earle E., Fowler K. J. & Choo K. H. Bub3 gene disruption in mice reveals essential mitotic spindle checkpoint function during early embryogenesis. Genes Dev. 14, 2277–2282 (2000). PubMed PMC

Cuomo M. E. et al.. p53-Driven apoptosis limits centrosome amplification and genomic instability downstream of NPM1 phosphorylation. Nat. Cell Biol. 10, 723–730 (2008). PubMed

Li M. et al.. Bub3 is a spindle assembly checkpoint protein regulating chromosome segregation during mouse oocyte meiosis. PLoS ONE 4, e7701 (2009). PubMed PMC

Van der Horst A. & Lens S. M. A. Cell division: control of the chromosomal passenger complex in time and space. Chromosoma 123, 25–42 (2013). PubMed PMC

Delacour-Larose M., Molla A., Skoufias D. A., Margolis R. L. & Dimitrov S. Distinct dynamics of Aurora B and Survivin during mitosis. Cell Cycle 3, 1418–1426 (2004). PubMed

Sebestova J., Danylevska A., Novakova L., Kubelka M. & Anger M. Lack of response to unaligned chromosomes in mammalian female gametes. Cell Cycle 11, 3011–3018 (2012). PubMed PMC

Nielsen P. J., Manchester K. L., Towbin H., Gordon J. & Thomas G. The phosphorylation of ribosomal protein S6 in rat tissues following cycloheximide injection, in diabetes, and after denervation of diaphragm. A simple immunological determination of the extent of S6 phosphorylation on protein blots. J. Biol. Chem. 257, 12316–12321 (1982). PubMed

Duncan R. & McConkey E. H. Rapid alterations in initiation rate and recruitment of inactive RNA are temporally correlated with S6 phosphorylation. Eur. J. Biochem. 123, 539–544 (1982). PubMed

Jefferies H. B. et al.. Rapamycin suppresses 5′TOP mRNA translation through inhibition of p70s6k. EMBO J. 16, 3693–3704 (1997). PubMed PMC

Peterson R. T. & Schreiber S. L. Translation control: connecting mitogens and the ribosome. Curr. Biol. 8, 248–250 (1998). PubMed

Shah O. J., Ghosh S. & Hunter T. Mitotic regulation of ribosomal S6 kinase 1 involves Ser/Thr, Pro phosphorylation of consensus and non-consensus sites by Cdc2. J. Biol. Chem. 278, 16433–16442 (2003). PubMed

Kang S. A. et al.. mTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin. Science 341, 1236566 (2013). PubMed PMC

Yu Y., Dumollard R., Rossbach A., Lai F. A. & Swann K. Redistribution of mitochondria leads to bursts of ATP production during spontaneous mouse oocyte maturation. J. Cell. Physiol. 224, 672–680 (2010). PubMed PMC

Yi K. et al.. Sequential actin-based pushing forces drive meiosis I chromosome migration and symmetry breaking in oocytes. J. Cell Biol. 200, 567–576 (2013). PubMed PMC

Amin M. A., Matsunaga S., Uchiyama S. & Fukui K. Nucleophosmin is required for chromosome congression, proper mitotic spindle formation, and kinetochore-microtubule attachment in HeLa cells. FEBS Lett. 582, 3839–3844 (2008). PubMed

Yue Z. et al.. Deconstructing Survivin: comprehensive genetic analysis of Survivin function by conditional knockout in a vertebrate cell line. J. Cell Biol. 183, 279–296 (2008). PubMed PMC

Braddock M. et al.. Intron-less RNA injected into the nucleus of Xenopus oocytes accesses a regulated translation control pathway. Nucleic Acids Res. 22, 5255–5264 (1994). PubMed PMC

Gao S. et al.. Germinal vesicle material is essential for nucleus remodeling after nuclear transfer. Biol. Reprod. 67, 928–934 (2002). PubMed

Polanski Z., Hoffmann S. & Tsurumi C. Oocyte nucleus controls progression through meiotic maturation. Dev. Biol. 281, 184–195 (2005). PubMed

Jones K. T. & Lane S. I. R. Molecular causes of aneuploidy in mammalian eggs. Development 140, 3719–3730 (2013). PubMed

Dieterich D. C. et al.. In situ visualization and dynamics of newly synthesized proteins in rat hippocampal neurons. Nat. Neurosci. 13, 897–905 (2010). PubMed PMC

Hodges C. A. & Hunt P. A. Simultaneous analysis of chromosomes and chromosome associated proteins in mammalian oocytes and embryos. Chromosoma 111, 165–169 (2002). PubMed

Susor A. et al.. Regulation of cap-dependent translation initiation in the early stage porcine parthenotes. Mol. Reprod. Dev. 75, 1716–1725 (2008). PubMed

Bhattacharyya T. et al.. Mechanistic basis of infertility of mouse intersubspecific hybrids. Proc. Natl Acad. Sci. USA 110, E468–E477 (2013). PubMed PMC

Thoreen C. C. et al.. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485, 109–113 (2012). PubMed PMC

Meijer H. A. et al.. Translational repression and eIF4A2 activity are critical for microRNA mediated gene regulation. Science 340, 82–85 (2013). PubMed

Raj A., van den Bogaard P., Rifkin S. A., van Oudenaarden A. & Tyagi S. Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods 5, 877–879 (2008). PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

CPEB3 Maintains Developmental Competence of the Oocyte

. 2024 May 16 ; 13 (10) : . [epub] 20240516

The translational oscillation in oocyte and early embryo development

. 2023 Dec 11 ; 51 (22) : 12076-12091.

Spatial positioning of preimplantation mouse embryo cells is regulated by mTORC1 and m7G-cap-dependent translation at the 8- to 16-cell transition

. 2023 Aug ; 13 (8) : 230081. [epub] 20230809

A Role of PI3K/Akt Signaling in Oocyte Maturation and Early Embryo Development

. 2023 Jul 12 ; 12 (14) : . [epub] 20230712

Multiple Roles of PLK1 in Mitosis and Meiosis

. 2023 Jan 02 ; 12 (1) : . [epub] 20230102

An Interplay between Epigenetics and Translation in Oocyte Maturation and Embryo Development: Assisted Reproduction Perspective

. 2022 Jul 13 ; 10 (7) : . [epub] 20220713

ncRNA BC1 influences translation in the oocyte

. 2021 Nov ; 18 (11) : 1893-1904. [epub] 20210208

Age-related differences in the translational landscape of mammalian oocytes

. 2020 Oct ; 19 (10) : e13231. [epub] 20200920

Role of Cyclin-Dependent Kinase 1 in Translational Regulation in the M-Phase

. 2020 Jun 27 ; 9 (7) : . [epub] 20200627

The most abundant maternal lncRNA Sirena1 acts post-transcriptionally and impacts mitochondrial distribution

. 2020 Apr 06 ; 48 (6) : 3211-3227.

Identifying the Translatome of Mouse NEBD-Stage Oocytes via SSP-Profiling; A Novel Polysome Fractionation Method

. 2020 Feb 13 ; 21 (4) : . [epub] 20200213

Spatio-temporal expression of ANK2 promotes cytokinesis in oocytes

. 2019 Sep 11 ; 9 (1) : 13121. [epub] 20190911

Increased Expression of Maturation Promoting Factor Components Speeds Up Meiosis in Oocytes from Aged Females

. 2018 Sep 19 ; 19 (9) : . [epub] 20180919

Localization of RNA and translation in the mammalian oocyte and embryo

. 2018 ; 13 (3) : e0192544. [epub] 20180312

Importance of ERK1/2 in Regulation of Protein Translation during Oocyte Meiosis

. 2018 Mar 01 ; 19 (3) : . [epub] 20180301

Regulation of 4E-BP1 activity in the mammalian oocyte

. 2017 May 19 ; 16 (10) : 927-939. [epub] 20170308

Bisphenol S negatively affects the meotic maturation of pig oocytes

. 2017 Mar 28 ; 7 (1) : 485. [epub] 20170328

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...