• This record comes from PubMed

The translational oscillation in oocyte and early embryo development

. 2023 Dec 11 ; 51 (22) : 12076-12091.

Language English Country Great Britain, England Media print

Document type Journal Article

Grant support
R01 HD102533 NICHD NIH HHS - United States
R01HD102533 NIH HHS - United States

Translation is critical for development as transcription in the oocyte and early embryo is silenced. To illustrate the translational changes during meiosis and consecutive two mitoses of the oocyte and early embryo, we performed a genome-wide translatome analysis. Acquired data showed significant and uniform activation of key translational initiation and elongation axes specific to M-phases. Although global protein synthesis decreases in M-phases, translation initiation and elongation activity increases in a uniformly fluctuating manner, leading to qualitative changes in translation regulation via the mTOR1/4F/eEF2 axis. Overall, we have uncovered a highly dynamic and oscillatory pattern of translational reprogramming that contributes to the translational regulation of specific mRNAs with different modes of polysomal occupancy/translation that are important for oocyte and embryo developmental competence. Our results provide new insights into the regulation of gene expression during oocyte meiosis as well as the first two embryonic mitoses and show how temporal translation can be optimized. This study is the first step towards a comprehensive analysis of the molecular mechanisms that not only control translation during early development, but also regulate translation-related networks employed in the oocyte-to-embryo transition and embryonic genome activation.

See more in PubMed

Buccitelli C., Selbach M.. mRNAs, proteins and the emerging principles of gene expression control. Nat. Rev. Genet. 2020; 21:630–644. PubMed

Hu W., Zeng H., Shi Y., Zhou C., Huang J., Jia L., Xu S., Feng X., Zeng Y., Xiong T.et al. .. Single-cell transcriptome and translatome dual-omics reveals potential mechanisms of human oocyte maturation. Nat. Commun. 2022; 13:5114. PubMed PMC

Jansova D., Tetkova A., Koncicka M., Kubelka M., Susor A.. Localization of RNA and translation in the mammalian oocyte and embryo. PLoS One. 2018; 13:e0192544. PubMed PMC

De La Fuente R. Chromatin modifications in the germinal vesicle (GV) of mammalian oocytes. Dev. Biol. 2006; 292:1–12. PubMed

Li L., Zheng P., Dean J.. Maternal control of early mouse development. Development. 2010; 137:859–870. PubMed PMC

Svoboda P. Mammalian zygotic genome activation. Semin. Cell Dev. Biol. 2018; 84:118–126. PubMed

Sha Q.-Q., Zhang J., Fan H.-Y.. A story of birth and death: mRNA translation and clearance at the onset of maternal-to-zygotic transition in mammals†. Biol. Reprod. 2019; 101:579–590. PubMed

Christou-Kent M., Dhellemmes M., Lambert E., Ray P.F., Arnoult C.. Diversity of RNA-binding proteins modulating post-transcriptional regulation of protein expression in the maturing mammalian oocyte. Cells. 2020; 9:E662. PubMed PMC

Reyes J.M., Ross P.J.. Cytoplasmic polyadenylation in mammalian oocyte maturation. Wiley Interdiscip. Rev. RNA. 2016; 7:71–89. PubMed

Susor A., Jansova D., Anger M., Kubelka M.. Translation in the mammalian oocyte in space and time. Cell Tissue Res. 2016; 363:69–84. PubMed

Susor A., Kubelka M.. Translational regulation in the mammalian oocyte. Results Probl. Cell Differ. 2017; 63:257–295. PubMed

Kalous J., Tetkova A., Kubelka M., Susor A.. Importance of ERK1/2 in regulation of protein translation during oocyte meiosis. Int. J. Mol. Sci. 2018; 19:698. PubMed PMC

Hizli A.A., Chi Y., Swanger J., Carter J.H., Liao Y., Welcker M., Ryazanov A.G., Clurman B.E.. Phosphorylation of eukaryotic elongation factor 2 (eEF2) by cyclin A–cyclin-dependent kinase 2 regulates its inhibition by eEF2 kinase. Mol. Cell Biol. 2013; 33:596–604. PubMed PMC

Susor A., Jansova D., Cerna R., Danylevska A., Anger M., Toralova T., Malik R., Supolikova J., Cook M.S., Oh J.S.et al. .. Temporal and spatial regulation of translation in the mammalian oocyte via the mTOR-eIF4F pathway. Nat. Commun. 2015; 6:6078. PubMed PMC

Sivan G., Elroy-Stein O.. Regulation of mRNA Translation during cellular division. Cell Cycle. 2008; 7:741–744. PubMed

Tanenbaum M.E., Stern-Ginossar N., Weissman J.S., Vale R.D.. Regulation of mRNA translation during mitosis. eLife. 2015; 4:e07957. PubMed PMC

Susor A., Jelínková L., Karabínová P., Torner H., Tomek W., Kovárová H., Kubelka M.. Regulation of cap-dependent translation initiation in the early stage porcine parthenotes. Mol. Reprod. Dev. 2008; 75:1716–1725. PubMed

Jansova D., Koncicka M., Tetkova A., Cerna R., Malik R., del Llano E., Kubelka M., Susor A.. Regulation of 4E-BP1 activity in the mammalian oocyte. Cell Cycle. 2017; 16:927–939. PubMed PMC

Tomek W., Melo Sterza F.A., Kubelka M., Wollenhaupt K., Torner H., Anger M., Kanitz W.. Regulation of translation during in vitro maturation of bovine oocytes: the role of MAP kinase, eIF4E (cap binding protein) phosphorylation, and eIF4E-BP1. Biol. Reprod. 2002; 66:1274–1282. PubMed

Park J.-E., Yi H., Kim Y., Chang H., Kim V.N.. Regulation of poly(A) tail and translation during the somatic cell cycle. Mol Cell. 2016; 62:462–471. PubMed

Aleshkina D., Iyyappan R., Lin C.J., Masek T., Pospisek M., Susor A.. ncRNA BC1 influences translation in the oocyte. RNA Biol. 2021; 18:1893–1904. PubMed PMC

Tetkova A., Hancova M.. Mouse oocyte isolation, cultivation and RNA microinjection. Bio-protocol. 2016; 6:e1729.

Masek T., Del Llano E., Gahurova L., Kubelka M., Susor A., Roucova K., Lin C.-J., Bruce A.W., Pospisek M.. Identifying the translatome of mouse NEBD-stage oocytes via SSP-profiling; a novel polysome fractionation method. Int. J. Mol. Sci. 2020; 21:E1254. PubMed PMC

Oyadomari S., Harding H.P., Zhang Y., Oyadomari M., Ron D.. Dephosphorylation of translation initiation factor 2alpha enhances glucose tolerance and attenuates hepatosteatosis in mice. Cell Metab. 2008; 7:520–532. PubMed PMC

Cooper K.F., Strich R.. Meiotic control of the APC/C: similarities & differences from mitosis. Cell Division. 2011; 6:16. PubMed PMC

Sha Q.-Q., Dai X.-X., Dang Y., Tang F., Liu J., Zhang Y.-L., Fan H.-Y.. A MAPK cascade couples maternal mRNA translation and degradation to meiotic cell cycle progression in mouse oocytes. Development. 2017; 144:452–463. PubMed

Pearce L.R., Alton G.R., Richter D.T., Kath J.C., Lingardo L., Chapman J., Hwang C., Alessi D.R.. Characterization of PF-4708671, a novel and highly specific inhibitor of p70 ribosomal S6 kinase (S6K1). Biochem J. 2010; 431:245–255. PubMed

Gholami A., Minai-Tehrani D., Mahdizadeh S.J., Saenz-Mendez P., Eriksson L.A.. Structural insights into Pseudomonas aeruginosa exotoxin A–elongation factor 2 interactions: a molecular dynamics study. J. Chem. Inf. Model. 2023; 63:1578–1591. PubMed PMC

Zhu H., Yang X., Liu J., Zhou L., Zhang C., Xu L., Qin Q., Zhan L., Lu J., Cheng H.et al. .. Eukaryotic elongation factor 2 kinase confers tolerance to stress conditions in cancer cells. Cell Stress and Chaperones. 2015; 20:217–220. PubMed PMC

Hashimoto N., Kishimoto T.. Regulation of meiotic metaphase by a cytoplasmic maturation-promoting factor during mouse oocyte maturation. Dev. Biol. 1988; 126:242–252. PubMed

Wang Q., Latham K.E.. Requirement for protein synthesis during embryonic genome activation in mice. Mol. Reprod. Dev. 1997; 47:265–270. PubMed

Barrett T., Wilhite S.E., Ledoux P., Evangelista C., Kim I.F., Tomashevsky M., Marshall K.A., Phillippy K.H., Sherman P.M., Holko M.et al. .. NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res. 2013; 41:D991–995. PubMed PMC

Dong M., Chen J., Deng Y., Zhang D., Dong L., Sun D.. H2AFZ is a prognostic biomarker correlated to TP53 mutation and immune infiltration in hepatocellular carcinoma. Front. Oncol. 2021; 11:701736. PubMed PMC

Kapanidou M., Curtis N.L., Bolanos-Garcia V.M.. Cdc20: at the crossroads between chromosome segregation and mitotic exit. Trends Biochem. Sci. 2017; 42:193–205. PubMed

Régnier V., Vagnarelli P., Fukagawa T., Zerjal T., Burns E., Trouche D., Earnshaw W., Brown W.. CENP-A is required for accurate chromosome segregation and sustained kinetochore association of BubR1. Mol. Cell. Biol. 2005; 25:3967–3981. PubMed PMC

Ganesh S., Horvat F., Drutovic D., Efenberkova M., Pinkas D., Jindrova A., Pasulka J., Iyyappan R., Malik R., Susor A.et al. .. The most abundant maternal lncRNA Sirena1 acts post-transcriptionally and impacts mitochondrial distribution. Nucleic Acids Res. 2020; 48:3211–3227. PubMed PMC

Vastenhouw N.L., Cao W.X., Lipshitz H.D.. The maternal-to-zygotic transition revisited. Development. 2019; 146:dev161471. PubMed

Zhu L., Zhou T., Iyyappan R., Ming H., Dvoran M., Wang Y., Chen Q., Roberts R.M., Susor A., Jiang Z.. High-resolution ribosome profiling reveals translational selectivity for transcripts in bovine preimplantation embryo development. Development. 2022; 149:dev200819. PubMed PMC

Smith E.M., Proud C.G.. cdc2-cyclin B regulates eEF2 kinase activity in a cell cycle- and amino acid-dependent manner. EMBO J. 2008; 27:1005–1016. PubMed PMC

Nygård O., Nilsson A., Carlberg U., Nilsson L., Amons R.. Phosphorylation regulates the activity of the eEF-2-specific Ca(2+)- and calmodulin-dependent protein kinase III. J. Biol. Chem. 1991; 266:16425–16430. PubMed

Gahurova L., Tomankova J., Cerna P., Bora P., Kubickova M., Virnicchi G., Kovacicova K., Potesil D., Hruska P., Zdrahal Z.et al. .. Spatial positioning of preimplantation mouse embryo blastomeres is regulated by mTORC1 and 7mG-cap dependent translation at the 8- to 16-cell transition. Open Biol. 2023; 13:230081. PubMed PMC

Meyuhas O., Dreazen A.. Ribosomal protein S6 kinase from TOP mRNAs to cell size. Prog. Mol. Biol. Transl. Sci. 2009; 90:109–153. PubMed

Thoreen C.C., Chantranupong L., Keys H.R., Wang T., Gray N.S., Sabatini D.M.. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature. 2012; 485:109–113. PubMed PMC

Sabatini D.M. mTOR and cancer: insights into a complex relationship. Nat. Rev. Cancer. 2006; 6:729–734. PubMed

Dai X.-X., Pi S.-B., Zhao L.-W., Wu Y.-W., Shen J.-L., Zhang S.-Y., Sha Q.-Q., Fan H.-Y.. PABPN1 functions as a hub in the assembly of nuclear poly(A) domains that are essential for mouse oocyte development. Sci. Adv. 2022; 8:eabn9016. PubMed PMC

Kim J., Lee G.. Metabolic Control of m6A RNA Modification. Metabolites. 2021; 11:80. PubMed PMC

Shatsky I.N., Dmitriev S.E., Andreev D.E., Terenin I.M.. Transcriptome-wide studies uncover the diversity of modes of mRNA recruitment to eukaryotic ribosomes. Crit. Rev. Biochem. Mol. Biol. 2014; 49:164–177. PubMed

Yao H., Gao C.-C., Zhang D., Xu J., Song G., Fan X., Liang D.-B., Chen Y.-S., Li Q., Guo Y.et al. .. scm6A-seq reveals single-cell landscapes of the dynamic m6A during oocyte maturation and early embryonic development. Nat. Commun. 2023; 14:315. PubMed PMC

Zhao B.S., Roundtree I.A., He C.. Post-transcriptional gene regulation by mRNA modifications. Nat. Rev. Mol. Cell Biol. 2017; 18:31–42. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...