Localization of RNA and translation in the mammalian oocyte and embryo
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29529035
PubMed Central
PMC5846722
DOI
10.1371/journal.pone.0192544
PII: PONE-D-17-30012
Knihovny.cz E-zdroje
- MeSH
- embryo savčí metabolismus ultrastruktura MeSH
- kultivované buňky MeSH
- lidé MeSH
- messenger RNA analýza genetika MeSH
- myši MeSH
- oocyty metabolismus ultrastruktura MeSH
- proteiny vázající RNA analýza genetika MeSH
- proteosyntéza * MeSH
- transkriptom MeSH
- vývojová regulace genové exprese * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- messenger RNA MeSH
- proteiny vázající RNA MeSH
The tight correlation between mRNA distribution and subsequent protein localization and function indicate a major role for mRNA localization within the cell. RNA localization, followed by local translation, presents a mechanism for spatial and temporal gene expression regulation utilized by various cell types. However, little is known about mRNA localization and translation in the mammalian oocyte and early embryo. Importantly, fully-grown oocyte becomes transcriptionally inactive and only utilizes transcripts previously synthesized and stored during earlier development. We discovered an abundant RNA population in the oocyte and early embryo nucleus together with RNA binding proteins. We also characterized specific ribosomal proteins, which contribute to translation in the oocyte and embryo. By applying selected markers to mouse and human oocytes, we found that there might be a similar mechanism of RNA metabolism in both species. In conclusion, we visualized the localization of RNAs and translation machinery in the oocyte, that could shed light on this terra incognita of these unique cell types in mouse and human.
Department of Cell Biology Faculty of Science Charles University Prague Prague 2 Czech Republic
Institute of Animal Physiology and Genetics CAS Libechov Czech Republic
Zobrazit více v PubMed
Schultz RM. Regulation of zygotic gene activation in the mouse. BioEssays News Rev Mol Cell Dev Biol. 1993;15: 531–538. doi: 10.1002/bies.950150806 PubMed DOI
Ellederova Z, Kovarova H, Melo-Sterza F, Livingstone M, Tomek W, Kubelka M. Suppression of translation during in vitro maturation of pig oocytes despite enhanced formation of cap-binding protein complex eIF4F and 4E-BP1 hyperphosphorylation. Mol Reprod Dev. 2006;73: 68–76. doi: 10.1002/mrd.20368 PubMed DOI
Tomek W, Melo Sterza FA, Kubelka M, Wollenhaupt K, Torner H, Anger M, et al. Regulation of translation during in vitro maturation of bovine oocytes: the role of MAP kinase, eIF4E (cap binding protein) phosphorylation, and eIF4E-BP1. Biol Reprod. 2002;66: 1274–1282. PubMed
Flemr M, Ma J, Schultz RM, Svoboda P. P-body loss is concomitant with formation of a messenger RNA storage domain in mouse oocytes. Biol Reprod. 2010;82: 1008–1017. doi: 10.1095/biolreprod.109.082057 PubMed DOI PMC
Femino AM, Fay FS, Fogarty K, Singer RH. Visualization of single RNA transcripts in situ. Science. 1998;280: 585–590. PubMed
Trcek T, Chao JA, Larson DR, Park HY, Zenklusen D, Shenoy SM, et al. Single-mRNA counting using fluorescent in situ hybridization in budding yeast. Nat Protoc. 2012;7: 408–419. doi: 10.1038/nprot.2011.451 PubMed DOI PMC
Cabili MN, Dunagin MC, McClanahan PD, Biaesch A, Padovan-Merhar O, Regev A, et al. Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution. Genome Biol. 2015;16: 20 doi: 10.1186/s13059-015-0586-4 PubMed DOI PMC
Susor A, Jansova D, Cerna R, Danylevska A, Anger M, Toralova T, et al. Temporal and spatial regulation of translation in the mammalian oocyte via the mTOR-eIF4F pathway. Nat Commun. 2015;6: 6078 doi: 10.1038/ncomms7078 PubMed DOI PMC
Susor A, Kubelka M. Translational Regulation in the Mammalian Oocyte Oocytes: Springer, Cham; 2017. pp. 257–295. doi: 10.1007/978-3-319-60855-6_12 PubMed DOI
Blower MD, Feric E, Weis K, Heald R. Genome-wide analysis demonstrates conserved localization of messenger RNAs to mitotic microtubules. J Cell Biol. 2007;179: 1365–1373. doi: 10.1083/jcb.200705163 PubMed DOI PMC
Groisman I, Huang Y-S, Mendez R, Cao Q, Theurkauf W, Richter JD. CPEB, Maskin, and Cyclin B1 mRNA at the Mitotic Apparatus: Implications for Local Translational Control of Cell Division. Cell. 2000;103: 435–447. doi: 10.1016/S0092-8674(00)00135-5 PubMed DOI
VerMilyea MD, Maneck M, Yoshida N, Blochberger I, Suzuki E, Suzuki T, et al. Transcriptome asymmetry within mouse zygotes but not between early embryonic sister blastomeres. EMBO J. 2011;30: 1841–1851. doi: 10.1038/emboj.2011.92 PubMed DOI PMC
Becalska AN, Gavis ER. Lighting up mRNA localization in Drosophila oogenesis. Dev Camb Engl. 2009;136: 2493–2503. doi: 10.1242/dev.032391 PubMed DOI PMC
Johnstone O, Lasko and P. Translational Regulation and RNA Localization in Drosophila Oocytes and Embryos. Annu Rev Genet. 2001;35: 365–406. doi: 10.1146/annurev.genet.35.102401.090756 PubMed DOI
King ML, Messitt TJ, Mowry KL. Putting RNAs in the right place at the right time: RNA localization in the frog oocyte. Biol Cell. 2005;97: 19–33. doi: 10.1042/BC20040067 PubMed DOI
Kloc M, Etkin LD. RNA localization mechanisms in oocytes. J Cell Sci. 2005;118: 269–282. doi: 10.1242/jcs.01637 PubMed DOI
Medioni C, Mowry K, Besse F. Principles and roles of mRNA localization in animal development. Dev Camb Engl. 2012;139: 3263–3276. doi: 10.1242/dev.078626 PubMed DOI PMC
Müller-McNicoll M, Neugebauer KM. How cells get the message: dynamic assembly and function of mRNA-protein complexes. Nat Rev Genet. 2013;14: 275–287. doi: 10.1038/nrg3434 PubMed DOI
Jansova D, Koncicka M, Tetkova A, Cerna R, Malik R, Del Llano E, et al. Regulation of 4E-BP1 activity in the mammalian oocyte. Cell Cycle Georget Tex. 2017; 1–13. doi: 10.1080/15384101.2017.1295178 PubMed DOI PMC
Richter JD. CPEB: a life in translation. Trends Biochem Sci. 2007;32: 279–285. doi: 10.1016/j.tibs.2007.04.004 PubMed DOI
Komrskova P, Susor A, Malik R, Prochazkova B, Liskova L, Supolikova J, et al. Aurora kinase A is not involved in CPEB1 phosphorylation and cyclin B1 mRNA polyadenylation during meiotic maturation of porcine oocytes. PloS One. 2014;9: e101222 doi: 10.1371/journal.pone.0101222 PubMed DOI PMC
Görlach M, Burd CG, Portman DS, Dreyfuss G. The hnRNP proteins. Mol Biol Rep. 1993;18: 73–78. PubMed
Piñol-Roma S, Dreyfuss G. Shuttling of pre-mRNA binding proteins between nucleus and cytoplasm. Nature. 1992;355: 730–732. doi: 10.1038/355730a0 PubMed DOI
Burd CG, Dreyfuss G. RNA binding specificity of hnRNP A1: significance of hnRNP A1 high-affinity binding sites in pre-mRNA splicing. EMBO J. 1994;13: 1197–1204. PubMed PMC
Jean-Philippe J, Paz S, Caputi M. hnRNP A1: The Swiss Army Knife of Gene Expression. Int J Mol Sci. 2013;14: 18999–19024. doi: 10.3390/ijms140918999 PubMed DOI PMC
Chan CC, Dostie J, Diem MD, Feng W, Mann M, Rappsilber J, et al. eIF4A3 is a novel component of the exon junction complex. RNA. 2004;10: 200–209. doi: 10.1261/rna.5230104 PubMed DOI PMC
Wang Z, Murigneux V, Le Hir H. Transcriptome-wide modulation of splicing by the exon junction complex. Genome Biol. 2014;15 doi: 10.1186/s13059-014-0551-7 PubMed DOI PMC
Inoue K, Ohno M, Sakamoto H, Shimura Y. Effect of the cap structure on pre-mRNA splicing in Xenopus oocyte nuclei. Genes Dev. 1989;3: 1472–1479. PubMed
Monti M, Zanoni M, Calligaro A, Ko MSH, Mauri P, Redi CA. Developmental Arrest and Mouse Antral Not-Surrounded Nucleolus Oocytes. Biol Reprod. 2013;88: 2 doi: 10.1095/biolreprod.112.103887 PubMed DOI PMC
Clegg KB, Pikó L. RNA synthesis and cytoplasmic polyadenylation in the one-cell mouse embryo. Nature. 1982;295: 342–345. doi: 10.1038/295342a0 PubMed DOI
Zeng F, Baldwin DA, Schultz RM. Transcript profiling during preimplantation mouse development. Dev Biol. 2004;272: 483–496. doi: 10.1016/j.ydbio.2004.05.018 PubMed DOI
Su Y-Q, Sugiura K, Woo Y, Wigglesworth K, Kamdar S, Affourtit J, et al. Selective degradation of transcripts during meiotic maturation of mouse oocytes. Dev Biol. 2007;302: 104–117. doi: 10.1016/j.ydbio.2006.09.008 PubMed DOI PMC
Ben-Shem A, Garreau de Loubresse N, Melnikov S, Jenner L, Yusupova G, Yusupov M. The structure of the eukaryotic ribosome at 3.0 Å resolution. Science. 2011;334: 1524–1529. doi: 10.1126/science.1212642 PubMed DOI
Krieg J, Hofsteenge J, Thomas G. Identification of the 40 S ribosomal protein S6 phosphorylation sites induced by cycloheximide. J Biol Chem. 1988;263: 11473–11477. PubMed
Rosner M, Fuchs C, Dolznig H, Hengstschläger M. Different cytoplasmic/nuclear distribution of S6 protein phosphorylated at S240/244 and S235/236. Amino Acids. 2011;40: 595–600. doi: 10.1007/s00726-010-0684-2 PubMed DOI
Ruvinsky I, Meyuhas O. Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. Trends Biochem Sci. 2006;31: 342–348. doi: 10.1016/j.tibs.2006.04.003 PubMed DOI
Meyuhas O, Dreazen A. Ribosomal protein S6 kinase from TOP mRNAs to cell size. Prog Mol Biol Transl Sci. 2009;90: 109–153. doi: 10.1016/S1877-1173(09)90003-5 PubMed DOI
Kim T-H, Leslie P, Zhang Y. Ribosomal proteins as unrevealed caretakers for cellular stress and genomic instability. Oncotarget. 2014;5: 860–871. doi: 10.18632/oncotarget.1784 PubMed DOI PMC
Zhou X, Hao Q, Liao J, Zhang Q, Lu H. Ribosomal Protein S14 Unties the MDM2-p53 Loop Upon Ribosomal Stress. Oncogene. 2013;32: 388–396. doi: 10.1038/onc.2012.63 PubMed DOI PMC
Jansova D. Single Molecule RNA FISH in the Mammalian Oocyte. Bio-protocol. 2015;2015: e1666 https://doi.org/10.21769/BioProtoc.1666 DOI
Lee JH, Daugharthy ER, Scheiman J, Kalhor R, Ferrante TC, Terry R, et al. Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues. Nat Protoc. 2015;10: 442–458. doi: 10.1038/nprot.2014.191 PubMed DOI PMC
Machleidt T, Robers M, Hanson GT. Protein labeling with FlAsH and ReAsH. Methods Mol Biol Clifton NJ. 2007;356: 209–220. PubMed
Rodriguez AJ, Shenoy SM, Singer RH, Condeelis J. Visualization of mRNA translation in living cells. J Cell Biol. 2006;175: 67–76. doi: 10.1083/jcb.200512137 PubMed DOI PMC
Tetkova A, Hancova M. Mouse Oocyte Isolation, Cultivation and RNA Microinjection. BIO-Protoc. 2016;6 doi: 10.21769/BioProtoc.1729 DOI
Jambor H, Surendranath V, Kalinka AT, Mejstrik P, Saalfeld S, Tomancak P. Systematic imaging reveals features and changing localization of mRNAs in Drosophila development. eLife. 2015;4 doi: 10.7554/eLife.05003 PubMed DOI PMC
Clegg KB, Pikó L. Poly(A) length, cytoplasmic adenylation and synthesis of poly(A)+ RNA in early mouse embryos. Dev Biol. 1983;95: 331–341. PubMed
Larsson C, Grundberg I, Söderberg O, Nilsson M. In situ detection and genotyping of individual mRNA molecules. Nat Methods. 2010;7: 395–397. doi: 10.1038/nmeth.1448 PubMed DOI
Bochnig P, Reuter R, Bringmann P, Lührmann R. A monoclonal antibody against 2,2,7-trimethylguanosine that reacts with intact, class U, small nuclear ribonucleoproteins as well as with 7-methylguanosine-capped RNAs. Eur J Biochem. 1987;168: 461–467. PubMed
Elela SA, Nazar RN. Role of the 5.8S rRNA in ribosome translocation. Nucleic Acids Res. 1997;25: 1788–1794. doi: 10.1093/nar/25.9.1788 PubMed DOI PMC
Lerner EA, Lerner MR, Janeway CA, Steitz JA. Monoclonal antibodies to nucleic acid-containing cellular constituents: probes for molecular biology and autoimmune disease. Proc Natl Acad Sci U S A. 1981;78: 2737–2741. PubMed PMC
Miyagawa R, Tano K, Mizuno R, Nakamura Y, Ijiri K, Rakwal R, et al. Identification of cis- and trans-acting factors involved in the localization of MALAT-1 noncoding RNA to nuclear speckles. RNA. 2012;18: 738–751. doi: 10.1261/rna.028639.111 PubMed DOI PMC
Deshler JO, Highett MI, Abramson T, Schnapp BJ. A highly conserved RNA-binding protein for cytoplasmic mRNA localization in vertebrates. Curr Biol. 1998;8: 489–496. doi: 10.1016/S0960-9822(98)70200-3 PubMed DOI
Tolino M, Köhrmann M, Kiebler MA. RNA-binding proteins involved in RNA localization and their implications in neuronal diseases. Eur J Neurosci. 2012;35: 1818–1836. doi: 10.1111/j.1460-9568.2012.08160.x PubMed DOI
Zhang Z, Wang Y, Jiang Y, Lin P, Jia X, Zou Z. Ribosomal protein L24 is differentially expressed in ovary and testis of the marine shrimp Marsupenaeus japonicus. Comp Biochem Physiol B Biochem Mol Biol. 2007;147: 466–474. doi: 10.1016/j.cbpb.2007.02.013 PubMed DOI
Dreyfuss G, Kim VN, Kataoka N. Messenger-RNA-binding proteins and the messages they carry. Nat Rev Mol Cell Biol. 2002;3: 195–205. doi: 10.1038/nrm760 PubMed DOI
Shibuya T, Tange TØ, Sonenberg N, Moore MJ. eIF4AIII binds spliced mRNA in the exon junction complex and is essential for nonsense-mediated decay. Nat Struct Mol Biol. 2004;11: 346–351. doi: 10.1038/nsmb750 PubMed DOI
Gingras AC, Gygi SP, Raught B, Polakiewicz RD, Abraham RT, Hoekstra MF, et al. Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev. 1999;13: 1422–1437. PubMed PMC
Romasko EJ, Amarnath D, Midic U, Latham KE. Association of maternal mRNA and phosphorylated EIF4EBP1 variants with the spindle in mouse oocytes: localized translational control supporting female meiosis in mammals. Genetics. 2013;195: 349–358. doi: 10.1534/genetics.113.154005 PubMed DOI PMC
Igea A, Méndez R. Meiosis requires a translational positive loop where CPEB1 ensues its replacement by CPEB4. EMBO J. 2010;29: 2182–2193. doi: 10.1038/emboj.2010.111 PubMed DOI PMC
Roux PP, Shahbazian D, Vu H, Holz MK, Cohen MS, Taunton J, et al. RAS/ERK Signaling Promotes Site-specific Ribosomal Protein S6 Phosphorylation via RSK and Stimulates Cap-dependent Translation. J Biol Chem. 2007;282: 14056–14064. doi: 10.1074/jbc.M700906200 PubMed DOI PMC
Benesova V, Kinterova V, Kanka J, Toralova T. Characterization of SCF-Complex during Bovine Preimplantation Development. PloS One. 2016;11: e0147096 doi: 10.1371/journal.pone.0147096 PubMed DOI PMC
Söderberg O, Leuchowius K-J, Gullberg M, Jarvius M, Weibrecht I, Larsson L-G, et al. Characterizing proteins and their interactions in cells and tissues using the in situ proximity ligation assay. Methods San Diego Calif. 2008;45: 227–232. doi: 10.1016/j.ymeth.2008.06.014 PubMed DOI
Dieterich DC, Hodas JJL, Gouzer G, Shadrin IY, Ngo JT, Triller A, et al. In situ visualization and dynamics of newly synthesized proteins in rat hippocampal neurons. Nat Neurosci. 2010;13: 897–905. doi: 10.1038/nn.2580 PubMed DOI PMC
Reid DW, Nicchitta CV. The enduring enigma of nuclear translation. J Cell Biol. 2012;197: 7–9. doi: 10.1083/jcb.201202140 PubMed DOI PMC
Azoury J, Verlhac M-H, Dumont J. Actin filaments: key players in the control of asymmetric divisions in mouse oocytes. Biol Cell Auspices Eur Cell Biol Organ. 2009;101: 69–76. PubMed
Schuh M, Ellenberg J. Self-Organization of MTOCs Replaces Centrosome Function during Acentrosomal Spindle Assembly in Live Mouse Oocytes. Cell. 2007;130: 484–498. doi: 10.1016/j.cell.2007.06.025 PubMed DOI
Curtis D, Lehmann R, Zamore PD. Translational regulation in development. Cell. 1995;81: 171–178. PubMed
Belgrader P, Cheng J, Maquat LE. Evidence to implicate translation by ribosomes in the mechanism by which nonsense codons reduce the nuclear level of human triosephosphate isomerase mRNA. Proc Natl Acad Sci U S A. 1993;90: 482–486. PubMed PMC
Reid DW, Nicchitta CV. Primary role for endoplasmic reticulum-bound ribosomes in cellular translation identified by ribosome profiling. J Biol Chem. 2012;287: 5518–5527. doi: 10.1074/jbc.M111.312280 PubMed DOI PMC
Ford CL, Randal-Whitis L, Ellis SR. Yeast proteins related to the p40/laminin receptor precursor are required for 20S ribosomal RNA processing and the maturation of 40S ribosomal subunits. Cancer Res. 1999;59: 704–710. PubMed
Siemer C, Smiljakovic T, Bhojwani M, Leiding C, Kanitz W, Kubelka M, et al. Analysis of mRNA associated factors during bovine oocyte maturation and early embryonic development. Mol Reprod Dev. 2009;76: 1208–1219. doi: 10.1002/mrd.21096 PubMed DOI
Hamatani T, Carter MG, Sharov AA, Ko MSH. Dynamics of Global Gene Expression Changes during Mouse Preimplantation Development. Dev Cell. 2004;6: 117–131. doi: 10.1016/S1534-5807(03)00373-3 PubMed DOI
David A, Dolan BP, Hickman HD, Knowlton JJ, Clavarino G, Pierre P, et al. Nuclear translation visualized by ribosome-bound nascent chain puromycylation. J Cell Biol. 2012;197: 45–57. doi: 10.1083/jcb.201112145 PubMed DOI PMC
Xue S, Barna M. Specialized ribosomes: a new frontier in gene regulation and organismal biology. Nat Rev Mol Cell Biol. 2012;13: 355–369. doi: 10.1038/nrm3359 PubMed DOI PMC
SHIBUYA T, TANGE TØ, STROUPE ME, MOORE MJ. Mutational analysis of human eIF4AIII identifies regions necessary for exon junction complex formation and nonsense-mediated mRNA decay. RNA. 2006;12: 360–374. doi: 10.1261/rna.2190706 PubMed DOI PMC
Maquat LE, Tarn W-Y, Isken O. The Pioneer Round of Translation: Features and Functions. Cell. 2010;142: 368–374. doi: 10.1016/j.cell.2010.07.022 PubMed DOI PMC
Eliscovich C, Peset I, Vernos I, Méndez R. Spindle-localized CPE-mediated translation controls meiotic chromosome segregation. Nat Cell Biol. 2008;10: 858–865. doi: 10.1038/ncb1746 PubMed DOI
Meyuhas O, Klein A. The mouse ribosomal protein L7 gene. Its primary structure and functional analysis of the promoter region. J Biol Chem. 1990;265: 11465–11473. PubMed
Hemmerich P, von Mikecz A, Neumann F, Sözeri O, Wolff-Vorbeck G, Zoebelein R, et al. Structural and functional properties of ribosomal protein L7 from humans and rodents. Nucleic Acids Res. 1993;21: 223–231. PubMed PMC
Alizadeh Z, Kageyama S-I, Aoki F. Degradation of maternal mRNA in mouse embryos: selective degradation of specific mRNAs after fertilization. Mol Reprod Dev. 2005;72: 281–290. doi: 10.1002/mrd.20340 PubMed DOI
Schultz RM, Wassarman PM. Biochemical studies of mammalian oogenesis: Protein synthesis during oocyte growth and meiotic maturation in the mouse. J Cell Sci. 1977;24: 167–194. PubMed
Susor A, Jelínková L, Karabínová P, Torner H, Tomek W, Kovárová H, et al. Regulation of cap-dependent translation initiation in the early stage porcine parthenotes. Mol Reprod Dev. 2008;75: 1716–1725. doi: 10.1002/mrd.20913 PubMed DOI
Ellederová Z, Cais O, Susor A, Uhlírová K, Kovárová H, Jelínková L, et al. ERK1/2 map kinase metabolic pathway is responsible for phosphorylation of translation initiation factor eIF4E during in vitro maturation of pig oocytes. Mol Reprod Dev. 2008;75: 309–317. doi: 10.1002/mrd.20690 PubMed DOI
Kondrashov N, Pusic A, Stumpf CR, Shimizu K, Hsieh AC, Xue S, et al. Ribosome-mediated specificity in Hox mRNA translation and vertebrate tissue patterning. Cell. 2011;145: 383–397. doi: 10.1016/j.cell.2011.03.028 PubMed DOI PMC
Kang SA, Pacold ME, Cervantes CL, Lim D, Lou HJ, Ottina K, et al. mTORC1 Phosphorylation Sites Encode Their Sensitivity to Starvation and Rapamycin. Science. 2013;341: 1236566 doi: 10.1126/science.1236566 PubMed DOI PMC
Azzam ME, Algranati ID. Mechanism of Puromycin Action: Fate of Ribosomes after Release of Nascent Protein Chains from Polysomes. Proc Natl Acad Sci U S A. 1973;70: 3866–3869. PubMed PMC
CPEB3 Maintains Developmental Competence of the Oocyte
The translational oscillation in oocyte and early embryo development
ncRNA BC1 influences translation in the oocyte
Oocyte specific lncRNA variant Rose influences oocyte and embryo development
Age-related differences in the translational landscape of mammalian oocytes
The neglected part of early embryonic development: maternal protein degradation
Expression of lamin C2 in mammalian oocytes
Spatio-temporal expression of ANK2 promotes cytokinesis in oocytes
CPEB2 Is Necessary for Proper Porcine Meiotic Maturation and Embryonic Development