Oocyte specific lncRNA variant Rose influences oocyte and embryo development
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
R01 HD102533
NICHD NIH HHS - United States
PubMed
34278057
PubMed Central
PMC8258604
DOI
10.1016/j.ncrna.2021.06.001
PII: S2468-0540(21)00020-2
Knihovny.cz E-zdroje
- Klíčová slova
- Early embryo, LncRNA, Meiosis, Oocyte, Polysome,
- Publikační typ
- časopisecké články MeSH
Fully grown mammalian oocytes store a large amount of RNA synthesized during the transcriptionally active growth stage. A large part of the stored RNA belongs to the long non-coding class which contain either transcriptional noise or important contributors to cellular physiology. Despite the expanding number of studies related to lncRNAs, their influence on oocyte physiology remains enigmatic. We found an oocyte specific antisense, long non-coding RNA, "Rose" (lncRNA in Oocyte Specifically Expressed) expressed in two variants containing two and three non-coding exons, respectively. Rose is localized in the nucleus of transcriptionally active oocyte and in embryo with polysomal occupancy in the cytoplasm. Experimental overexpression of Rose in fully grown oocyte did not show any differences in meiotic maturation. However, knocking down Rose resulted in abnormalities in oocyte cytokinesis and impaired preimplantation embryo development. In conclusion, we have identified an oocyte-specific maternal lncRNA that is essential for successful mammalian oocyte and embryo development.
Zobrazit více v PubMed
Breschi A., Gingeras T.R., Guigó R. Comparative transcriptomics in human and mouse. Nat. Rev. Genet. 2017;18:425–440. doi: 10.1038/nrg.2017.19. PubMed DOI PMC
Mattick J.S., Makunin I.V. Non-coding RNA. Hum. Mol. Genet. 2006;15:R17–R29. doi: 10.1093/hmg/ddl046. PubMed DOI
Zhang X., Wang W., Zhu W., Dong J., Cheng Y., Yin Z., Shen F. Mechanisms and functions of long non-coding RNAs at multiple regulatory levels. Int. J. Mol. Sci. 2019;20:5573. doi: 10.3390/ijms20225573. PubMed DOI PMC
He R.Z., Luo D.X., Mo Y.Y. Emerging roles of lncRNAs in the post-transcriptional regulation in cancer. Genes Dis. 2019;6:6–15. doi: 10.1016/j.gendis.2019.01.003. PubMed DOI PMC
Charon C., Moreno A.B., Bardou F., Crespi M. Non-protein-coding RNAs and their interacting RNA-binding proteins in the plant cell nucleus. Mol. Plant. 2010;3:729–739. doi: 10.1093/mp/ssq037. PubMed DOI
Ulitsky I., Bartel D.P. XLincRNAs: genomics, evolution, and mechanisms. Cell. 2013;154:26–46. doi: 10.1016/j.cell.2013.06.020. PubMed DOI PMC
Chen L.L. Linking long noncoding RNA localization and function. Trends Biochem. Sci. 2016;41:761–772. doi: 10.1016/j.tibs.2016.07.003. PubMed DOI
Joshi M., Rajender S. Long non-coding RNAs (lncRNAs) in spermatogenesis and male infertility. Reprod. Biol. Endocrinol. 2020;18:1–18. doi: 10.1186/s12958-020-00660-6. PubMed DOI PMC
Lee T.L., Xiao A., Rennert O.M. Identification of novel long noncoding RNA transcripts in male germ cells. Methods Mol. Biol. 2012;825:105–114. doi: 10.1007/978-1-61779-436-0_9. PubMed DOI PMC
Ganesh S., Horvat F., Drutovic D., Efenberkova M., Pinkas D., Jindrova A., Pasulka J., Iyyappan R., Malik R., Susor A., Vlahovicek K., Solc P., Svoboda P. The most abundant maternal lncRNA Sirena1 acts post-transcriptionally and impacts mitochondrial distribution. Nucleic Acids Res. 2020;48:3211–3227. doi: 10.1093/nar/gkz1239. PubMed DOI PMC
Tetkova A., Jansova D., Susor A. Spatio-temporal expression of ANK2 promotes cytokinesis in oocytes. Sci. Rep. 2019;9:1–13. doi: 10.1038/s41598-019-49483-5. PubMed DOI PMC
Masek T., del Llano E., Gahurova L., Kubelka M., Susor A., Roucova K., Lin C.-J., Bruce A.W., Pospisek M. Identifying the translatome of mouse NEBD-stage oocytes via SSP-profiling; A novel polysome fractionation method. Int. J. Mol. Sci. 2020;21:1254. doi: 10.3390/ijms21041254. PubMed DOI PMC
Heninger A.-K., Buchholz F. Production of endoribonuclease-prepared short interfering RNAs (esiRNAs) for specific and effective gene silencing in mammalian cells. Cold Spring Harb. Protoc. 2007 doi: 10.1101/pdb.prot4824. PubMed DOI
Mann M., Wright P.R., Backofen R. IntaRNA 2.0: enhanced and customizable prediction of RNA-RNA interactions. Nucleic Acids Res. 2017;45:435–439. doi: 10.1093/nar/gkx279. PubMed DOI PMC
Wang L., Park H.J., Dasari S., Wang S., Kocher J.P., Li W. CPAT: coding-potential assessment tool using an alignment-free logistic regression model. Nucleic Acids Res. 2013 doi: 10.1093/nar/gkt006. PubMed DOI PMC
Lecuyer E., Yoshida H., Parthasarathy N., Alm C., Babak T., Tomancak P., Krause H. Global analysis of mRNA localization reveals a prominent role in the organization of cellular architecture and function. Dev. Biol. 2008;131:174–187. doi: 10.1016/j.ydbio.2008.05.012. PubMed DOI
Aleshkina D., Iyyappan R., Lin C.J., Masek T., Pospisek M., Susor A. ncRNA BC1 influences translation in the oocyte. RNA Biol. 2021 doi: 10.1080/15476286.2021.1880181. PubMed DOI PMC
Pintacuda G., Young A.N., Cerase A. Function by structure: spotlights on xist long non-coding RNA. Front. Mol. Biosci. 2017;4:90. doi: 10.3389/fmolb.2017.00090. PubMed DOI PMC
Honda S., Miki Y., Miyamoto Y., Kawahara Y., Tsukamoto S., Imai H., Minami N. Oocyte-specific gene Oog1 suppresses the expression of spermatogenesis-specific genes in oocytes. J. Reprod. Dev. 2018;64:297–301. doi: 10.1262/jrd.2018-024. PubMed DOI PMC
Jansova D., Tetkova A., Koncicka M., Kubelka M., Susor A. Localization of RNA and translation in the mammalian oocyte and embryo. PloS One. 2018;13 doi: 10.1371/journal.pone.0192544. PubMed DOI PMC
Philpott C.C., Ringuette M.J., Dean J. Oocyte-specific expression and developmental regulation of ZP3, the sperm receptor of the mouse zona pellucida. Dev. Biol. 1987;121:568–575. doi: 10.1016/0012-1606(87)90192-8. PubMed DOI
Liang L.F., Soyal S.M., Dean J. FIGα, a germ cell specific transcription factor involved in the coordinate expression of the zona pellucida genes. Development. 1997;124:4939–4947. PubMed
McGrath S.A., Esquela A.F., Lee S.J. Oocyte-specific expression of growth/differentiation factor-9. Mol. Endocrinol. 1995;9:131–136. doi: 10.1210/mend.9.1.7760846. PubMed DOI
Washietl S., Kellis M., Garber M. Evolutionary dynamics and tissue specificity of human long noncoding RNAs in six mammals. Genome Res. 2014;24:616–628. doi: 10.1101/gr.165035.113. PubMed DOI PMC
Gudenas B.L., Wang L. Prediction of LncRNA subcellular localization with deep learning from sequence features. Sci. Rep. 2018 doi: 10.1038/s41598-018-34708-w. PubMed DOI PMC
Tantale K., Mueller F., Kozulic-Pirher A., Lesne A., Victor J.M., Robert M.C., Capozi S., Chouaib R., Bäcker V., Mateos-Langerak J., Darzacq X., Zimmer C., Basyuk E., Bertrand E. A single-molecule view of transcription reveals convoys of RNA polymerases and multi-scale bursting. Nat. Commun. 2016 doi: 10.1038/ncomms12248. PubMed DOI PMC
Miao H., Wang L., Zhan H., Dai J., Chang Y., Wu F., Liu T., Liu Z., Gao C., Li L., Song X. A long noncoding RNA distributed in both nucleus and cytoplasm operates in the PYCARD-regulated apoptosis by coordinating the epigenetic and translational regulation. PLoS Genet. 2019 doi: 10.1371/journal.pgen.1008144. PubMed DOI PMC
Fatica A., Bozzoni I. Long non-coding RNAs: New players in cell differentiation and development. Nat. Rev. Genet. 2014;15:7–21. doi: 10.1038/nrg3606. PubMed DOI
Verheyden Y., Goedert L., Leucci E. Control of nucleolar stress and translational reprogramming by lncRNAs. Cell Stress. 2019;3:19–26. doi: 10.15698/cst2019.01.172. PubMed DOI PMC
Carlevaro-Fita J., Rahim A., Guigó R., Vardy L.A., Johnson R. Cytoplasmic long noncoding RNAs are frequently bound to and degraded at ribosomes in human cells. RNA. 2016;22:867–882. doi: 10.1261/rna.053561.115. PubMed DOI PMC
Nakagawa S., Naganuma T., Shioi G., Hirose T. Paraspeckles are subpopulation-specific nuclear bodies that are not essential in mice. J. Cell Biol. 2011;193:31–39. doi: 10.1083/jcb.201011110. PubMed DOI PMC