Spatio-temporal expression of ANK2 promotes cytokinesis in oocytes
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
31511568
PubMed Central
PMC6739377
DOI
10.1038/s41598-019-49483-5
PII: 10.1038/s41598-019-49483-5
Knihovny.cz E-zdroje
- MeSH
- ankyriny genetika metabolismus MeSH
- časoprostorová analýza * MeSH
- cytokineze * MeSH
- embryo savčí cytologie fyziologie MeSH
- meióza * MeSH
- messenger RNA genetika metabolismus MeSH
- myši MeSH
- oocyty cytologie fyziologie MeSH
- oogeneze MeSH
- vývojová regulace genové exprese * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- Ank2 protein, mouse MeSH Prohlížeč
- ankyriny MeSH
- messenger RNA MeSH
In the absence of transcription, the regulation of gene expression in oocytes is controlled almost exclusively at the level of transcriptome and proteome stabilization, and translation. A subset of maternal transcripts is stored in a translationally dormant state in the oocyte, and temporally driven translation of specific mRNAs propel meiotic progression, oocyte-to-embryo transition and early embryo development. We identified Ank2.3 as the only transcript variant present in the mouse oocyte and discovered that it is translated after nuclear envelope breakdown. Here we show that Ank2.3 mRNA is localized in higher concentration in the oocyte nucleoplasm and, after nuclear envelope breakdown, in the newly forming spindle where its translation occurs. Furthermore, we reveal that Ank2.3 mRNA contains an oligo-pyrimidine motif at 5'UTR that predetermines its translation through a cap-dependent pathway. Lastly, we show that prevention of ANK2 translation leads to abnormalities in oocyte cytokinesis.
Department of Cell Biology Faculty of Science Charles University Prague Czech Republic
Laboratory of Biochemistry and Molecular Biology of Germ Cells IAPG CAS Libechov Czech Republic
Zobrazit více v PubMed
De La Fuente R, et al. Major chromatin remodeling in the germinal vesicle (GV) of mammalian oocytes is dispensable for global transcriptional silencing but required for centromeric heterochromatin function. Dev. Biol. 2004;275:447–458. doi: 10.1016/j.ydbio.2004.08.028. PubMed DOI
Lasko P. mRNA Localization and Translational Control in Drosophila Oogenesis. Cold Spring Harbor Perspectives in Biology. 2012;4(10):a012294–a012294. doi: 10.1101/cshperspect.a012294. PubMed DOI PMC
Bachvarova R, De Leon V. Polyadenylated RNA of mouse ova and loss of maternal RNA in early development. Dev. Biol. 1980;74:1–8. doi: 10.1016/0012-1606(80)90048-2. PubMed DOI
Brower PT, Gizang E, Boreen SM, Schultz RM. Biochemical studies of mammalian oogenesis: synthesis and stability of various classes of RNA during growth of the mouse oocyte in vitro. Dev. Biol. 1981;86:373–383. doi: 10.1016/0012-1606(81)90195-0. PubMed DOI
Schultz RM. Regulation of zygotic gene activation in the mouse. BioEssays. 1993;15:531–538. doi: 10.1002/bies.950150806. PubMed DOI
Tadros W, Lipshitz HD. The maternal-to-zygotic transition: a play in two acts. Development. 2009;136:3033–3042. doi: 10.1242/dev.033183. PubMed DOI
Susor A, Kubelka M. Translational Regulation in the Mammalian Oocyte. Results Probl Cell Differ. 2017;63:257–295. doi: 10.1007/978-3-319-60855-6_12. PubMed DOI
Sonenberg N, Hinnebusch AG. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell. 2009;136:731–745. doi: 10.1016/j.cell.2009.01.042. PubMed DOI PMC
Terenzio M, et al. Science. 2018. Locally translated mTOR controls axonal local translation in nerve injury; pp. 1416–1421. PubMed PMC
King ML, Messitt TJ, Mowry KL. Putting RNAs in the right place at the right time: RNA localization in the frog oocyte. Biology of the Cell. 2005;97:19–33. doi: 10.1042/BC20040067. PubMed DOI
Holt CE, Bullock SL. Subcellular mRNA Localization in Animal Cells and Why It Matters. Science. 2009;326:1212–1216. doi: 10.1126/science.1176488. PubMed DOI PMC
Dubowy J, Macdonald PM. Localization of mRNAs to the oocyte is common in Drosophila ovaries. Mechanisms of Development. 1998;70:193–195. doi: 10.1016/S0925-4773(97)00185-8. PubMed DOI
Nieuwkoop PD. Inductive interactions in early amphibian development and their general nature. Development. 1985;89:333–347. PubMed
Susor, A. et al. Temporal and spatial regulation of translation in the mammalian oocyte via the mTOR–eIF4F pathway. Nat Commun6 (2015). PubMed PMC
Jansova D, Tetkova A, Koncicka M, Kubelka M, Susor A. Localization of RNA and translation in the mammalian oocyte and embryo. Plos One. 2018;13:e0192544. doi: 10.1371/journal.pone.0192544. PubMed DOI PMC
Kopecný V, Landa V, Pavlok A. Localization of nucleic acids in the nucleoli of oocytes and early embryos of mouse and hamster: an autoradiographic study. Mol. Reprod. Dev. 1995;41:449–458. doi: 10.1002/mrd.1080410407. PubMed DOI
Xie F, Timme KA, Wood JR. Using Single Molecule mRNA Fluorescent in Situ Hybridization (RNA-FISH) to Quantify mRNAs in Individual Murine Oocytes and Embryos. Scientific Reports. 2018;8:7930. doi: 10.1038/s41598-018-26345-0. PubMed DOI PMC
Bennett V, Baines AJ, Davis JQ. Ankyrin and synapsin: spectrin-binding proteins associated with brain membranes. J. Cell. Biochem. 1985;29:157–169. doi: 10.1002/jcb.240290210. PubMed DOI
Srinivasan Y, Elmer L, Davis J, Bennett V, Angelides K. Ankyrin and spectrin associate with voltage-dependent sodium channels in brain. Nature. 1988;333:177–180. doi: 10.1038/333177a0. PubMed DOI
Bouvier J, Richaud C, Richaud F, Patte JC, Stragier P. Nucleotide sequence and expression of the Escherichia coli dapB gene. J. Biol. Chem. 1984;259:14829–14834. PubMed
Gross-Thebing, T., Paksa, A. & Raz, E. Simultaneous high-resolution detection of multiple transcripts combined with localization of proteins in whole-mount embryos. BMC Biol12 (2014). PubMed PMC
Hutchinson JN, et al. A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics. 2007;8:39. doi: 10.1186/1471-2164-8-39. PubMed DOI PMC
Hausnerová VV, Lanctôt C. Transcriptional Output Transiently Spikes Upon Mitotic Exit. Scientific Reports. 2017;7:12607. doi: 10.1038/s41598-017-12723-7. PubMed DOI PMC
Pichon X, et al. Visualization of single endogenous polysomes reveals the dynamics of translation in live human cells. J. Cell Biol. 2016;214:769–781. doi: 10.1083/jcb.201605024. PubMed DOI PMC
Decker CJ, Parker R. Diversity of cytoplasmic functions for the 3′ untranslated region of eukaryotic transcripts. Current Opinion in Cell Biology. 1995;7:386–392. doi: 10.1016/0955-0674(95)80094-8. PubMed DOI
Hogan DJ, Riordan DP, Gerber AP, Herschlag D, Brown PO. Diverse RNA-Binding Proteins Interact with Functionally Related Sets of RNAs, Suggesting an Extensive Regulatory System. PLOS Biology. 2008;6:e255. doi: 10.1371/journal.pbio.0060255. PubMed DOI PMC
Afonina E, Stauber R, Pavlakis GN. The human poly(A)-binding protein 1 shuttles between the nucleus and the cytoplasm. J. Biol. Chem. 1998;273:13015–13021. doi: 10.1074/jbc.273.21.13015. PubMed DOI
Gray NK, Hrabálková L, Scanlon JP, Smith RWP. Poly(A)-binding proteins and mRNA localization: who rules the roost? Biochem. Soc. Trans. 2015;43:1277–1284. doi: 10.1042/BST20150171. PubMed DOI
Dai X-X, et al. A combinatorial code for mRNA 3′-UTR-mediated translational control in the mouse oocyte. Nucleic Acids Res. 2019;47:328–340. doi: 10.1093/nar/gky971. PubMed DOI PMC
Martin KC, Ephrussi A. mRNA Localization: Gene Expression in the Spatial Dimension. Cell. 2009;136:719. doi: 10.1016/j.cell.2009.01.044. PubMed DOI PMC
Ben-Shem A, et al. The structure of the eukaryotic ribosome at 3.0 Å resolution. Science. 2011;334:1524–1529. doi: 10.1126/science.1212642. PubMed DOI
Dieck Stom, et al. Direct visualization of identified and newly synthesized proteins in situ. Nat Methods. 2015;12:411–414. doi: 10.1038/nmeth.3319. PubMed DOI PMC
Levy S, Avni D, Hariharan N, Perry RP, Meyuhas O. Oligopyrimidine tract at the 5′ end of mammalian ribosomal protein mRNAs is required for their translational control. Proc. Natl. Acad. Sci. USA. 1991;88:3319–3323. doi: 10.1073/pnas.88.8.3319. PubMed DOI PMC
Avni D, Biberman Y, Meyuhas O. The 5′ terminal oligopyrimidine tract confers translational control on TOP mRNAs in a cell type- and sequence context-dependent manner. Nucleic Acids Res. 1997;25:995–1001. doi: 10.1093/nar/25.5.995. PubMed DOI PMC
Thoreen CC, et al. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature. 2012;485:109–113. doi: 10.1038/nature11083. PubMed DOI PMC
Sekiyama N, et al. Molecular mechanism of the dual activity of 4EGI-1: Dissociating eIF4G from eIF4E but stabilizing the binding of unphosphorylated 4E-BP1. PNAS. 2015;112:E4036–E4045. doi: 10.1073/pnas.1512118112. PubMed DOI PMC
Heesom KJ, Gampel A, Mellor H, Denton RM. Cell cycle-dependent phosphorylation of the translational repressor eIF-4E binding protein-1 (4E-BP1) Curr. Biol. 2001;11:1374–1379. doi: 10.1016/S0960-9822(01)00422-5. PubMed DOI
Corey, D. R. & Abrams, J. M. Morpholino antisense oligonucleotides: tools for investigating vertebrate development. Genome Biol2, reviews1015.1-reviews1015.3 (2001). PubMed PMC
Hashimoto N, Kishimoto T. Regulation of meiotic metaphase by a cytoplasmic maturation-promoting factor during mouse oocyte maturation. Dev. Biol. 1988;126:242–252. doi: 10.1016/0012-1606(88)90135-2. PubMed DOI
Mayer S, Wrenzycki C, Tomek W. Inactivation of mTor arrests bovine oocytes in the metaphase-I stage, despite reversible inhibition of 4E-BP1 phosphorylation. Mol. Reprod. Dev. 2014;81:363–375. doi: 10.1002/mrd.22305. PubMed DOI
Boothby TC, Zipper RS, van der Weele CM, Wolniak SM. Removal of retained introns regulates translation in the rapidly developing gametophyte of Marsilea vestita. Dev. Cell. 2013;24:517–529. doi: 10.1016/j.devcel.2013.01.015. PubMed DOI
Bahar Halpern K, et al. Nuclear Retention of mRNA in Mammalian Tissues. Cell Rep. 2015;13:2653–2662. doi: 10.1016/j.celrep.2015.11.036. PubMed DOI PMC
Jambor, H. et al. Systematic imaging reveals features and changing localization of mRNAs in Drosophila development. Elife4 (2015). PubMed PMC
Lécuyer E, et al. Global Analysis of mRNA Localization Reveals a Prominent Role in Organizing Cellular Architecture and Function. Cell. 2007;131:174–187. doi: 10.1016/j.cell.2007.08.003. PubMed DOI
Jefferies HB, et al. Rapamycin suppresses 5′TOP mRNA translation through inhibition of p70s6k. EMBO J. 1997;16:3693–3704. doi: 10.1093/emboj/16.12.3693. PubMed DOI PMC
Severance AL, Latham KE. PLK1 regulates spindle association of phosphorylated eukaryotic translation initiation factor 4E-binding protein and spindle function in mouse oocytes. Am. J. Physiol., Cell Physiol. 2017;313:C501–C515. doi: 10.1152/ajpcell.00075.2017. PubMed DOI PMC
Jansova D, et al. Regulation of 4E-BP1 activity in the mammalian oocyte. Cell Cycle. 2017;16:927–939. doi: 10.1080/15384101.2017.1295178. PubMed DOI PMC
Yu J, Yaba A, Kasiman C, Thomson T, Johnson J. mTOR controls ovarian follicle growth by regulating granulosa cell proliferation. PLoS ONE. 2011;6:e21415. doi: 10.1371/journal.pone.0021415. PubMed DOI PMC
Kogasaka Y, Hoshino Y, Hiradate Y, Tanemura K, Sato E. Distribution and association of mTOR with its cofactors, raptor and rictor, in cumulus cells and oocytes during meiotic maturation in mice. Mol. Reprod. Dev. 2013;80:334–348. doi: 10.1002/mrd.22166. PubMed DOI
Lopez-Bonet E, et al. Serine 2481-autophosphorylation of mammalian target of rapamycin (mTOR) couples with chromosome condensation and segregation during mitosis: confocal microscopy characterization and immunohistochemical validation of PP-mTOR(Ser2481) as a novel high-contrast mitosis marker in breast cancer core biopsies. Int. J. Oncol. 2010;36:107–115. PubMed
Rong L, et al. Control of eIF4E cellular localization by eIF4E-binding proteins, 4E-BPs. RNA. 2008;14:1318–1327. doi: 10.1261/rna.950608. PubMed DOI PMC
Chan CC, et al. eIF4A3 is a novel component of the exon junction complex. RNA. 2004;10:200–209. doi: 10.1261/rna.5230104. PubMed DOI PMC
Shibuya T, Tange TØ, Sonenberg N, Moore MJ. eIF4AIII binds spliced mRNA in the exon junction complex and is essential for nonsense-mediated decay. Nat. Struct. Mol. Biol. 2004;11:346–351. doi: 10.1038/nsmb750. PubMed DOI
Ellederová Z, et al. ERK1/2 map kinase metabolic pathway is responsible for phosphorylation of translation initiation factor eIF4E during in vitro maturation of pig oocytes. Mol. Reprod. Dev. 2008;75:309–317. doi: 10.1002/mrd.20690. PubMed DOI
Romasko EJ, Amarnath D, Midic U, Latham KE. Association of maternal mRNA and phosphorylated EIF4EBP1 variants with the spindle in mouse oocytes: localized translational control supporting female meiosis in mammals. Genetics. 2013;195:349–358. doi: 10.1534/genetics.113.154005. PubMed DOI PMC
Tomek W, et al. Regulation of translation during in vitro maturation of bovine oocytes: the role of MAP kinase, eIF4E (cap binding protein) phosphorylation, and eIF4E-BP1. Biol. Reprod. 2002;66:1274–1282. doi: 10.1095/biolreprod66.5.1274. PubMed DOI
Susor A, et al. Regulation of cap-dependent translation initiation in the early stage porcine parthenotes. Mol. Reprod. Dev. 2008;75:1716–1725. doi: 10.1002/mrd.20913. PubMed DOI
Shuda M, et al. CDK1 substitutes for mTOR kinase to activate mitotic cap-dependent protein translation. Proc. Natl. Acad. Sci. USA. 2015;112:5875–5882. doi: 10.1073/pnas.1505787112. PubMed DOI PMC
Bischof J, et al. A cdk1 gradient guides surface contraction waves in oocytes. Nature Communications. 2017;8:849. doi: 10.1038/s41467-017-00979-6. PubMed DOI PMC
Blower MD, Feric E, Weis K, Heald R. Genome-wide analysis demonstrates conserved localization of messenger RNAs to mitotic microtubules. J. Cell Biol. 2007;179:1365–1373. doi: 10.1083/jcb.200705163. PubMed DOI PMC
VerMilyea MD, et al. Transcriptome asymmetry within mouse zygotes but not between early embryonic sister blastomeres. The EMBO Journal. 2011;30:1841–1851. doi: 10.1038/emboj.2011.92. PubMed DOI PMC
Jang C-Y, Kim HD, Zhang X, Chang J-S, Kim J. Ribosomal protein S3 localizes on the mitotic spindle and functions as a microtubule associated protein in mitosis. Biochem. Biophys. Res. Commun. 2012;429:57–62. doi: 10.1016/j.bbrc.2012.10.093. PubMed DOI
Schweizer N, Pawar N, Weiss M, Maiato H. An organelle-exclusion envelope assists mitosis and underlies distinct molecular crowding in the spindle region. J Cell Biol. 2015;210:695–704. doi: 10.1083/jcb.201506107. PubMed DOI PMC
Yi K, et al. Dynamic maintenance of asymmetric meiotic spindle position through Arp2/3-complex-driven cytoplasmic streaming in mouse oocytes. Nat. Cell Biol. 2011;13:1252–1258. doi: 10.1038/ncb2320. PubMed DOI PMC
Verlhac M-H, Lefebvre C, Guillaud P, Rassinier P, Maro B. Asymmetric division in mouse oocytes: with or without Mos. Current Biology. 2000;10:1303–1306. doi: 10.1016/S0960-9822(00)00753-3. PubMed DOI
Azoury J, Verlhac M-H, Dumont J. Actin filaments: key players in the control of asymmetric divisions in mouse oocytes. Biol. Cell. 2009;101:69–76. doi: 10.1042/BC20080003. PubMed DOI
Uraji, J., Scheffler, K. & Schuh, M. Functions of actin in mouse oocytes at a glance. J. Cell. Sci. 131 (2018). PubMed
Chaigne A, et al. F-actin mechanics control spindle centring in the mouse zygote. Nat Commun. 2016;7:10253. doi: 10.1038/ncomms10253. PubMed DOI PMC
van Oort RJ, Altamirano J, Lederer WJ, Wehrens XHT. Alternative splicing: a key mechanism for ankyrin-B functional diversity? J Mol Cell Cardiol. 2008;45:709–711. doi: 10.1016/j.yjmcc.2008.08.016. PubMed DOI PMC
Sobel JS, Pinto-Correia C, Goldstein EG. Identification of an M(r) 60,000 polypeptide unique to the meiotic spindle of the mouse oocyte. Mol. Reprod. Dev. 1995;40:467–480. doi: 10.1002/mrd.1080400411. PubMed DOI
Skop AR, Liu H, Yates J, Meyer BJ, Heald R. Dissection of the mammalian midbody proteome reveals conserved cytokinesis mechanisms. Science. 2004;305:61–66. doi: 10.1126/science.1097931. PubMed DOI PMC
Tetkova, A. & Hancova, M. Mouse Oocyte Isolation, Cultivation and RNA Microinjection. BIO-PROTOCOL6 (2016).
Tal M. Metal ions and ribosomal conformation. Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis. 1969;195:76–86. doi: 10.1016/0005-2787(69)90604-2. PubMed DOI
Multiple Roles of PLK1 in Mitosis and Meiosis
ncRNA BC1 influences translation in the oocyte
Oocyte specific lncRNA variant Rose influences oocyte and embryo development
The neglected part of early embryonic development: maternal protein degradation