Multiple Roles of PLK1 in Mitosis and Meiosis
Language English Country Switzerland Media electronic
Document type Journal Article, Review, Research Support, Non-U.S. Gov't
PubMed
36611980
PubMed Central
PMC9818836
DOI
10.3390/cells12010187
PII: cells12010187
Knihovny.cz E-resources
- Keywords
- PLK1, mRNA translation, meiosis, mitosis, oocytes, polo-like kinase 1, spindle,
- MeSH
- Humans MeSH
- Meiosis MeSH
- Mitosis MeSH
- Polo-Like Kinase 1 MeSH
- Protein Serine-Threonine Kinases * metabolism MeSH
- Cell Cycle Proteins * metabolism MeSH
- Proto-Oncogene Proteins metabolism MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Protein Serine-Threonine Kinases * MeSH
- Cell Cycle Proteins * MeSH
- Proto-Oncogene Proteins MeSH
Cells are equipped with a diverse network of signaling and regulatory proteins that function as cell cycle regulators and checkpoint proteins to ensure the proper progression of cell division. A key regulator of cell division is polo-like kinase 1 (PLK1), a member of the serine/threonine kinase family that plays an important role in regulating the mitotic and meiotic cell cycle. The phosphorylation of specific substrates mediated by PLK1 controls nuclear envelope breakdown (NEBD), centrosome maturation, proper spindle assembly, chromosome segregation, and cytokinesis. In mammalian oogenesis, PLK1 is essential for resuming meiosis before ovulation and for establishing the meiotic spindle. Among other potential roles, PLK1 regulates the localized translation of spindle-enriched mRNAs by phosphorylating and thereby inhibiting the translational repressor 4E-BP1, a downstream target of the mTOR (mammalian target of rapamycin) pathway. In this review, we summarize the functions of PLK1 in mitosis, meiosis, and cytokinesis and focus on the role of PLK1 in regulating mRNA translation. However, knowledge of the role of PLK1 in the regulation of meiosis remains limited.
Institute of Animal Physiology and Genetics Czech Academy of Sciences 277 21 Libechov Czech Republic
See more in PubMed
Archambault V., Glover D.M. Polo-like kinases: Conservation and divergence in their functions and regulation. Nat. Rev. Mol. Cell Biol. 2009;10:265–275. doi: 10.1038/nrm2653. PubMed DOI
Petronczki M., Lénárt P., Peters J.-M. Polo on the Rise—From Mitotic Entry to Cytokinesis with Plk1. Dev. Cell. 2008;14:646–659. doi: 10.1016/j.devcel.2008.04.014. PubMed DOI
Sumara I., Giménez-Abián J.F., Gerlich D., Hirota T., Kraft C., de la Torre C., Ellenberg J., Peters J.-M. Roles of Polo-like Kinase 1 in the Assembly of Functional Mitotic Spindles. Curr. Biol. 2004;14:1712–1722. doi: 10.1016/j.cub.2004.09.049. PubMed DOI
Zhang Z., Chen C., Ma L., Yu Q., Li S., Abbasi B., Yang J., Rui R., Ju S. Plk1 is essential for proper chromosome segregation during meiosis I/meiosis II transition in pig oocytes. Reprod. Biol. Endocrinol. 2017;15:69. doi: 10.1186/s12958-017-0289-7. PubMed DOI PMC
Chen Y.-J., Lai K.-C., Kuo H.-H., Chow L.-P., Yih L.-H., Lee T.-C. HSP70 colocalizes with PLK1 at the centrosome and disturbs spindle dynamics in cells arrested in mitosis by arsenic trioxide. Arch. Toxicol. 2014;88:1711–1723. doi: 10.1007/s00204-014-1222-x. PubMed DOI
Combes G., Alharbi I., Braga L.G., Elowe S. Playing polo during mitosis: PLK1 takes the lead. Oncogene. 2017;36:4819–4827. doi: 10.1038/onc.2017.113. PubMed DOI
Gheghiani L., Loew D., Lombard B., Mansfeld J., Gavet O. PLK1 Activation in Late G2 Sets Up Commitment to Mitosis. Cell Rep. 2017;19:2060–2073. doi: 10.1016/j.celrep.2017.05.031. PubMed DOI
Hauf S., Roitinger E., Koch B., Dittrich C.M., Mechtler K., Peters J.-M. Dissociation of Cohesin from Chromosome Arms and Loss of Arm Cohesion during Early Mitosis Depends on Phosphorylation of SA2. PLoS Biol. 2005;3:e69. doi: 10.1371/journal.pbio.0030069. PubMed DOI PMC
Kagami Y., Ono M., Yoshida K. Plk1 phosphorylation of CAP-H2 triggers chromosome condensation by condensin II at the early phase of mitosis. Sci. Rep. 2017;7:5583. doi: 10.1038/s41598-017-05986-7. PubMed DOI PMC
Maia A.R.R., Garcia Z., Kabeche L., Barisic M., Maffini S., Macedo-Ribeiro S., Cheeseman I.M., Compton D.A., Kaverina I., Maiato H. Cdk1 and Plk1 mediate a CLASP2 phospho-switch that stabilizes kinetochore–microtubule attachments. J. Cell Biol. 2012;199:285–301. doi: 10.1083/jcb.201203091. PubMed DOI PMC
Brennan I.M., Peters U., Kapoor T.M., Straight A.F. Polo-Like Kinase Controls Vertebrate Spindle Elongation and Cytokinesis. PLoS ONE. 2007;2:e409. doi: 10.1371/journal.pone.0000409. PubMed DOI PMC
Takai N., Hamanaka R., Yoshimatsu J., Miyakawa I. Polo-like kinases (Plks) and cancer. Oncogene. 2005;24:287–291. doi: 10.1038/sj.onc.1208272. PubMed DOI
Barr F.A., Silljé H.H.W., Nigg E.A. Polo-like kinases and the orchestration of cell division. Nat. Rev. Mol. Cell Biol. 2004;5:429–441. doi: 10.1038/nrm1401. PubMed DOI
Pahlavan G., Polanski Z., Kalab P., Golsteyn R., Nigg E.A., Maro B. Characterization of Polo-like Kinase 1 during Meiotic Maturation of the Mouse Oocyte. Dev. Biol. 2000;220:392–400. doi: 10.1006/dbio.2000.9656. PubMed DOI
Qian Y.-W., Erikson E., Taieb F.E., Maller J.L. The Polo-like Kinase Plx1 Is Required for Activation of the Phosphatase Cdc25C and Cyclin B-Cdc2 in Xenopus Oocytes. Mol. Biol. Cell. 2001;12:1791–1799. doi: 10.1091/mbc.12.6.1791. PubMed DOI PMC
Linder M.I., Köhler M., Boersema P., Weberruss M., Wandke C., Marino J., Ashiono C., Picotti P., Antonin W., Kutay U. Mitotic Disassembly of Nuclear Pore Complexes Involves CDK1- and PLK1-Mediated Phosphorylation of Key Interconnecting Nucleoporins. Dev. Cell. 2017;43:141–156.e7. doi: 10.1016/j.devcel.2017.08.020. PubMed DOI PMC
De Castro I.J., Gil R.S., Ligammari L., Di Giacinto M.L., Vagnarelli P. CDK1 and PLK1 coordinate the disassembly and reassembly of the nuclear envelope in vertebrate mitosis. Oncotarget. 2018;9:7763–7773. doi: 10.18632/oncotarget.23666. PubMed DOI PMC
Solc P., Kitajima T.S., Yoshida S., Brzakova A., Kaido M., Baran V., Mayer A., Samalova P., Motlik J., Ellenberg J. Multiple Requirements of PLK1 during Mouse Oocyte Maturation. PLoS ONE. 2015;10:e0116783. doi: 10.1371/journal.pone.0116783. PubMed DOI PMC
Lake R.J., Jelinek W.R. Cell cycle- and terminal differentiation-associated regulation of the mouse mRNA encoding a conserved mitotic protein kinase. Mol. Cell. Biol. 1993;13:7793–7801. doi: 10.1128/mcb.13.12.7793-7801.1993. PubMed DOI PMC
Clift D., Schuh M. A three-step MTOC fragmentation mechanism facilitates bipolar spindle assembly in mouse oocytes. Nat. Commun. 2015;6:7217. doi: 10.1038/ncomms8217. PubMed DOI PMC
Casenghi M., Meraldi P., Weinhart U., Duncan P.I., Körner R., Nigg E.A. Polo-like Kinase 1 Regulates Nlp, a Centrosome Protein Involved in Microtubule Nucleation. Dev. Cell. 2003;5:113–125. doi: 10.1016/S1534-5807(03)00193-X. PubMed DOI
Fabbro M., Zhou B.-B., Takahashi M., Sarcevic B., Lal P., Graham M.E., Gabrielli B.G., Robinson P.J., Nigg E.A., Ono Y., et al. Cdk1/Erk2- and Plk1-Dependent Phosphorylation of a Centrosome Protein, Cep55, Is Required for Its Recruitment to Midbody and Cytokinesis. Dev. Cell. 2005;9:477–488. doi: 10.1016/j.devcel.2005.09.003. PubMed DOI
Lee K., Rhee K. PLK1 phosphorylation of pericentrin initiates centrosome maturation at the onset of mitosis. J. Cell Biol. 2011;195:1093–1101. doi: 10.1083/jcb.201106093. PubMed DOI PMC
Little T.M., Jordan P.W. PLK1 is required for chromosome compaction and microtubule organization in mouse oocytes. Mol. Biol. Cell. 2020;31:1206–1217. doi: 10.1091/mbc.E19-12-0701. PubMed DOI PMC
Shang Z.-F., Yu L., Li B., Tu W.-Z., Wang Y., Liu X.-D., Guan H., Huang B., Rang W.-Q., Zhou P.-K. 4E-BP1 participates in maintaining spindle integrity and genomic stability via interacting with PLK1. Cell Cycle. 2012;11:3463–3471. doi: 10.4161/cc.21770. PubMed DOI PMC
Kim T. Recent Progress on the Localization of PLK1 to the Kinetochore and Its Role in Mitosis. Int. J. Mol. Sci. 2022;23:5252. doi: 10.3390/ijms23095252. PubMed DOI PMC
Severance A.L., Latham K.E. PLK1 regulates spindle association of phosphorylated eukaryotic translation initiation factor 4E-binding protein and spindle function in mouse oocytes. Am. J. Physiol. Physiol. 2017;313:C501–C515. doi: 10.1152/ajpcell.00075.2017. PubMed DOI PMC
Liao Y., Lin D., Cui P., Abbasi B., Chen C., Zhang Z., Zhang Y., Dong Y., Rui R., Ju S. Polo-like kinase 1 inhibition results in misaligned chromosomes and aberrant spindles in porcine oocytes during the first meiotic division. Reprod. Domest. Anim. 2018;53:256–265. doi: 10.1111/rda.13102. PubMed DOI
Haarhuis J.H.I., Elbatsh A.M.O., Rowland B.D. Cohesin and Its Regulation: On the Logic of X-Shaped Chromosomes. Dev. Cell. 2014;31:7–18. doi: 10.1016/j.devcel.2014.09.010. PubMed DOI
Adriaans I.E., Basant A., Ponsioen B., Glotzer M., Lens S.M.A. PLK1 plays dual roles in centralspindlin regulation during cytokinesis. J. Cell Biol. 2019;218:1250–1264. doi: 10.1083/jcb.201805036. PubMed DOI PMC
Kim J.H., Shim J., Ji M.-J., Jung Y., Bong S.M., Jang Y.-J., Yoon E.-K., Lee S.-J., Kim K.G., Kim Y.H., et al. The condensin component NCAPG2 regulates microtubule–kinetochore attachment through recruitment of Polo-like kinase 1 to kinetochores. Nat. Commun. 2014;5:4588. doi: 10.1038/ncomms5588. PubMed DOI
Kraft C. Mitotic regulation of the human anaphase-promoting complex by phosphorylation. EMBO J. 2003;22:6598–6609. doi: 10.1093/emboj/cdg627. PubMed DOI PMC
Hansen D.V., Loktev A.V., Ban K.H., Jackson P.K. Plk1 Regulates Activation of the Anaphase Promoting Complex by Phosphorylating and Triggering SCF βTrCP -dependent Destruction of the APC Inhibitor Emi1. Mol. Biol. Cell. 2004;15:5623–5634. doi: 10.1091/mbc.e04-07-0598. PubMed DOI PMC
Qi F., Chen Q., Chen H., Yan H., Chen B., Xiang X., Liang C., Yi Q., Zhang M., Cheng H., et al. WAC Promotes Polo-like Kinase 1 Activation for Timely Mitotic Entry. Cell Rep. 2018;24:546–556. doi: 10.1016/j.celrep.2018.06.087. PubMed DOI
Jia J.-L., Han Y.-H., Kim H.-C., Ahn M., Kwon J.-W., Luo Y., Gunasekaran P., Lee S.-J., Lee K.S., Kyu Bang J., et al. Structural basis for recognition of Emi2 by Polo-like kinase 1 and development of peptidomimetics blocking oocyte maturation and fertilization. Sci. Rep. 2015;5:14626. doi: 10.1038/srep14626. PubMed DOI PMC
Shi W., Alajez N.M., Bastianutto C., Hui A.B.Y., Mocanu J.D., Ito E., Busson P., Lo K.-W., Ng R., Waldron J., et al. Significance of Plk1 regulation by miR-100 in human nasopharyngeal cancer. Int. J. Cancer. 2009;126:2036–2048. doi: 10.1002/ijc.24880. PubMed DOI
Shin C.H., Lee H., Kim H.R., Choi K.H., Joung J.-G., Kim H.H. Regulation of PLK1 through competition between hnRNPK, miR-149-3p and miR-193b-5p. Cell Death Differ. 2017;24:1861–1871. doi: 10.1038/cdd.2017.106. PubMed DOI PMC
Kataruka S., Modrak M., Kinterova V., Malik R., Zeitler D.M., Horvat F., Kanka J., Meister G., Svoboda P. MicroRNA dilution during oocyte growth disables the microRNA pathway in mammalian oocytes. Nucleic Acids Res. 2020;48:8050–8062. doi: 10.1093/nar/gkaa543. PubMed DOI PMC
Pascual R., Segura-Morales C., Omerzu M., Bellora N., Belloc E., Castellazzi C.L., Reina O., Eyras E., Maurice M.M., Millanes-Romero A., et al. mRNA spindle localization and mitotic translational regulation by CPEB1 and CPEB4. RNA. 2021;27:291–302. doi: 10.1261/rna.077552.120. PubMed DOI PMC
Joukov V., de Nicolo A. Aurora-PLK1 cascades as key signaling modules in the regulation of mitosis. Sci. Signal. 2018;11:eaar4195. doi: 10.1126/scisignal.aar4195. PubMed DOI
Jang Y.-J., Ma S., Terada Y., Erikson R.L. Phosphorylation of threonine 210 and the role of serine 137 in the regulation of mammalian polo-like kinase. J. Biol. Chem. 2002;277:44115–44120. doi: 10.1074/jbc.M202172200. PubMed DOI
Seki A., Coppinger J.A., Jang C.-Y., Yates J.R., Fang G. Bora and the Kinase Aurora a Cooperatively Activate the Kinase Plk1 and Control Mitotic Entry. Science. 2008;320:1655–1658. doi: 10.1126/science.1157425. PubMed DOI PMC
Steegmaier M., Hoffmann M., Baum A., Lénárt P., Petronczki M., Krššák M., Gürtler U., Garin-Chesa P., Lieb S., Quant J., et al. BI 2536, a Potent and Selective Inhibitor of Polo-like Kinase 1, Inhibits Tumor Growth In Vivo. Curr. Biol. 2007;17:316–322. doi: 10.1016/j.cub.2006.12.037. PubMed DOI
Degenhardt Y., Lampkin T. Targeting Polo-like kinase in cancer therapy. Clin. Cancer Res. 2010;16:384–389. doi: 10.1158/1078-0432.CCR-09-1380. PubMed DOI
Strebhardt K., Becker S., Matthess Y. Thoughts on the current assessment of Polo-like kinase inhibitor drug discovery. Expert Opin. Drug Discov. 2015;10:1–8. doi: 10.1517/17460441.2015.962510. PubMed DOI
Blengini C.S., Ibrahimian P., Vaskovicova M., Drutovic D., Solc P., Schindler K. Aurora kinase A is essential for meiosis in mouse oocytes. PLoS Genet. 2021;17:e1009327. doi: 10.1371/journal.pgen.1009327. PubMed DOI PMC
Shen W., Ahmad F., Hockman S., Ma J., Omi H., Raghavachari N., Manganiello V. Female infertility in PDE3A -/- mice. Cell Cycle. 2010;9:4720–4734. doi: 10.4161/cc.9.23.14090. PubMed DOI PMC
Ajduk A., Strauss B., Pines J., Zernicka-Goetz M. Delayed APC/C activation extends the first mitosis of mouse embryos. Sci. Rep. 2017;7:9682. doi: 10.1038/s41598-017-09526-1. PubMed DOI PMC
Dupré A., Haccard O., Jessus C. Mos in the Oocyte: How to Use MAPK Independently of Growth Factors and Transcription to Control Meiotic Divisions. J. Signal Transduct. 2011;2011:1–15. doi: 10.1155/2011/350412. PubMed DOI PMC
Hunt T. Getting in and Out of Mitosis. Rambam Maimonides Med. J. 2011;2:e0051. doi: 10.5041/RMMJ.10051. PubMed DOI PMC
Golsteyn R.M., Schultz S.J., Bartek J., Ziemiecki A., Ried T., Nigg E.A. Cell cycle analysis and chromosomal localization of human Plk1, a putative homologue of the mitotic kinases Drosophila polo and Saccharomyces cerevisiae Cdc5. J. Cell Sci. 1994;107:1509–1517. doi: 10.1242/jcs.107.6.1509. PubMed DOI
Golsteyn R.M., Mundt K.E., Fry A.M., Nigg E.A. Cell cycle regulation of the activity and subcellular localization of Plk1, a human protein kinase implicated in mitotic spindle function. J. Cell Biol. 1995;129:1617–1628. doi: 10.1083/jcb.129.6.1617. PubMed DOI PMC
Dai W. Polo-like kinases, an introduction. Oncogene. 2005;24:214–216. doi: 10.1038/sj.onc.1208270. PubMed DOI
Cheng K.-Y. The crystal structure of the human polo-like kinase-1 polo box domain and its phospho-peptide complex. EMBO J. 2003;22:5757–5768. doi: 10.1093/emboj/cdg558. PubMed DOI PMC
Elia A.E.H., Rellos P., Haire L.F., Chao J.W., Ivins F.J., Hoepker K., Mohammad D., Cantley L.C., Smerdon S.J., Yaffe M.B. The Molecular Basis for Phosphodependent Substrate Targeting and Regulation of Plks by the Polo-Box Domain. Cell. 2003;115:83–95. doi: 10.1016/S0092-8674(03)00725-6. PubMed DOI
Lee K.S., Park J.-E., Kang Y.H., Kim T.-S., Bang J.K. Mechanisms Underlying Plk1 Polo-Box Domain-Mediated Biological Processes and Their Physiological Significance. Mol. Cells. 2014;37:286–294. doi: 10.14348/molcells.2014.0002. PubMed DOI PMC
Lee K.S., Park J.-E., Kang Y.H., Zimmerman W., Soung N.-K., Seong Y.-S., Kwak S.-J., Erikson R.L. Mechanisms of mammalian polo-like kinase 1 (Plk1) localization: Self-versus non-self-priming. Cell Cycle. 2008;7:141–145. doi: 10.4161/cc.7.2.5272. PubMed DOI
García-Álvarez B., de Cárcer G., Ibañez S., Bragado-Nilsson E., Montoya G. Molecular and structural basis of polo-like kinase 1 substrate recognition: Implications in centrosomal localization. Proc. Natl. Acad. Sci. USA. 2007;104:3107–3112. doi: 10.1073/pnas.0609131104. PubMed DOI PMC
Colicino E.G., Hehnly H. Regulating a key mitotic regulator, polo-like kinase 1 (PLK1) Cytoskeleton. 2018;75:481–494. doi: 10.1002/cm.21504. PubMed DOI PMC
Kishi K., van Vugt M.A.T.M., Okamoto K., Hayashi Y., Yaffe M.B. Functional Dynamics of Polo-Like Kinase 1 at the Centrosome. Mol. Cell. Biol. 2009;29:3134–3150. doi: 10.1128/MCB.01663-08. PubMed DOI PMC
Macůrek L., Lindqvist A., Lim D., Lampson M.A., Klompmaker R., Freire R., Clouin C., Taylor S.S., Yaffe M.B., Medema R.H. Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery. Nature. 2008;455:119–123. doi: 10.1038/nature07185. PubMed DOI
Bruinsma W., Raaijmakers J.A., Medema R.H. Switching Polo-like kinase-1 on and off in time and space. Trends Biochem. Sci. 2012;37:534–542. doi: 10.1016/j.tibs.2012.09.005. PubMed DOI
Sumara I., Vorlaufer E., Stukenberg P.T., Kelm O., Redemann N., Nigg E.A., Peters J.-M. The Dissociation of Cohesin from Chromosomes in Prophase Is Regulated by Polo-like Kinase. Mol. Cell. 2002;9:515–525. doi: 10.1016/S1097-2765(02)00473-2. PubMed DOI
Carmena M., Pinson X., Platani M., Salloum Z., Xu Z., Clark A., MacIsaac F., Ogawa H., Eggert U., Glover D.M., et al. The Chromosomal Passenger Complex Activates Polo Kinase at Centromeres. PLoS Biol. 2012;10:e1001250. doi: 10.1371/annotation/7832f573-e0d9-465f-b5d4-0ac1014b6112. PubMed DOI PMC
Bruinsma W., Aprelia M., Kool J., Macurek L., Lindqvist A., Medema R.H. Spatial Separation of Plk1 Phosphorylation and Activity. Front. Oncol. 2015;5:132. doi: 10.3389/fonc.2015.00132. PubMed DOI PMC
Kang Y.H., Park J.-E., Yu L.-R., Soung N.-K., Yun S.-M., Bang J.K., Seong Y.-S., Yu H., Garfield S., Veenstra T.D., et al. Self-Regulated Plk1 Recruitment to Kinetochores by the Plk1-PBIP1 Interaction Is Critical for Proper Chromosome Segregation. Mol. Cell. 2006;24:409–422. doi: 10.1016/j.molcel.2006.10.016. PubMed DOI
Martino L., Morchoisne-Bolhy S., Cheerambathur D.K., van Hove L., Dumont J., Joly N., Desai A., Doye V., Pintard L. Channel Nucleoporins Recruit PLK-1 to Nuclear Pore Complexes to Direct Nuclear Envelope Breakdown in C. elegans. Dev. Cell. 2017;43:157–171.e7. doi: 10.1016/j.devcel.2017.09.019. PubMed DOI PMC
Vazquez-Martin A., Cufí S., Oliveras-Ferraros C., Menendez J.A. Polo-like kinase 1 directs the AMPK-mediated activation of myosin regulatory light chain at the cytokinetic cleavage furrow independently of energy balance. Cell Cycle. 2012;11:2422–2426. doi: 10.4161/cc.20438. PubMed DOI
Beck J., Maerki S., Posch M., Metzger T., Persaud A., Scheel H., Hofmann K., Rotin D., Pedrioli P., Swedlow J.R., et al. Ubiquitylation-dependent localization of PLK1 in mitosis. Nat. Cell Biol. 2013;15:430–439. doi: 10.1038/ncb2695. PubMed DOI PMC
Xiong B., Sun S.-C., Lin S.-L., Li M., Xu B.-Z., OuYang Y.-C., Hou Y., Chen D.-Y., Sun Q.-Y. Involvement of Polo-like kinase 1 in MEK1/2-regulated spindle formation during mouse oocyte meiosis. Cell Cycle. 2008;7:1804–1809. doi: 10.4161/cc.7.12.6019. PubMed DOI
Fan H.-Y., Tong C., Teng C.-B., Lian L., Li S.-W., Yang Z.-M., Chen D.-Y., Schatten H., Sun Q.-Y. Characterization of polo-like kinase-1 in rat oocytes and early embryos implies its functional roles in the regulation of meiotic maturation, fertilization, and cleavage. Mol. Reprod. Dev. 2003;65:318–329. doi: 10.1002/mrd.10283. PubMed DOI
Tetkova A., Susor A., Kubelka M., Nemcova L., Jansova D., Dvoran M., Del Llano E., Holubcova Z., Kalous J. Follicle-stimulating hormone administration affects amino acid metabolism in mammalian oocytes†. Biol. Reprod. 2019;101:719–732. doi: 10.1093/biolre/ioz117. PubMed DOI
Fan Y., Zhao H.-C., Liu J., Tan T., Ding T., Li R., Zhao Y., Yan J., Sun X., Yu Y., et al. Aberrant expression of maternal Plk1 and Dctn3 results in the developmental failure of human in-vivo- and in-vitro-matured oocytes. Sci. Rep. 2015;5:8192. doi: 10.1038/srep08192. PubMed DOI PMC
D’Aurora M., Budani M.C., Franchi S., Sarra A., Stuppia L., Tiboni G.M., Gatta V. Dynactin pathway-related gene expression is altered by aging, but not by vitrification. Reprod. Toxicol. 2019;88:48–55. doi: 10.1016/j.reprotox.2019.06.011. PubMed DOI
Llano E., Masek T., Gahurova L., Pospisek M., Koncicka M., Jindrova A., Jansova D., Iyyappan R., Roucova K., Bruce A.W., et al. Age-related differences in the translational landscape of mammalian oocytes. Aging Cell. 2020;19:e13231. doi: 10.1111/acel.13231. PubMed DOI PMC
Champion L., Linder M.I., Kutay U. Cellular Reorganization during Mitotic Entry. Trends Cell Biol. 2017;27:26–41. doi: 10.1016/j.tcb.2016.07.004. PubMed DOI
Leng M., Besusso D., Jung S.Y., Wang Y., Qin J. Targeting Plk1 to chromosome arms and regulating chromosome compaction by the PICH ATPase. Cell Cycle. 2008;7:1480–1489. doi: 10.4161/cc.7.10.5951. PubMed DOI
Kalous J., Kubelka M., Motlík J. The effect of PD98059 on MAPK regulation in cumulus-enclosed and cumulus-free mouse oocytes. Zygote. 2003;11:61–68. doi: 10.1017/S0967199403001084. PubMed DOI
Kalous J., Jansová D., Šušor A. Role of Cyclin-Dependent Kinase 1 in Translational Regulation in the M-Phase. Cells. 2020;9:1568. doi: 10.3390/cells9071568. PubMed DOI PMC
Kalous J., Solc P., Baran V., Kubelka M., Schultz R.M., Motlik J. PKB/AKT is involved in resumption of meiosis in mouse oocytes. Biol. Cell. 2006;98:111–123. doi: 10.1042/BC20050020. PubMed DOI
Kalous J., Kubelka M., Šolc P., Šušor A., Motlík J. AKT (protein kinase B) is implicated in meiotic maturation of porcine oocytes. Reproduction. 2009;138:645–654. doi: 10.1530/REP-08-0461. PubMed DOI
Motlik J., Pavlok A., Kubelka M., Kalous J., Kalab P. Interplay between CDC2 kinase and MAP kinase pathway during maturation of mammalian oocytes. Theriogenology. 1998;49:461–469. doi: 10.1016/S0093-691X(97)00418-4. PubMed DOI
Inoue D., Sagata N. The Polo-like kinase Plx1 interacts with and inhibits Myt1 after fertilization of Xenopus eggs. EMBO J. 2005;24:1057–1067. doi: 10.1038/sj.emboj.7600567. PubMed DOI PMC
Wianny F., Tavares Á., Evans M.J., Glover D.M., Zernicka-Goetz M. Mouse polo-like kinase 1 associates with the acentriolar spindle poles, meiotic chromosomes and spindle midzone during oocyte maturation. Chromosoma. 1998;107:430–439. doi: 10.1007/s004120050327. PubMed DOI
Alfaro E., López-Jiménez P., González-Martínez J., Malumbres M., Suja J.A., Gómez R. PLK1 regulates centrosome migration and spindle dynamics in male mouse meiosis. EMBO Rep. 2021;22:e51030. doi: 10.15252/embr.202051030. PubMed DOI PMC
Schuh M., Ellenberg J. Self-Organization of MTOCs Replaces Centrosome Function during Acentrosomal Spindle Assembly in Live Mouse Oocytes. Cell. 2007;130:484–498. doi: 10.1016/j.cell.2007.06.025. PubMed DOI
Koncicka M., Tetkova A., Jansova D., Del Llano E., Gahurova L., Kracmarova J., Prokesova S., Masek T., Pospisek M., Bruce A., et al. Increased Expression of Maturation Promoting Factor Components Speeds Up Meiosis in Oocytes from Aged Females. Int. J. Mol. Sci. 2018;19:2841. doi: 10.3390/ijms19092841. PubMed DOI PMC
Qiao R., Weissmann F., Yamaguchi M., Brown N.G., VanderLinden R., Imre R., Jarvis M.A., Brunner M.R., Davidson I.F., Litos G., et al. Mechanism of APC/C CDC20 activation by mitotic phosphorylation. Proc. Natl. Acad. Sci. USA. 2016;113:E2570–E2578. doi: 10.1073/pnas.1604929113. PubMed DOI PMC
Herzog F., Primorac I., Dube P., Lenart P., Sander B., Mechtler K., Stark H., Peters J.-M. Structure of the Anaphase-Promoting Complex/Cyclosome Interacting with a Mitotic Checkpoint Complex. Science. 2009;323:1477–1481. doi: 10.1126/science.1163300. PubMed DOI PMC
Zhang S., Chang L., Alfieri C., Zhang Z., Yang J., Maslen S., Skehel M., Barford D. Molecular mechanism of APC/C activation by mitotic phosphorylation. Nature. 2016;533:260–264. doi: 10.1038/nature17973. PubMed DOI PMC
Baran V., Brzakova A., Rehak P., Kovarikova V., Solc P. PLK1 regulates spindle formation kinetics and APC/C activation in mouse zygote. Zygote. 2016;24:338–345. doi: 10.1017/S0967199415000246. PubMed DOI
Reimann J.D.R., Freed E., Hsu J.Y., Kramer E.R., Peters J.-M., Jackson P.K. Emi1 Is a Mitotic Regulator that Interacts with Cdc20 and Inhibits the Anaphase Promoting Complex. Cell. 2001;105:645–655. doi: 10.1016/S0092-8674(01)00361-0. PubMed DOI
Moshe Y., Boulaire J., Pagano M., Hershko A. Role of Polo-like kinase in the degradation of early mitotic inhibitor 1, a regulator of the anaphase promoting complex/cyclosome. Proc. Natl. Acad. Sci. USA. 2004;101:7937–7942. doi: 10.1073/pnas.0402442101. PubMed DOI PMC
Di Fiore B., Pines J. Emi1 is needed to couple DNA replication with mitosis but does not regulate activation of the mitotic APC/C. J. Cell Biol. 2007;177:425–437. doi: 10.1083/jcb.200611166. PubMed DOI PMC
Madgwick S., Hansen D.V., Levasseur M., Jackson P.K., Jones K.T. Mouse Emi2 is required to enter meiosis II by reestablishing cyclin B1 during interkinesis. J. Cell Biol. 2006;174:791–801. doi: 10.1083/jcb.200604140. PubMed DOI PMC
Takei N., Sato K., Takada Y., Iyyappan R., Susor A., Yamamoto T., Kotani T. Tdrd3 regulates the progression of meiosis II through translational control of Emi2 mRNA in mouse oocytes. Curr. Res. Cell Biol. 2021;2:100009. doi: 10.1016/j.crcbio.2021.100009. DOI
Tang W., Wu J.Q., Guo Y., Hansen D.V., Perry J.A., Freel C.D., Nutt L., Jackson P.K., Kornbluth S. Cdc2 and Mos Regulate Emi2 Stability to Promote the Meiosis I–Meiosis II Transition. Mol. Biol. Cell. 2008;19:3536–3543. doi: 10.1091/mbc.e08-04-0417. PubMed DOI PMC
Wu J.Q., Kornbluth S. Across the meiotic divide—CSF activity in the post-Emi2/XErp1 era. J. Cell Sci. 2008;121:3509–3514. doi: 10.1242/jcs.036855. PubMed DOI
Wong S., Wilmott Z.M., Saurya S., Alvarez-Rodrigo I., Zhou F.Y., Chau K., Goriely A., Raff J.W. Centrioles generate a local pulse of Polo/PLK1 activity to initiate mitotic centrosome assembly. EMBO J. 2022;41:e110891. doi: 10.15252/embj.2022110891. PubMed DOI PMC
Ong J.Y., Bradley M.C., Torres J.Z. Phospho-regulation of mitotic spindle assembly. Cytoskeleton. 2020;77:558–578. doi: 10.1002/cm.21649. PubMed DOI PMC
Zhang X., Chen Q., Feng J., Hou J., Yang F., Liu J., Jiang Q., Zhang C. Sequential phosphorylation of Nedd1 by Cdk1 and Plk1 is required for targeting of the γTuRC to the centrosome. J. Cell Sci. 2009;122:2240–2251. doi: 10.1242/jcs.042747. PubMed DOI
Ohta M., Zhao Z., Wu D., Wang S., Harrison J.L., Gómez-Cavazos J.S., Desai A., Oegema K.F. Polo-like kinase 1 independently controls microtubule-nucleating capacity and size of the centrosome. J. Cell Biol. 2021;220:e202009083. doi: 10.1083/jcb.202009083. PubMed DOI PMC
Bertran M.T., Sdelci S., Regué L., Avruch J., Caelles C., Roig J. Nek9 is a Plk1-activated kinase that controls early centrosome separation through Nek6/7 and Eg5. EMBO J. 2011;30:2634–2647. doi: 10.1038/emboj.2011.179. PubMed DOI PMC
Xu L., Ali M., Duan W., Yuan X., Garba F., Mullen M., Sun B., Poser I., Duan H., Lu J., et al. Feedback control of PLK1 by Apolo1 ensures accurate chromosome segregation. Cell Rep. 2021;36:109343. doi: 10.1016/j.celrep.2021.109343. PubMed DOI PMC
Addis Jones O., Tiwari A., Olukoga T., Herbert A., Chan K.-L. PLK1 facilitates chromosome biorientation by suppressing centromere disintegration driven by BLM-mediated unwinding and spindle pulling. Nat. Commun. 2019;10:2861. doi: 10.1038/s41467-019-10938-y. PubMed DOI PMC
So C., Seres K.B., Steyer A.M., Mönnich E., Clift D., Pejkovska A., Möbius W., Schuh M. A liquid-like spindle domain promotes acentrosomal spindle assembly in mammalian oocytes. Science. 2019;364:eaat9557. doi: 10.1126/science.aat9557. PubMed DOI PMC
Tetkova A., Jansova D., Susor A. Spatio-temporal expression of ANK2 promotes cytokinesis in oocytes. Sci. Rep. 2019;9:13121. doi: 10.1038/s41598-019-49483-5. PubMed DOI PMC
Hashimoto N., Kishimoto T. Regulation of meiotic metaphase by a cytoplasmic maturation-promoting factor during mouse oocyte maturation. Dev. Biol. 1988;126:242–252. doi: 10.1016/0012-1606(88)90135-2. PubMed DOI
Romasko E.J., Amarnath D., Midic U., Latham K.E. Association of maternal mRNA and phosphorylated EIF4EBP1 variants with the spindle in mouse oocytes: Localized translational control supporting female meiosis in mammals. Genetics. 2013;195:349–358. doi: 10.1534/genetics.113.154005. PubMed DOI PMC
Waldron A., Yajima M. Localized translation on the mitotic apparatus: A history and perspective. Dev. Biol. 2020;468:55–58. doi: 10.1016/j.ydbio.2020.09.010. PubMed DOI PMC
Das S., Vera M., Gandin V., Singer R.H., Tutucci E. Intracellular mRNA transport and localized translation. Nat. Rev. Mol. Cell Biol. 2021;22:483–504. doi: 10.1038/s41580-021-00356-8. PubMed DOI PMC
Pichon X., Bastide A., Safieddine A., Chouaib R., Samacoits A., Basyuk E., Peter M., Mueller F., Bertrand E. Visualization of single endogenous polysomes reveals the dynamics of translation in live human cells. J. Cell Biol. 2016;214:769–781. doi: 10.1083/jcb.201605024. PubMed DOI PMC
Susor A., Jansova D., Cerna R., Danylevska A., Anger M., Toralova T., Malik R., Supolikova J., Cook M.S., Oh J.S., et al. Temporal and spatial regulation of translation in the mammalian oocyte via the mTOR–eIF4F pathway. Nat. Commun. 2015;6:6078. doi: 10.1038/ncomms7078. PubMed DOI PMC
Laplante M., Sabatini D.M. mTOR Signaling in Growth Control and Disease. Cell. 2012;149:274–293. doi: 10.1016/j.cell.2012.03.017. PubMed DOI PMC
Shimobayashi M., Hall M.N. Making new contacts: The mTOR network in metabolism and signalling crosstalk. Nat. Rev. Mol. Cell Biol. 2014;15:155–162. doi: 10.1038/nrm3757. PubMed DOI
Li Y., Wang H., Zhang Z., Tang C., Zhou X., Mohan C., Wu T. Identification of polo-like kinase 1 as a therapeutic target in murine lupus. Clin. Transl. Immunol. 2022;11:e1362. doi: 10.1002/cti2.1362. PubMed DOI PMC
Astrinidis A., Senapedis W., Henske E.P. Hamartin, the tuberous sclerosis complex 1 gene product, interacts with polo-like kinase 1 in a phosphorylation-dependent manner. Hum. Mol. Genet. 2006;15:287–297. doi: 10.1093/hmg/ddi444. PubMed DOI
Ruf S., Heberle A.M., Langelaar-Makkinje M., Gelino S., Wilkinson D., Gerbeth C., Schwarz J.J., Holzwarth B., Warscheid B., Meisinger C., et al. PLK1 (polo like kinase 1) inhibits MTOR complex 1 and promotes autophagy. Autophagy. 2017;13:486–505. doi: 10.1080/15548627.2016.1263781. PubMed DOI PMC
Gingras A.C., Raught B., Sonenberg N. eIF4 initiation factors: Effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem. 1999;68:913–963. doi: 10.1146/annurev.biochem.68.1.913. PubMed DOI
Herbert T.P., Tee A.R., Proud C.G. The Extracellular Signal-regulated Kinase Pathway Regulates the Phosphorylation of 4E-BP1 at Multiple Sites. J. Biol. Chem. 2002;277:11591–11596. doi: 10.1074/jbc.M110367200. PubMed DOI
Gingras A.-C., Gygi S.P., Raught B., Polakiewicz R.D., Abraham R.T., Hoekstra M.F., Aebersold R., Sonenberg N. Regulation of 4E-BP1 phosphorylation: A novel two-step mechanism. Genes Dev. 1999;13:1422–1437. doi: 10.1101/gad.13.11.1422. PubMed DOI PMC
Heesom K.J., Gampel A., Mellor H., Denton R.M. Cell cycle-dependent phosphorylation of the translational repressor eIF-4E binding protein-1 (4E-BP1) Curr. Biol. 2001;11:1374–1379. doi: 10.1016/S0960-9822(01)00422-5. PubMed DOI
Shuda M., Velásquez C., Cheng E., Cordek D.G., Kwun H.J., Chang Y., Moore P.S. CDK1 substitutes for mTOR kinase to activate mitotic cap-dependent protein translation. Proc. Natl. Acad. Sci. USA. 2015;112:5875–5882. doi: 10.1073/pnas.1505787112. PubMed DOI PMC
Jansova D., Koncicka M., Tetkova A., Cerna R., Malik R., Del Llano E., Kubelka M., Susor A. Regulation of 4E-BP1 activity in the mammalian oocyte. Cell Cycle. 2017;16:927–939. doi: 10.1080/15384101.2017.1295178. PubMed DOI PMC
Li R., Chen D.-F., Zhou R., Jia S.-N., Yang J.-S., Clegg J.S., Yang W.-J. Involvement of Polo-like Kinase 1 (Plk1) in Mitotic Arrest by Inhibition of Mitogen-activated Protein Kinase-Extracellular Signal-regulated Kinase-Ribosomal S6 Kinase 1 (MEK-ERK-RSK1) Cascade. J. Biol. Chem. 2012;287:15923–15934. doi: 10.1074/jbc.M111.312413. PubMed DOI PMC
Severance A.L., Latham K.E. Meeting the meiotic challenge: Specializations in mammalian oocyte spindle formation. Mol. Reprod. Dev. 2018;85:178–187. doi: 10.1002/mrd.22967. PubMed DOI PMC