Identifying the Translatome of Mouse NEBD-Stage Oocytes via SSP-Profiling; A Novel Polysome Fractionation Method

. 2020 Feb 13 ; 21 (4) : . [epub] 20200213

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32070012

Grantová podpora
MR/N022556/1 Medical Research Council - United Kingdom
19-13491S Grantová Agentura České Republiky

Meiotic maturation of oocyte relies on pre-synthesised maternal mRNA, the translation of which is highly coordinated in space and time. Here, we provide a detailed polysome profiling protocol that demonstrates a combination of the sucrose gradient ultracentrifugation in small SW55Ti tubes with the qRT-PCR-based quantification of 18S and 28S rRNAs in fractionated polysome profile. This newly optimised method, named Scarce Sample Polysome Profiling (SSP-profiling), is suitable for both scarce and conventional sample sizes and is compatible with downstream RNA-seq to identify polysome associated transcripts. Utilising SSP-profiling we have assayed the translatome of mouse oocytes at the onset of nuclear envelope breakdown (NEBD)-a developmental point, the study of which is important for furthering our understanding of the molecular mechanisms leading to oocyte aneuploidy. Our analyses identified 1847 transcripts with moderate to strong polysome occupancy, including abundantly represented mRNAs encoding mitochondrial and ribosomal proteins, proteasomal components, glycolytic and amino acids synthetic enzymes, proteins involved in cytoskeleton organization plus RNA-binding and translation initiation factors. In addition to transcripts encoding known players of meiotic progression, we also identified several mRNAs encoding proteins of unknown function. Polysome profiles generated using SSP-profiling were more than comparable to those developed using existing conventional approaches, being demonstrably superior in their resolution, reproducibility, versatility, speed of derivation and downstream protocol applicability.

Zobrazit více v PubMed

Mathews M.B., Sonenberg N., Hershey J.W. Origins and Principles of Translational control. In: Mathews M.B., Sonenberg N., Hershey J.W., editors. Translational Control in Biology and Medicine. Cold Spring Harb Lab. Press; New York, NY, USA: 2007. pp. 1–40.

Holcik M., Sonenberg N. Translational control in stress and apoptosis. Nat. Rev. Mol. Cell Biol. 2005;6:318–327. doi: 10.1038/nrm1618. PubMed DOI

Cnop M., Toivonen S., Igoillo-Esteve M., Salpea P. Endoplasmic reticulum stress and eIF2alpha phosphorylation: The Achilles heel of pancreatic beta cells. Mol. Metab. 2017;6:1024–1039. doi: 10.1016/j.molmet.2017.06.001. PubMed DOI PMC

Susor A., Jansova D., Anger M., Kubelka M. Translation in the mammalian oocyte in space and time. Cell Tissue Res. 2016;363:69–84. doi: 10.1007/s00441-015-2269-6. PubMed DOI

Warner J.R., Knopf P.M., Rich A. A multiple ribosomal structure in protein synthesis. Proc. Natl. Acad. Sci. USA. 1963;49:122–129. doi: 10.1073/pnas.49.1.122. PubMed DOI PMC

Gamm M., Peviani A., Honsel A., Snel B., Smeekens S., Hanson J. Increased sucrose levels mediate selective mRNA translation in Arabidopsis. BMC Plant Biol. 2014;14:306. doi: 10.1186/s12870-014-0306-3. PubMed DOI PMC

Ashe M.P., De Long S.K., Sachs A.B. Glucose depletion rapidly inhibits translation initiation in yeast. Mol. Biol. Cell. 2000;11:833–848. doi: 10.1091/mbc.11.3.833. PubMed DOI PMC

Shalgi R., Hurt J.A., Krykbaeva I., Taipale M., Lindquist S., Burge C.B. Widespread regulation of translation by elongation pausing in heat shock. Mol. Cell. 2013;49:439–452. doi: 10.1016/j.molcel.2012.11.028. PubMed DOI PMC

Swaminathan S., Masek T., Molin C., Pospisek M., Sunnerhagen P. Rck2 is required for reprogramming of ribosomes during oxidative stress. Mol. Biol. Cell. 2006;17:1472–1482. doi: 10.1091/mbc.e05-07-0632. PubMed DOI PMC

Sydorskyy Y., Dilworth D.J., Halloran B., Yi E.C., Makhnevych T., Wozniak R.W., Aitchison J.D. Nop53p is a novel nucleolar 60S ribosomal subunit biogenesis protein. Biochem. J. 2005;388:819–826. doi: 10.1042/BJ20041297. PubMed DOI PMC

Choudhuri A., Maitra U., Evans T. Translation initiation factor eIF3h targets specific transcripts to polysomes during embryogenesis. Proc. Natl. Acad. Sci. USA. 2013;110:9818–9823. doi: 10.1073/pnas.1302934110. PubMed DOI PMC

Martinez-Nunez R.T., Wallace A., Coyne D., Jansson L., Rush M., Ennajdaoui H., Katzman S., Bailey J., Deinhardt K., Sanchez-Elsner T., et al. Modulation of nonsense mediated decay by rapamycin. Nucleic Acids Res. 2017;45:3448–3459. doi: 10.1093/nar/gkw1109. PubMed DOI PMC

Androsavich J.R., Sobczynski D.J., Liu X., Pandya S., Kaimal V., Owen T., Liu K., MacKenna D.A., Chau B.N. Polysome shift assay for direct measurement of miRNA inhibition by anti-miRNA drugs. Nucleic Acids Res. 2016;44:e13. doi: 10.1093/nar/gkv893. PubMed DOI PMC

Qin D., Fredrick K. Analysis of polysomes from bacteria. Methods Enzymol. 2013;530:159–172. doi: 10.1016/b978-0-12-420037-1.00008-7. PubMed DOI

Seimetz J., Arif W., Bangru S., Hernaez M., Kalsotra A. Cell-type specific polysome profiling from mammalian tissues. Methods. 2018;155:131–139. doi: 10.1016/j.ymeth.2018.11.015. PubMed DOI PMC

Kawaguchi R., Bailey-Serres J. mRNA sequence features that contribute to translational regulation in Arabidopsis. Nucleic Acids Res. 2005;33:955–965. doi: 10.1093/nar/gki240. PubMed DOI PMC

Kopeina G.S., Afonina Z.A., Gromova K.V., Shirokov V.A., Vasiliev V.D., Spirin A.S. Step-wise formation of eukaryotic double-row polyribosomes and circular translation of polysomal mRNA. Nucleic Acids Res. 2008;36:2476–2488. doi: 10.1093/nar/gkm1177. PubMed DOI PMC

McGlincy N.J., Ingolia N.T. Transcriptome-wide measurement of translation by ribosome profiling. Methods. 2017;126:112–129. doi: 10.1016/j.ymeth.2017.05.028. PubMed DOI PMC

Fu Y., Chen L., Chen C., Ge Y., Kang M., Song Z., Li J., Feng Y., Huo Z., He G., et al. Crosstalk between alternative polyadenylation and miRNAs in the regulation of protein translational efficiency. Genome Res. 2018;28:1656–1663. doi: 10.1101/gr.231506.117. PubMed DOI PMC

Floor S.N., Doudna J.A. Tunable protein synthesis by transcript isoforms in human cells. eLife. 2016;5 doi: 10.7554/eLife.10921. PubMed DOI PMC

Sterne-Weiler T., Martinez-Nunez R.T., Howard J.M., Cvitovik I., Katzman S., Tariq M.A., Pourmand N., Sanford J.R. Frac-seq reveals isoform-specific recruitment to polyribosomes. Genome Res. 2013;23:1615–1623. doi: 10.1101/gr.148585.112. PubMed DOI PMC

Peng X., Emiliani F., Smallwood P.M., Rattner A., Lei H., Sabbagh M.F., Nathans J. Affinity capture of polyribosomes followed by RNAseq (ACAPseq), a discovery platform for protein-protein interactions. eLife. 2018;7 doi: 10.7554/eLife.40982. PubMed DOI PMC

Aviner R., Hofmann S., Elman T., Shenoy A., Geiger T., Elkon R., Ehrlich M., Elroy-Stein O. Proteomic analysis of polyribosomes identifies splicing factors as potential regulators of translation during mitosis. Nucleic Acids Res. 2017;45:5945–5957. doi: 10.1093/nar/gkx326. PubMed DOI PMC

Castelli L.M., Talavera D., Kershaw C.J., Mohammad-Qureshi S.S., Costello J.L., Rowe W., Sims P.F., Grant C.M., Hubbard S.J., Ashe M.P., et al. The 4E-BP Caf20p Mediates Both eIF4E-Dependent and Independent Repression of Translation. PLoS Genet. 2015;11:e1005233. doi: 10.1371/journal.pgen.1005233. PubMed DOI PMC

de Sousa Abreu R., Penalva L.O., Marcotte E.M., Vogel C. Global signatures of protein and mRNA expression levels. Mol. BioSyst. 2009;5:1512–1526. doi: 10.1039/b908315d. PubMed DOI PMC

Wang T., Cui Y., Jin J., Guo J., Wang G., Yin X., He Q.Y., Zhang G. Translating mRNAs strongly correlate to proteins in a multivariate manner and their translation ratios are phenotype specific. Nucleic Acids Res. 2013;41:4743–4754. doi: 10.1093/nar/gkt178. PubMed DOI PMC

Zhao J., Qin B., Nikolay R., Spahn C.M.T., Zhang G. Translatomics: The Global View of Translation. Int. J. Mol. Sci. 2019;20:212. doi: 10.3390/ijms20010212. PubMed DOI PMC

Chasse H., Boulben S., Costache V., Cormier P., Morales J. Analysis of translation using polysome profiling. Nucleic Acids Res. 2017;45:e15. doi: 10.1093/nar/gkw907. PubMed DOI PMC

Masek T., Valasek L., Pospisek M. Polysome analysis and RNA purification from sucrose gradients. Methods Mol. Biol. 2011;703:293–309. doi: 10.1007/978-1-59745-248-9_20. PubMed DOI

Potireddy S., Vassena R., Patel B.G., Latham K.E. Analysis of polysomal mRNA populations of mouse oocytes and zygotes: Dynamic changes in maternal mRNA utilization and function. Dev. Biol. 2006;298:155–166. doi: 10.1016/j.ydbio.2006.06.024. PubMed DOI

Scantland S., Grenon J.P., Desrochers M.H., Sirard M.A., Khandjian E.W., Robert C. Method to isolate polyribosomal mRNA from scarce samples such as mammalian oocytes and early embryos. BMC Dev. Biol. 2011;11:8. doi: 10.1186/1471-213X-11-8. PubMed DOI PMC

Wang Y., Ringquist S., Cho A.H., Rondeau G., Welsh J. High-throughput polyribosome fractionation. Nucleic Acids Res. 2004;32:e79. doi: 10.1093/nar/gnh077. PubMed DOI PMC

Schuh M., Ellenberg J. Self-organization of MTOCs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes. Cell. 2007;130:484–498. doi: 10.1016/j.cell.2007.06.025. PubMed DOI

Collado-Fernandez E., Picton H.M., Dumollard R. Metabolism throughout follicle and oocyte development in mammals. Int. J. Dev. Biol. 2012;56:799–808. doi: 10.1387/ijdb.120140ec. PubMed DOI

Gahurova L., Tomizawa S.I., Smallwood S.A., Stewart-Morgan K.R., Saadeh H., Kim J., Andrews S.R., Chen T., Kelsey G. Transcription and chromatin determinants of de novo DNA methylation timing in oocytes. Epigenetics Chromatin. 2017;10:25. doi: 10.1186/s13072-017-0133-5. PubMed DOI PMC

Susor A., Kubelka M. Translational Regulation in the Mammalian Oocyte. Results Probl. Cell Differ. 2017;63:257–295. doi: 10.1007/978-3-319-60855-6_12. PubMed DOI

Stebbins-Boaz B., Hake L.E., Richter J.D. CPEB controls the cytoplasmic polyadenylation of cyclin, Cdk2 and c-mos mRNAs and is necessary for oocyte maturation in Xenopus. EMBO J. 1996;15:2582–2592. doi: 10.1002/j.1460-2075.1996.tb00616.x. PubMed DOI PMC

Igea A., Mendez R. Meiosis requires a translational positive loop where CPEB1 ensues its replacement by CPEB4. EMBO J. 2010;29:2182–2193. doi: 10.1038/emboj.2010.111. PubMed DOI PMC

Eliscovich C., Peset I., Vernos I., Mendez R. Spindle-localized CPE-mediated translation controls meiotic chromosome segregation. Nat. Cell Biol. 2008;10:858–865. doi: 10.1038/ncb1746. PubMed DOI

Belloc E., Pique M., Mendez R. Sequential waves of polyadenylation and deadenylation define a translation circuit that drives meiotic progression. Biochem. Soc. Trans. 2008;36:665–670. doi: 10.1042/BST0360665. PubMed DOI

Susor A., Jansova D., Cerna R., Danylevska A., Anger M., Toralova T., Malik R., Supolikova J., Cook M.S., Oh J.S., et al. Temporal and spatial regulation of translation in the mammalian oocyte via the mTOR-eIF4F pathway. Nat. Commun. 2015;6:6078. doi: 10.1038/ncomms7078. PubMed DOI PMC

Labrecque R., Sirard M.A. The study of mammalian oocyte competence by transcriptome analysis: Progress and challenges. Mol. Hum. Reprod. 2014;20:103–116. doi: 10.1093/molehr/gat082. PubMed DOI

Liu Q., Li Y., Feng Y., Liu C., Ma J., Li Y., Xiang H., Ji Y., Cao Y., Tong X., et al. Single-cell analysis of differences in transcriptomic profiles of oocytes and cumulus cells at GV, MI, MII stages from PCOS patients. Sci. Rep. 2016;6:39638. doi: 10.1038/srep39638. PubMed DOI PMC

Suo L., Zhou Y.X., Jia L.L., Wu H.B., Zheng J., Lyu Q.F., Sun L.H., Sun H., Kuang Y.P. Transcriptome profiling of human oocytes experiencing recurrent total fertilization failure. Sci. Rep. 2018;8:17890. doi: 10.1038/s41598-018-36275-6. PubMed DOI PMC

Fragouli E., Bianchi V., Patrizio P., Obradors A., Huang Z., Borini A., Delhanty J.D., Wells D. Transcriptomic profiling of human oocytes: Association of meiotic aneuploidy and altered oocyte gene expression. Mol. Hum. Reprod. 2010;16:570–582. doi: 10.1093/molehr/gaq033. PubMed DOI

Karlic R., Ganesh S., Franke V., Svobodova E., Urbanova J., Suzuki Y., Aoki F., Vlahovicek K., Svoboda P. Long non-coding RNA exchange during the oocyte-to-embryo transition in mice. Dna Res. Int. J. Rapid Publ. Rep. Genes Genomes. 2017;24:129–141. doi: 10.1093/dnares/dsw058. PubMed DOI PMC

Chen J., Melton C., Suh N., Oh J.S., Horner K., Xie F., Sette C., Blelloch R., Conti M. Genome-wide analysis of translation reveals a critical role for deleted in azoospermia-like (Dazl) at the oocyte-to-zygote transition. Genes Dev. 2011;25:755–766. doi: 10.1101/gad.2028911. PubMed DOI PMC

Chasse H., Aubert J., Boulben S., Le Corguille G., Corre E., Cormier P., Morales J. Translatome analysis at the egg-to-embryo transition in sea urchin. Nucleic Acids Res. 2018;46:4607–4621. doi: 10.1093/nar/gky258. PubMed DOI PMC

Winata C.L., Lapinski M., Pryszcz L., Vaz C., Bin Ismail M.H., Nama S., Hajan H.S., Lee S.G.P., Korzh V., Sampath P., et al. Cytoplasmic polyadenylation-mediated translational control of maternal mRNAs directs maternal-to-zygotic transition. Development. 2018;145 doi: 10.1242/dev.159566. PubMed DOI

Schwer B., Shuman S. Multicopy suppressors of temperature-sensitive mutations of yeast mRNA capping enzyme. Gene Expr. 1996;5:331–344. PubMed PMC

De La Fuente R., Viveiros M.M., Burns K.H., Adashi E.Y., Matzuk M.M., Eppig J.J. Major chromatin remodeling in the germinal vesicle (GV) of mammalian oocytes is dispensable for global transcriptional silencing but required for centromeric heterochromatin function. Dev. Biol. 2004;275:447–458. doi: 10.1016/j.ydbio.2004.08.028. PubMed DOI

Svoboda P., Franke V., Schultz R.M. Sculpting the Transcriptome During the Oocyte-to-Embryo Transition in Mouse. Curr. Top. Dev. Biol. 2015;113:305–349. doi: 10.1016/bs.ctdb.2015.06.004. PubMed DOI

Rederstorff M., Bernhart S.H., Tanzer A., Zywicki M., Perfler K., Lukasser M., Hofacker I.L., Huttenhofer A. RNPomics: Defining the ncRNA transcriptome by cDNA library generation from ribonucleo-protein particles. Nucleic Acids Res. 2010;38:e113. doi: 10.1093/nar/gkq057. PubMed DOI PMC

Mukherjee C., Patil D.P., Kennedy B.A., Bakthavachalu B., Bundschuh R., Schoenberg D.R. Identification of cytoplasmic capping targets reveals a role for cap homeostasis in translation and mRNA stability. Cell Rep. 2012;2:674–684. doi: 10.1016/j.celrep.2012.07.011. PubMed DOI PMC

Bouckenheimer J., Fauque P., Lecellier C.H., Bruno C., Commes T., Lemaitre J.M., De Vos J., Assou S. Differential long non-coding RNA expression profiles in human oocytes and cumulus cells. Sci. Rep. 2018;8:2202. doi: 10.1038/s41598-018-20727-0. PubMed DOI PMC

Reyes J.M., Silva E., Chitwood J.L., Schoolcraft W.B., Krisher R.L., Ross P.J. Differing molecular response of young and advanced maternal age human oocytes to IVM. Hum. Reprod. 2017;32:2199–2208. doi: 10.1093/humrep/dex284. PubMed DOI PMC

Capco D.G., Gallicano G.I., McGaughey R.W., Downing K.H., Larabell C.A. Cytoskeletal sheets of mammalian eggs and embryos: A lattice-like network of intermediate filaments. Cell Motil. Cytoskelet. 1993;24:85–99. doi: 10.1002/cm.970240202. PubMed DOI

Vogt E., Kirsch-Volders M., Parry J., Eichenlaub-Ritter U. Spindle formation, chromosome segregation and the spindle checkpoint in mammalian oocytes and susceptibility to meiotic error. Mutat. Res. 2008;651:14–29. doi: 10.1016/j.mrgentox.2007.10.015. PubMed DOI

Duncan F.E., Chiang T., Schultz R.M., Lampson M.A. Evidence that a defective spindle assembly checkpoint is not the primary cause of maternal age-associated aneuploidy in mouse eggs. Biol. Reprod. 2009;81:768–776. doi: 10.1095/biolreprod.109.077909. PubMed DOI PMC

Ma J.Y., Li M., Luo Y.B., Song S., Tian D., Yang J., Zhang B., Hou Y., Schatten H., Liu Z., et al. Maternal factors required for oocyte developmental competence in mice: Transcriptome analysis of non-surrounded nucleolus (NSN) and surrounded nucleolus (SN) oocytes. Cell Cycle. 2013;12:1928–1938. doi: 10.4161/cc.24991. PubMed DOI PMC

Harris S.E., Leese H.J., Gosden R.G., Picton H.M. Pyruvate and oxygen consumption throughout the growth and development of murine oocytes. Mol. Reprod. Dev. 2009;76:231–238. doi: 10.1002/mrd.20945. PubMed DOI

Pelland A.M., Corbett H.E., Baltz J.M. Amino Acid transport mechanisms in mouse oocytes during growth and meiotic maturation. Biol. Reprod. 2009;81:1041–1054. doi: 10.1095/biolreprod.109.079046. PubMed DOI PMC

Huo L.J., Fan H.Y., Zhong Z.S., Chen D.Y., Schatten H., Sun Q.Y. Ubiquitin-proteasome pathway modulates mouse oocyte meiotic maturation and fertilization via regulation of MAPK cascade and cyclin B1 degradation. Mech. Dev. 2004;121:1275–1287. doi: 10.1016/j.mod.2004.05.007. PubMed DOI

Dun M.D., Smith N.D., Baker M.A., Lin M., Aitken R.J., Nixon B. The chaperonin containing TCP1 complex (CCT/TRiC) is involved in mediating sperm-oocyte interaction. J. Biol. Chem. 2011;286:36875–36887. doi: 10.1074/jbc.M110.188888. PubMed DOI PMC

Jansen R.P., de Boer K. The bottleneck: Mitochondrial imperatives in oogenesis and ovarian follicular fate. Mol. Cell. Endocrinol. 1998;145:81–88. doi: 10.1016/S0303-7207(98)00173-7. PubMed DOI

Dumollard R., Ward Z., Carroll J., Duchen M.R. Regulation of redox metabolism in the mouse oocyte and embryo. Development. 2007;134:455–465. doi: 10.1242/dev.02744. PubMed DOI

Bai B., Peviani A., van der Horst S., Gamm M., Snel B., Bentsink L., Hanson J. Extensive translational regulation during seed germination revealed by polysomal profiling. New Phytol. 2017;214:233–244. doi: 10.1111/nph.14355. PubMed DOI PMC

Juntawong P., Bailey-Serres J. Dynamic Light Regulation of Translation Status in Arabidopsis thaliana. Front. Plant Sci. 2012;3:66. doi: 10.3389/fpls.2012.00066. PubMed DOI PMC

Das A., Morales R., Banday M., Garcia S., Hao L., Cross G.A., Estevez A.M., Bellofatto V. The essential polysome-associated RNA-binding protein RBP42 targets mRNAs involved in Trypanosoma brucei energy metabolism. RNA. 2012;18:1968–1983. doi: 10.1261/rna.033829.112. PubMed DOI PMC

Bunnik E.M., Chung D.W., Hamilton M., Ponts N., Saraf A., Prudhomme J., Florens L., Le Roch K.G. Polysome profiling reveals translational control of gene expression in the human malaria parasite Plasmodium falciparum. Genome Biol. 2013;14:R128. doi: 10.1186/gb-2013-14-11-r128. PubMed DOI PMC

Frey S., Pool M., Seedorf M. Scp160p, an RNA-binding, polysome-associated protein, localizes to the endoplasmic reticulum of Saccharomyces cerevisiae in a microtubule-dependent manner. J. Biol. Chem. 2001;276:15905–15912. doi: 10.1074/jbc.M009430200. PubMed DOI

Minia I., Merce C., Terrao M., Clayton C. Translation Regulation and RNA Granule Formation after Heat Shock of Procyclic Form Trypanosoma brucei: Many Heat-Induced mRNAs Are also Increased during Differentiation to Mammalian-Infective Forms. PLoS Negl. Trop. Dis. 2016;10:e0004982. doi: 10.1371/journal.pntd.0004982. PubMed DOI PMC

Tetkova A., Hancova M. Mouse Oocyte Isolation, Cultivation and RNA Microinjection. Bio-protocol. 2016;6:e1729. doi: 10.21769/BioProtoc.1729. DOI

Masek T., Vopalensky V., Suchomelova P., Pospisek M. Denaturing RNA electrophoresis in TAE agarose gels. Anal. Biochem. 2005;336:46–50. doi: 10.1016/j.ab.2004.09.010. PubMed DOI

Kim D., Paggi J.M., Park C., Bennett C., Salzberg S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019;37:907–915. doi: 10.1038/s41587-019-0201-4. PubMed DOI PMC

Sivan G., Kedersha N., Elroy-Stein O. Ribosomal slowdown mediates translational arrest during cellular division. Mol. Cell. Biol. 2007;27:6639–6646. doi: 10.1128/MCB.00798-07. PubMed DOI PMC

Frydryskova K., Masek T., Borcin K., Mrvova S., Venturi V., Pospisek M. Distinct recruitment of human eIF4E isoforms to processing bodies and stress granules. BMC Mol. Biol. 2016;17:21. doi: 10.1186/s12867-016-0072-x. PubMed DOI PMC

Zamostna B., Novak J., Vopalensky V., Masek T., Burysek L., Pospisek M. N-terminal domain of nuclear IL-1alpha shows structural similarity to the C-terminal domain of Snf1 and binds to the HAT/core module of the SAGA complex. PLoS ONE. 2012;7:e41801. doi: 10.1371/journal.pone.0041801. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Spatiotemporal dynamics and selectivity of mRNA translation during mouse pre-implantation development

. 2024 Oct 28 ; () : . [epub] 20241028

Loss of ADAR1 protein induces changes in small RNA landscape in hepatocytes

. 2024 Aug 16 ; 30 (9) : 1164-1183. [epub] 20240816

CPEB3 Maintains Developmental Competence of the Oocyte

. 2024 May 16 ; 13 (10) : . [epub] 20240516

The translational oscillation in oocyte and early embryo development

. 2023 Dec 11 ; 51 (22) : 12076-12091.

Spatial positioning of preimplantation mouse embryo cells is regulated by mTORC1 and m7G-cap-dependent translation at the 8- to 16-cell transition

. 2023 Aug ; 13 (8) : 230081. [epub] 20230809

High-resolution ribosome profiling reveals translational selectivity for transcripts in bovine preimplantation embryo development

. 2022 Nov 01 ; 149 (21) : . [epub] 20221103

SGK1 is essential for meiotic resumption in mammalian oocytes

. 2022 Apr ; 101 (2) : 151210. [epub] 20220225

ncRNA BC1 influences translation in the oocyte

. 2021 Nov ; 18 (11) : 1893-1904. [epub] 20210208

p38-MAPK-mediated translation regulation during early blastocyst development is required for primitive endoderm differentiation in mice

. 2021 Jun 25 ; 4 (1) : 788. [epub] 20210625

Oocyte specific lncRNA variant Rose influences oocyte and embryo development

. 2021 Jun ; 6 (2) : 107-113. [epub] 20210626

Age-related differences in the translational landscape of mammalian oocytes

. 2020 Oct ; 19 (10) : e13231. [epub] 20200920

Wwc2 Is a Novel Cell Division Regulator During Preimplantation Mouse Embryo Lineage Formation and Oogenesis

. 2020 ; 8 () : 857. [epub] 20200917

Expression of lamin C2 in mammalian oocytes

. 2020 ; 15 (4) : e0229781. [epub] 20200428

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...