Loss of ADAR1 protein induces changes in small RNA landscape in hepatocytes
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
PubMed
38844344
PubMed Central
PMC11331409
DOI
10.1261/rna.080097.124
PII: rna.080097.124
Knihovny.cz E-zdroje
- Klíčová slova
- ADAR1, RNA editing, Y RNA, hepatocyte, miRNA, snoRNA,
- MeSH
- adenosindeaminasa * genetika metabolismus MeSH
- buněčné linie MeSH
- editace RNA * MeSH
- genový knockout MeSH
- hepatocyty * metabolismus MeSH
- lidé MeSH
- messenger RNA genetika metabolismus MeSH
- polyribozomy metabolismus genetika MeSH
- proteiny vázající RNA * genetika metabolismus MeSH
- proteosyntéza MeSH
- transkriptom MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ADAR protein, human MeSH Prohlížeč
- adenosindeaminasa * MeSH
- messenger RNA MeSH
- proteiny vázající RNA * MeSH
In recent years, numerous evidence has been accumulated about the extent of A-to-I editing in human RNAs and the key role ADAR1 plays in the cellular editing machinery. It has been shown that A-to-I editing occurrence and frequency are tissue-specific and essential for some tissue development, such as the liver. To study the effect of ADAR1 function in hepatocytes, we have created Huh7.5 ADAR1 KO cell lines. Upon IFN treatment, the Huh7.5 ADAR1 KO cells show rapid arrest of growth and translation, from which they do not recover. We analyzed translatome changes by using a method based on sequencing of separate polysome profile RNA fractions. We found significant changes in the transcriptome and translatome of the Huh7.5 ADAR1 KO cells. The most prominent changes include negatively affected transcription by RNA polymerase III and the deregulation of snoRNA and Y RNA levels. Furthermore, we observed that ADAR1 KO polysomes are enriched in mRNAs coding for proteins pivotal in a wide range of biological processes such as RNA localization and RNA processing, whereas the unbound fraction is enriched mainly in mRNAs coding for ribosomal proteins and translational factors. This indicates that ADAR1 plays a more relevant role in small RNA metabolism and ribosome biogenesis.
Zobrazit více v PubMed
Aksoy F, Ak Aksoy S, Dundar HZ, Tunca B, Ercelik M, Tekin C, Kıyıcı M, Selimoglu K, Kaya E. 2022. Blood-based biomarkers in Afp normal/stable hepatocellular carcinoma: diagnostic and prognostic relevance of Mir-10b for patients on liver transplant list. Transplant Proc 54: 1826–1833. 10.1016/j.transproceed.2022.05.024 PubMed DOI
Andrews S. 2010. FastQC: a quality control tool for high throughput sequence data. http://wwwbioinformaticsbabrahamacuk/projects/fastqc.
Bahn JH, Lee JH, Li G, Greer C, Peng G, Xiao X. 2012. Accurate identification of A-to-I RNA editing in human by transcriptome sequencing. Genome Res 22: 142–150. 10.1101/gr.124107.111 PubMed DOI PMC
Bao W, Kojima KK, Kohany O. 2015. Repbase update, a database of repetitive elements in eukaryotic genomes. Mob DNA 6: 11. 10.1186/s13100-015-0041-9 PubMed DOI PMC
Blight KJ, McKeating JA, Rice CM. 2002. Highly permissive cell lines for subgenomic and genomic hepatitis C virus RNA replication. J Virol 76: 13001–13014. 10.1128/JVI.76.24.13001-13014.2002 PubMed DOI PMC
Boccitto M, Wolin SL. 2019. Ro60 and Y RNAs: structure, functions, and roles in autoimmunity. Crit Rev Biochem Mol Biol 54: 133–152. 10.1080/10409238.2019.1608902 PubMed DOI PMC
Caudron-Herger M, Pankert T, Seiler J, Nemeth A, Voit R, Grummt I, Rippe K. 2015. Alu element-containing RNAs maintain nucleolar structure and function. EMBO J 34: 2758–2774. 10.15252/embj.201591458 PubMed DOI PMC
Cheetham SW, Faulkner GJ, Dinger ME. 2020. Overcoming challenges and dogmas to understand the functions of pseudogenes. Nat Rev Genet 21: 191–201. 10.1038/s41576-019-0196-1 PubMed DOI
Chen YG, Hur S. 2022. Cellular origins of dsRNA, their recognition and consequences. Nat Rev Mol Cell Biol 23: 286–301. 10.1038/s41580-021-00430-1 PubMed DOI PMC
Chen Y, Wang X. 2020. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res 48: D127–D131. 10.1093/nar/gkz757 PubMed DOI PMC
Chen T, Xiang JF, Zhu S, Chen S, Yin QF, Zhang XO, Zhang J, Feng H, Dong R, Li XJ, et al. 2015. ADAR1 is required for differentiation and neural induction by regulating microRNA processing in a catalytically independent manner. Cell Res 25: 459–476. 10.1038/cr.2015.24 PubMed DOI PMC
Cho CJ, Jung J, Jiang L, Lee EJ, Kim DS, Kim BS, Kim HS, Jung HY, Song HJ, Hwang SW, et al. 2018. Combinatory RNA-sequencing analyses reveal a dual mode of gene regulation by ADAR1 in gastric cancer. Dig Dis Sci 63: 1835–1850. 10.1007/s10620-018-5081-9 PubMed DOI
Christov CP, Gardiner TJ, Szüts D, Krude T. 2006. Functional requirement of noncoding Y RNAs for human chromosomal DNA replication. Mol Cell Biol 26: 6993–7004. 10.1128/MCB.01060-06 PubMed DOI PMC
Chung H, Calis JJA, Wu X, Sun T, Yu Y, Sarbanes SL, Dao Thi VL, Shilvock AR, Hoffmann HH, Rosenberg BR, et al. 2018. Human ADAR1 prevents endogenous RNA from triggering translational shutdown. Cell 172: 811–824.e14. 10.1016/j.cell.2017.12.038 PubMed DOI PMC
Clerzius G, Gélinas JF, Daher A, Bonnet M, Meurs EF, Gatignol A. 2009. ADAR1 interacts with PKR during human immunodeficiency virus infection of lymphocytes and contributes to viral replication. J Virol 83: 10119–10128. 10.1128/JVI.02457-08 PubMed DOI PMC
Desiderio V, Papagerakis P, Tirino V, Zheng L, Matossian M, Prince ME, Paino F, Mele L, Papaccio F, Montella R, et al. 2015. Increased fucosylation has a pivotal role in invasive and metastatic properties of head and neck cancer stem cells. Oncotarget 6: 71–84. 10.18632/oncotarget.2698 PubMed DOI PMC
Desterro JM, Keegan LP, Lafarga M, Berciano MT, O'Connell M, Carmo-Fonseca M. 2003. Dynamic association of RNA-editing enzymes with the nucleolus. J Cell Sci 116: 1805–1818. 10.1242/jcs.00371 PubMed DOI
Díaz-Piña G, Ordonez-Razo RM, Montes E, Paramo I, Becerril C, Salgado A, Santibanez-Salgado JA, Maldonado M, Ruiz V. 2018. The role of ADAR1 and ADAR2 in the regulation of miRNA-21 in idiopathic pulmonary fibrosis. Lung 196: 393–400. 10.1007/s00408-018-0115-9 PubMed DOI
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29: 15–21. 10.1093/bioinformatics/bts635 PubMed DOI PMC
Dolcino M, Tinazzi E, Vitali C, Del Papa N, Puccetti A, Lunardi C. 2019. Long non-coding RNAs modulate Sjögren's syndrome associated gene expression and are involved in the pathogenesis of the disease. J Clin Med 8: 1349. 10.3390/jcm8091349 PubMed DOI PMC
Dupuis DE. 2012. “Alu repetitive elements transcribed by RNA polymerase III are A-to-I RNA editing targets.” PhD thesis, p. 172. Lehigh University
El Azzouzi H, Vilaca AP, Feyen DAM, Gommans WM, de Weger RA, Doevendans PAF, Sluijter JPG. 2020. Cardiomyocyte specific deletion of ADAR1 causes severe cardiac dysfunction and increased lethality. Front Cardiovasc Med 7: 30. 10.3389/fcvm.2020.00030 PubMed DOI PMC
Ewels P, Magnusson M, Lundin S, Käller M. 2016. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32: 3047–3048. 10.1093/bioinformatics/btw354 PubMed DOI PMC
Figueroa T, Boumart I, Coupeau D, Rasschaert D. 2016. Hyperediting by ADAR1 of a new herpesvirus lncRNA during the lytic phase of the oncogenic Marek's disease virus. J Gen Virol 97: 2973–2988. 10.1099/jgv.0.000606 PubMed DOI
Flemr M, Bühler M. 2015. Single-step generation of conditional knockout mouse embryonic stem cells. Cell Rep 12: 709–716. 10.1016/j.celrep.2015.06.051 PubMed DOI
Galipon J, Ishii R, Suzuki Y, Tomita M, Ui-Tei K. 2017. Differential binding of three major human ADAR isoforms to coding and long non-coding transcripts. Genes (Basel) 8: 68. 10.3390/genes8020068 PubMed DOI PMC
Giacopuzzi E, Gennarelli M, Sacco C, Filippini A, Mingardi J, Magri C, Barbon A. 2018. Genome-wide analysis of consistently RNA edited sites in human blood reveals interactions with mRNA processing genes and suggests correlations with cell types and biological variables. BMC Genomics 19: 963. 10.1186/s12864-018-5364-8 PubMed DOI PMC
Guallar D, Fuentes-Iglesias A, Souto Y, Ameneiro C, Freire-Agulleiro O, Pardavila JA, Escudero A, Garcia-Outeiral V, Moreira T, Saenz C, et al. 2020. ADAR1-dependent RNA editing promotes MET and iPSC reprogramming by alleviating ER stress. Cell Stem Cell 27: 300–314.e11. 10.1016/j.stem.2020.04.016 PubMed DOI PMC
Hartner JC, Schmittwolf C, Kispert A, Müller AM, Higuchi M, Seeburg PH. 2004. Liver disintegration in the mouse embryo caused by deficiency in the RNA-editing enzyme ADAR1. J Biol Chem 279: 4894–4902. 10.1074/jbc.M311347200 PubMed DOI
Hartner JC, Walkley CR, Lu J, Orkin SH. 2009. ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling. Nat Immunol 10: 109–115. 10.1038/ni.1680 PubMed DOI PMC
Hausser J, Zavolan M. 2014. Identification and consequences of miRNA-target interactions—beyond repression of gene expression. Nat Rev Genet 15: 599–612. 10.1038/nrg3765 PubMed DOI
He Z, He J, Xie K. 2023. KLF4 transcription factor in tumorigenesis. Cell Death Discov 9: 118. 10.1038/s41420-023-01416-y PubMed DOI PMC
Heale BS, Keegan LP, McGurk L, Michlewski G, Brindle J, Stanton CM, Caceres JF, O'Connell MA. 2009. Editing independent effects of ADARs on the miRNA/siRNA pathways. EMBO J 28: 3145–3156. 10.1038/emboj.2009.244 PubMed DOI PMC
Heale BS, Eulalio A, Schulte L, Vogel J, O'Connell MA. 2010. Analysis of A to I editing of miRNA in macrophages exposed to Salmonella. RNA Biol 7: 621–627. 10.4161/rna.7.5.13269 PubMed DOI PMC
Hendrick JP, Wolin SL, Rinke J, Lerner MR, Steitz JA. 1981. Ro small cytoplasmic ribonucleoproteins are a subclass of La ribonucleoproteins: further characterization of the Ro and La small ribonucleoproteins from uninfected mammalian cells. Mol Cell Biol 1: 1138–1149. 10.1128/mcb.1.12.1138-1149.1981 PubMed DOI PMC
Heraud-Farlow JE, Walkley CR. 2020. What do editors do? Understanding the physiological functions of A-to-I RNA editing by adenosine deaminase acting on RNAs. Open Biol 10: 200085. 10.1098/rsob.200085 PubMed DOI PMC
Huang HY, Lin YC, Li J, Huang KY, Shrestha S, Hong HC, Tang Y, Chen YG, Jin CN, Yu Y, et al. 2019. miRTarBase 2020: updates to the experimentally validated microRNA-target interaction database. Nucleic Acids Res 48: D148–D154. 10.1093/nar/gkz896 PubMed DOI PMC
Huang WT, Sun YM, Pan Q, Fang K, Chen XT, Zeng ZC, Chen TQ, Zhu SX, Huang LB, Luo XQ, et al. 2022. The snoRNA-like lncRNA LNC-SNO49AB drives leukemia by activating the RNA-editing enzyme ADAR1. Cell Discov 8: 117. 10.1038/s41421-022-00460-9 PubMed DOI PMC
Ishiguro S, Galipon J, Ishii R, Suzuki Y, Kondo S, Okada-Hatakeyama M, Tomita M, Ui-Tei K. 2018. Base-pairing probability in the microRNA stem region affects the binding and editing specificity of human A-to-I editing enzymes ADAR1-p110 and ADAR2. RNA Biol 15: 976–989. 10.1080/15476286.2018.1486658 PubMed DOI PMC
Kanoh A, Ota M, Narimatsu H, Irimura T. 2003. Expression levels of FUT6 gene transfected into human colon carcinoma cells switch two sialyl-Lewis X-related carbohydrate antigens with distinct properties in cell adhesion. Biochem Biophys Res Commun 303: 896–901. 10.1016/S0006-291X(03)00420-0 PubMed DOI
Katayama S, Shimoda K, Takenaga Y. 2015. Loss of ADAR1 in human iPS cells promotes caspase3-mediated apoptotic cell death. Genes Cells 20: 675–680. 10.1111/gtc.12261 PubMed DOI
Kawahara Y, Zinshteyn B, Sethupathy P, Iizasa H, Hatzigeorgiou AG, Nishikura K. 2007. Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 315: 1137–1140. 10.1126/science.1138050 PubMed DOI PMC
Kiran A, Baranov PV. 2010. DARNED: a DAtabase of RNa EDiting in humans. Bioinformatics 26: 1772–1776. 10.1093/bioinformatics/btq285 PubMed DOI
Kozomara A, Birgaoanu M, Griffiths-Jones S. 2019. miRBase: from microRNA sequences to function. Nucleic Acids Res 47: D155–D162. 10.1093/nar/gky1141 PubMed DOI PMC
Lai TY, Chen IJ, Lin RJ, Liao GS, Yeo HL, Ho CL, Wu JC, Chang NC, Lee AC, Yu AL. 2019. Fucosyltransferase 1 and 2 play pivotal roles in breast cancer cells. Cell Death Discov 5: 74. 10.1038/s41420-019-0145-y PubMed DOI PMC
Larminie CG, Sutcliffe JE, Tosh K, Winter AG, Felton-Edkins ZA, White RJ. 1999. Activation of RNA polymerase III transcription in cells transformed by simian virus 40. Mol Cell Biol 19: 4927–4934. 10.1128/MCB.19.7.4927 PubMed DOI PMC
Le C, Sirajee R, Steenbergen R, Joyce MA, Addison WR, Tyrrell DL. 2021. In vitro infection with hepatitis B virus using differentiated human serum culture of Huh7.5-NTCP cells without requiring dimethyl sulfoxide. Viruses 13: 97. 10.3390/v13010097 PubMed DOI PMC
Levanon EY, Eisenberg E, Yelin R, Nemzer S, Hallegger M, Shemesh R, Fligelman ZY, Shoshan A, Pollock SR, Sztybel D, et al. 2004. Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nat Biotechnol 22: 1001–1005. 10.1038/nbt996 PubMed DOI
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing Sungroup. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25: 2078–2079. 10.1093/bioinformatics/btp352 PubMed DOI PMC
Liao Y, Wang J, Jaehnig EJ, Shi Z, Zhang B. 2019. WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res 47: W199–W205. 10.1093/nar/gkz401 PubMed DOI PMC
Licht K, Hartl M, Amman F, Anrather D, Janisiw MP, Jantsch MF. 2019. Inosine induces context-dependent recoding and translational stalling. Nucleic Acids Res 47: 3–14. 10.1093/nar/gky1163 PubMed DOI PMC
Liddicoat BJ, Piskol R, Chalk AM, Ramaswami G, Higuchi M, Hartner JC, Li JB, Seeburg PH, Walkley CR. 2015. RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science 349: 1115–1120. 10.1126/science.aac7049 PubMed DOI PMC
Liu Y, Ma T, Liu J, Zhao X, Cheng Z, Guo H, Xu R, Wang S. 2015. Circulating type 1 vaccine-derived poliovirus may evolve under the pressure of adenosine deaminases acting on RNA. J Matern Fetal Neonatal Med 28: 2096–2099. 10.3109/14767058.2014.979147 PubMed DOI
Liu G, Ma X, Wang Z, Wakae K, Yuan Y, He Z, Yoshiyama H, Iizasa H, Zhang H, Matsuda M, et al. 2019. Adenosine deaminase acting on RNA-1 (ADAR1) inhibits hepatitis B virus (HBV) replication by enhancing microRNA-122 processing. J Biol Chem 294: 14043–14054. 10.1074/jbc.RA119.007970 PubMed DOI PMC
Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15: 550. 10.1186/s13059-014-0550-8 PubMed DOI PMC
Mansi L, Tangaro MA, Lo Giudice C, Flati T, Kopel E, Schaffer AA, Castrignano T, Chillemi G, Pesole G, Picardi E. 2021. REDIportal: millions of novel A-to-I RNA editing events from thousands of RNAseq experiments. Nucleic Acids Res 49: D1012–D1019. 10.1093/nar/gkaa916 PubMed DOI PMC
Masek T, Del Llano E, Gahurova L, Kubelka M, Susor A, Roucova K, Lin CJ, Bruce AW, Pospisek M. 2020. Identifying the translatome of mouse NEBD-stage oocytes via SSP-profiling; a novel polysome fractionation method. Int J Mol Sci 21: 1254. 10.3390/ijms21041254 PubMed DOI PMC
Mingardi J, Musazzi L, De Petro G, Barbon A. 2018. miRNA editing: new insights into the fast control of gene expression in health and disease. Mol Neurobiol 55: 7717–7727. 10.1007/s12035-018-0951-x PubMed DOI
Muro Y, Ogawa-Momohara M, Takeichi T, Fukaya S, Yasuoka H, Kono M, Akiyama M. 2020. Clinical and serological features of dermatomyositis and systemic lupus erythematosus patients with autoantibodies to ADAR1. J Dermatol Sci 100: 82–84. 10.1016/j.jdermsci.2020.08.008 PubMed DOI
Nakano M, Fukami T, Gotoh S, Takamiya M, Aoki Y, Nakajima M. 2016. RNA editing modulates human hepatic aryl hydrocarbon receptor expression by creating MicroRNA recognition sequence. J Biol Chem 291: 894–903. 10.1074/jbc.M115.699363 PubMed DOI PMC
Nicolas FE, Hall AE, Csorba T, Turnbull C, Dalmay T. 2012. Biogenesis of Y RNA-derived small RNAs is independent of the microRNA pathway. FEBS Lett 586: 1226–1230. 10.1016/j.febslet.2012.03.026 PubMed DOI
Nigita G, Acunzo M, Romano G, Veneziano D, Laganà A, Vitiello M, Wernicke D, Ferro A, Croce CM. 2016. microRNA editing in seed region aligns with cellular changes in hypoxic conditions. Nucleic Acids Res 44: 6298–6308. 10.1093/nar/gkw532 PubMed DOI PMC
O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B, Smith-White B, Ako-Adjei D, et al. 2016. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 44: D733–D745. 10.1093/nar/gkv1189 PubMed DOI PMC
Ota H, Sakurai M, Gupta R, Valente L, Wulff BE, Ariyoshi K, Iizasa H, Davuluri RV, Nishikura K. 2013. ADAR1 forms a complex with Dicer to promote microRNA processing and RNA-induced gene silencing. Cell 153: 575–589. 10.1016/j.cell.2013.03.024 PubMed DOI PMC
Palumberi D, Aldi S, Ermini L, Ziche M, Finetti F, Donnini S, Rosati F. 2010. RNA-mediated gene silencing of FUT1 and FUT2 influences expression and activities of bovine and human fucosylated nucleolin and inhibits cell adhesion and proliferation. J Cell Biochem 111: 229–238. 10.1002/jcb.22692 PubMed DOI
Panning B, Smiley JR. 1993. Activation of RNA polymerase III transcription of human Alu repetitive elements by adenovirus type 5: requirement for the E1b 58-kilodalton protein and the products of E4 open reading frames 3 and 6. Mol Cell Biol 13: 3231–3244. 10.1128/mcb.13.6.3231-3244.1993 PubMed DOI PMC
Patterson JB, Samuel CE. 1995. Expression and regulation by interferon of a double-stranded-RNA-specific adenosine deaminase from human cells: evidence for two forms of the deaminase. Mol Cell Biol 15: 5376–5388. 10.1128/MCB.15.10.5376 PubMed DOI PMC
Peng Z, Cheng Y, Tan BC, Kang L, Tian Z, Zhu Y, Zhang W, Liang Y, Hu X, Tan X, et al. 2012. Comprehensive analysis of RNA-seq data reveals extensive RNA editing in a human transcriptome. Nat Biotechnol 30: 253–260. 10.1038/nbt.2122 PubMed DOI
Pestal K, Funk CC, Snyder JM, Price ND, Treuting PM, Stetson DB. 2015. Isoforms of RNA-editing enzyme ADAR1 independently control nucleic acid sensor MDA5-driven autoimmunity and multi-organ development. Immunity 43: 933–944. 10.1016/j.immuni.2015.11.001 PubMed DOI PMC
Pfaller CK, Donohue RC, Nersisyan S, Brodsky L, Cattaneo R. 2018. Extensive editing of cellular and viral double-stranded RNA structures accounts for innate immunity suppression and the proviral activity of ADAR1p150. PLoS Biol 16: e2006577. 10.1371/journal.pbio.2006577 PubMed DOI PMC
Picardi E, D'Erchia AM, Lo Giudice C, Pesole G. 2017. REDIportal: a comprehensive database of A-to-I RNA editing events in humans. Nucleic Acids Res 45: D750–D757. 10.1093/nar/gkw767 PubMed DOI PMC
Piechotta M, Wyler E, Ohler U, Landthaler M, Dieterich C. 2017. JACUSA: site-specific identification of RNA editing events from replicate sequencing data. BMC Bioinformatics 18: 7. 10.1186/s12859-016-1432-8 PubMed DOI PMC
Price AM, Steinbock RT, Di C, Hayer KE, Li Y, Herrmann C, Parenti NA, Whelan JN, Weiss SR, Weitzman MD. 2022. Adenovirus prevents dsRNA formation by promoting efficient splicing of viral RNA. Nucleic Acids Res 50: 1201–1220. 10.1093/nar/gkab896 PubMed DOI PMC
Quinones-Valdez G, Tran SS, Jun HI, Bahn JH, Yang EW, Zhan L, Brümmer A, Wei X, Van Nostrand EL, Pratt GA, et al. 2019. Regulation of RNA editing by RNA-binding proteins in human cells. Commun Biol 2: 19. 10.1038/s42003-018-0271-8 PubMed DOI PMC
Ramaswami G, Li JB. 2014. RADAR: a rigorously annotated database of A-to-I RNA editing. Nucleic Acids Res 42: D109–D113. 10.1093/nar/gkt996 PubMed DOI PMC
Ramaswami G, Zhang R, Piskol R, Keegan LP, Deng P, O'Connell MA, Li JB. 2013. Identifying RNA editing sites using RNA sequencing data alone. Nat Methods 10: 128–132. 10.1038/nmeth.2330 PubMed DOI PMC
Roth SH, Levanon EY, Eisenberg E. 2019. Genome-wide quantification of ADAR adenosine-to-inosine RNA editing activity. Nat Methods 16: 1131–1138. 10.1038/s41592-019-0610-9 PubMed DOI
Rutjes SA, van der Heijden A, Utz PJ, van Venrooij WJ, Pruijn GJ. 1999. Rapid nucleolytic degradation of the small cytoplasmic Y RNAs during apoptosis. J Biol Chem 274: 24799–24807. 10.1074/jbc.274.35.24799 PubMed DOI
Sakurai M, Shiromoto Y, Ota H, Song C, Kossenkov AV, Wickramasinghe J, Showe LC, Skordalakes E, Tang HY, Speicher DW, et al. 2017. ADAR1 controls apoptosis of stressed cells by inhibiting Staufen1-mediated mRNA decay. Nat Struct Mol Biol 24: 534–543. 10.1038/nsmb.3403 PubMed DOI PMC
Samuel CE. 2012. ADARs: viruses and innate immunity. Curr Top Microbiol Immunol 353: 163–195. 10.1007/82_2011_148 PubMed DOI PMC
Schaffer AA, Kopel E, Hendel A, Picardi E, Levanon EY, Eisenberg E. 2020. The cell line A-to-I RNA editing catalogue. Nucleic Acids Res 48: 5849–5858. 10.1093/nar/gkaa305 PubMed DOI PMC
Schmiedel JM, Klemm SL, Zheng Y, Sahay A, Blüthgen N, Marks DS, van Oudenaarden A. 2015. MicroRNA control of protein expression noise. Science 348: 128–132. 10.1126/science.aaa1738 PubMed DOI
Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL, et al. 2013. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31: 686–688. 10.1038/nbt.2650 PubMed DOI
Shaw G, Morse S, Ararat M, Graham FL. 2002. Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells. FASEB J 16: 869–871. 10.1096/fj.01-0995fje PubMed DOI
Sheedy P, Medarova Z. 2018. The fundamental role of miR-10b in metastatic cancer. Am J Cancer Res 8: 1674–1688. PubMed PMC
Smedley D, Haider S, Durinck S, Pandini L, Provero P, Allen J, Arnaiz O, Awedh MH, Baldock R, Barbiera G, et al. 2015. The BioMart community portal: an innovative alternative to large, centralized data repositories. Nucleic Acids Res 43: W589–W598. 10.1093/nar/gkv350 PubMed DOI PMC
Sollerbrant K, Akusjärvi G, Svensson C. 1993. Repression of RNA polymerase III transcription by adenovirus E1A. J Virol 67: 4195–4204. 10.1128/jvi.67.7.4195-4204.1993 PubMed DOI PMC
Steenbergen RH, Joyce MA, Thomas BS, Jones D, Law J, Russell R, Houghton M, Tyrrell DL. 2013. Human serum leads to differentiation of human hepatoma cells, restoration of very-low-density lipoprotein secretion, and a 1000-fold increase in HCV Japanese fulminant hepatitis type 1 titers. Hepatology 58: 1907–1917. 10.1002/hep.26566 PubMed DOI
Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, Stein TI, Nudel R, Lieder I, Mazor Y et al. 2016. The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics 54: 1.30.31–31.30.33. 10.1002/cpbi.5 PubMed DOI
Tassinari V, Cesarini V, Silvestris DA, Gallo A. 2019. The adaptive potential of RNA editing-mediated miRNA-retargeting in cancer. Biochim Biophys Acta Gene Regul Mech 1862: 291–300. 10.1016/j.bbagrm.2018.12.007 PubMed DOI
Tomaselli S, Galeano F, Locatelli F, Gallo A. 2015. ADARs and the balance game between virus infection and innate immune cell response. Curr Issues Mol Biol 17: 37–51. 10.21775/cimb.017.037 PubMed DOI
UniProt Consortium. 2023. UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res 51: D523–D531. 10.1093/nar/gkac1052 PubMed DOI PMC
Vitali P, Basyuk E, Le Meur E, Bertrand E, Muscatelli F, Cavaillé J, Huttenhofer A. 2005. ADAR2-mediated editing of RNA substrates in the nucleolus is inhibited by C/D small nucleolar RNAs. J Cell Biol 169: 745–753. 10.1083/jcb.200411129 PubMed DOI PMC
Vitsios DM, Enright AJ. 2015. Chimira: analysis of small RNA sequencing data and microRNA modifications. Bioinformatics 31: 3365–3367. 10.1093/bioinformatics/btv380 PubMed DOI PMC
Wang G, Wang H, Singh S, Zhou P, Yang S, Wang Y, Zhu Z, Zhang J, Chen A, Billiar T, et al. 2015. ADAR1 prevents liver injury from inflammation and suppresses interferon production in hepatocytes. Am J Pathol 185: 3224–3237. 10.1016/j.ajpath.2015.08.002 PubMed DOI PMC
Wang Q, Li X, Qi R, Billiar T. 2017. RNA editing, ADAR1, and the innate immune response. Genes (Basel) 8: 41. 10.3390/genes8010041 PubMed DOI PMC
Watkins NJ, Bohnsack MT. 2012. The box C/D and H/ACA snoRNPs: key players in the modification, processing and the dynamic folding of ribosomal RNA. Wiley Interdiscip Rev RNA 3: 397–414. 10.1002/wrna.117 PubMed DOI
Wu S, Yang M, Kim P, Zhou X. 2021. ADeditome provides the genomic landscape of A-to-I RNA editing in Alzheimer's disease. Brief Bioinform 22: bbaa384. 10.1093/bib/bbaa384 PubMed DOI PMC
Yang W, Chendrimada TP, Wang Q, Higuchi M, Seeburg PH, Shiekhattar R, Nishikura K. 2006. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol 13: 13–21. 10.1038/nsmb1041 PubMed DOI PMC
Yang CC, Chen YT, Chang YF, Liu H, Kuo YP, Shih CT, Liao WC, Chen HW, Tsai WS, Tan BC. 2017. ADAR1-mediated 3′ UTR editing and expression control of antiapoptosis genes fine-tunes cellular apoptosis response. Cell Death Dis 8: e2833. 10.1038/cddis.2017.12 PubMed DOI PMC
Yates LA, Norbury CJ, Gilbert RJ. 2013. The long and short of microRNA. Cell 153: 516–519. 10.1016/j.cell.2013.04.003 PubMed DOI
Yujie DMM, Shi X, Ji J, Su Y. 2020. ADAR1p150 regulates the biosynthesis and function of miRNA-149* in human melanoma. Biochem Biophys Res Commun 523: 900–907. 10.1016/j.bbrc.2019.12.110 PubMed DOI