Spatiotemporal dynamics and selectivity of mRNA translation during mouse pre-implantation development
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, preprinty
Grantová podpora
R01 HD102533
NICHD NIH HHS - United States
PubMed
39553972
PubMed Central
PMC11565823
DOI
10.1101/2024.10.28.620693
PII: 2024.10.28.620693
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
Translational regulation is pivotal during preimplantation development. However, how mRNAs are selected for temporal regulation and their dynamic utilization and fate during this period are still unknown. Using a high-resolution ribosome profiling approach, we analyzed the transcriptome, as well as monosome- and polysome-bound RNAs of mouse oocytes and embryos, defining an unprecedented extent of spatiotemporal translational landscapes during this rapid developmental phase. We observed previously unknown mechanisms of translational selectivity, i.e., stage-wise deferral of loading monosome-bound mRNAs to polysome for active translation, continuous translation of both monosome and polysome-bound mRNAs at the same developmental stage, and priming to monosomes after initial activation. We showed that a eukaryotic initiation factor Eif1ad3, which is exclusively translated in the 2-Cell embryo, is required for ribosome biogenesis post embryonic genome activation. Our study thus provides genome-wide datasets and analyses of spatiotemporal translational dynamics accompanying mammalian germ cell and embryonic development and reveals the contribution of a novel translation initiation factor to mammalian pre-implantation development.
Zobrazit více v PubMed
Sonenberg N. & Hinnebusch A. G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136, 731–745, doi:10.1016/j.cell.2009.01.042 (2009). PubMed DOI PMC
Iyyappan R. et al. The translational oscillation in oocyte and early embryo development. Nucleic Acids Res 51, 12076–12091, doi:10.1093/nar/gkad996 (2023). PubMed DOI PMC
Yang G., Xin Q. & Dean J. Degradation and translation of maternal mRNA for embryogenesis. Trends Genet 40, 238–249, doi:10.1016/j.tig.2023.12.008 (2024). PubMed DOI
Susor A. & Kubelka M. Translational Regulation in the Mammalian Oocyte. Results Probl Cell Differ 63, 257–295, doi:10.1007/978-3-319-60855-6_12 (2017). PubMed DOI
Becker K. et al. Quantifying post-transcriptional regulation in the development of Drosophila melanogaster. Nat Commun 9, 4970, doi:10.1038/s41467-018-07455-9 (2018). PubMed DOI PMC
Dang Y. et al. Functional profiling of stage-specific proteome and translational transition across human pre-implantation embryo development at a single-cell resolution. Cell Discov 9, 10, doi:10.1038/s41421-022-00491-2 (2023). PubMed DOI PMC
Gao Y. et al. Protein Expression Landscape of Mouse Embryos during Pre-implantation Development. Cell Rep 21, 3957–3969, doi:10.1016/j.celrep.2017.11.111 (2017). PubMed DOI
Banliat C. et al. The proteomic analysis of bovine embryos developed in vivo or in vitro reveals the contribution of the maternal environment to early embryo. BMC Genomics 23, 839, doi:10.1186/s12864-022-09076-5 (2022). PubMed DOI PMC
Banliat C. et al. Dynamic Changes in the Proteome of Early Bovine Embryos Developed In Vivo. Front Cell Dev Biol 10, 863700, doi:10.3389/fcell.2022.863700 (2022). PubMed DOI PMC
Zhang C., Wang M., Li Y. & Zhang Y. Profiling and functional characterization of maternal mRNA translation during mouse maternal-to-zygotic transition. Sci Adv 8, eabj3967, doi:10.1126/sciadv.abj3967 (2022). PubMed DOI PMC
Xiong Z. et al. Ultrasensitive Ribo-seq reveals translational landscapes during mammalian oocyte-to-embryo transition and pre-implantation development. Nat Cell Biol 24, 968–980, doi:10.1038/s41556-022-00928-6 (2022). PubMed DOI
Masek T. et al. Identifying the Translatome of Mouse NEBD-Stage Oocytes via SSP-Profiling; A Novel Polysome Fractionation Method. Int J Mol Sci 21, doi:10.3390/ijms21041254 (2020). PubMed DOI PMC
Zhu L. et al. High-resolution ribosome profiling reveals translational selectivity for transcripts in bovine preimplantation embryo development. Development 149, doi:10.1242/dev.200819 (2022). PubMed DOI PMC
Fan X. et al. Single-cell RNA-seq analysis of mouse preimplantation embryos by third-generation sequencing. PLoS Biol 18, e3001017, doi:10.1371/journal.pbio.3001017 (2020). PubMed DOI PMC
Lv B. et al. Light-induced injury in mouse embryos revealed by single-cell RNA sequencing. Biol Res 52, 48, doi:10.1186/s40659-019-0256-1 (2019). PubMed DOI PMC
Teixeira F. K. & Lehmann R. Translational Control during Developmental Transitions. Cold Spring Harb Perspect Biol 11, doi:10.1101/cshperspect.a032987 (2019). PubMed DOI PMC
Li D. & Wang J. Ribosome heterogeneity in stem cells and development. J Cell Biol 219, doi:10.1083/jcb.202001108 (2020). PubMed DOI PMC
Hinds P. W. A confederacy of kinases: Cdk2 and Cdk4 conspire to control embryonic cell proliferation. Mol Cell 22, 432–433, doi:10.1016/j.molcel.2006.05.006 (2006). PubMed DOI
Farese R. V. Jr., Ruland S. L., Flynn L. M., Stokowski R. P. & Young S. G. Knockout of the mouse apolipoprotein B gene results in embryonic lethality in homozygotes and protection against diet-induced hypercholesterolemia in heterozygotes. Proc Natl Acad Sci U S A 92, 1774–1778, doi:10.1073/pnas.92.5.1774 (1995). PubMed DOI PMC
Watanabe R. et al. PIG-A and PIG-H, which participate in glycosylphosphatidylinositol anchor biosynthesis, form a protein complex in the endoplasmic reticulum. J Biol Chem 271, 26868–26875, doi:10.1074/jbc.271.43.26868 (1996). PubMed DOI
Ruan X. et al. Zbed3 Is Indispensable for Wnt Signaling Regulation of Cortical Layers Formation in Developing Brain. Cereb Cortex 31, 4078–4091, doi:10.1093/cercor/bhab070 (2021). PubMed DOI
Chen T. et al. Identification of zinc-finger BED domain-containing 3 (Zbed3) as a novel Axin-interacting protein that activates Wnt/beta-catenin signaling. J Biol Chem 284, 6683–6689, doi:10.1074/jbc.M807753200 (2009). PubMed DOI PMC
Gao Z. et al. Zbed3 participates in the subcortical maternal complex and regulates the distribution of organelles. J Mol Cell Biol 10, 74–88, doi:10.1093/jmcb/mjx035 (2018). PubMed DOI
Ding C. et al. RNA-methyltransferase Nsun5 controls the maternal-to-zygotic transition by regulating maternal mRNA stability. Clin Transl Med 12, e1137, doi:10.1002/ctm2.1137 (2022). PubMed DOI PMC
Heissenberger C. et al. Loss of the ribosomal RNA methyltransferase NSUN5 impairs global protein synthesis and normal growth. Nucleic Acids Res 47, 11807–11825, doi:10.1093/nar/gkz1043 (2019). PubMed DOI PMC
Knott J. G. et al. Calmodulin-dependent protein kinase II triggers mouse egg activation and embryo development in the absence of Ca2+ oscillations. Dev Biol 296, 388–395, doi:10.1016/j.ydbio.2006.06.004 (2006). PubMed DOI
Pakrasi P. L. & Dey S. K. Role of calmodulin in blastocyst formation in the mouse. J Reprod Fertil 71, 513–517, doi:10.1530/jrf.0.0710513 (1984). PubMed DOI
Poueymirou W. T. & Schultz R. M. Regulation of mouse preimplantation development: inhibitory effect of the calmodulin antagonist W-7 on the first cleavage. Mol Reprod Dev 26, 211–216, doi:10.1002/mrd.1080260303 (1990). PubMed DOI
Biziaev N. et al. The impact of mRNA poly(A) tail length on eukaryotic translation stages. Nucleic Acids Res 52, 7792–7808, doi:10.1093/nar/gkae510 (2024). PubMed DOI PMC
Passmore L. A. & Coller J. Roles of mRNA poly(A) tails in regulation of eukaryotic gene expression. Nat Rev Mol Cell Biol 23, 93–106, doi:10.1038/s41580-021-00417-y (2022). PubMed DOI PMC
Sachs A. The role of poly(A) in the translation and stability of mRNA. Curr Opin Cell Biol 2, 1092–1098, doi:10.1016/0955-0674(90)90161-7 (1990). PubMed DOI
Lee K., Cho K., Morey R. & Cook-Andersen H. An extended wave of global mRNA deadenylation sets up a switch in translation regulation across the mammalian oocyte-to-embryo transition. Cell Rep 43, 113710, doi:10.1016/j.celrep.2024.113710 (2024). PubMed DOI PMC
Jiang X. et al. The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther 6, 74, doi:10.1038/s41392-020-00450-x (2021). PubMed DOI PMC
Lin S., Choe J., Du P., Triboulet R. & Gregory R. I. The m(6)A Methyltransferase METTL3 Promotes Translation in Human Cancer Cells. Mol Cell 62, 335–345, doi:10.1016/j.molcel.2016.03.021 (2016). PubMed DOI PMC
Meyer K. D. et al. 5' UTR m(6)A Promotes Cap-Independent Translation. Cell 163, 999–1010, doi:10.1016/j.cell.2015.10.012 (2015). PubMed DOI PMC
Zhao B. S., Roundtree I. A. & He C. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol 18, 31–42, doi:10.1038/nrm.2016.132 (2017). PubMed DOI PMC
Wang Y. et al. The RNA m(6)A landscape of mouse oocytes and preimplantation embryos. Nat Struct Mol Biol 30, 703–709, doi:10.1038/s41594-023-00969-x (2023). PubMed DOI PMC
Jackson R. J., Hellen C. U. & Pestova T. V. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 11, 113–127, doi:10.1038/nrm2838 (2010). PubMed DOI PMC
Susor A. et al. Regulation of cap-dependent translation initiation in the early stage porcine parthenotes. Mol Reprod Dev 75, 1716–1725, doi:10.1002/mrd.20913 (2008). PubMed DOI
Schulz K. N. & Harrison M. M. Mechanisms regulating zygotic genome activation. Nat Rev Genet 20, 221–234, doi:10.1038/s41576-018-0087-x (2019). PubMed DOI PMC
Lamacova L. et al. CPEB3 Maintains Developmental Competence of the Oocyte. Cells 13, doi:10.3390/cells13100850 (2024). PubMed DOI PMC
Ozadam H. et al. Single-cell quantification of ribosome occupancy in early mouse development. Nature 618, 1057–1064, doi:10.1038/s41586-023-06228-9 (2023). PubMed DOI PMC
Passmore L. A. & Tang T. T. The long and short of it. Elife 10, doi:10.7554/eLife.70757 (2021). PubMed DOI PMC
Clegg K. B. & Piko L. Poly(A) length, cytoplasmic adenylation and synthesis of poly(A)+ RNA in early mouse embryos. Dev Biol 95, 331–341, doi:10.1016/0012-1606(83)90034-9 (1983). PubMed DOI
Xiang K., Ly J. & Bartel D. P. Control of poly(A)-tail length and translation in vertebrate oocytes and early embryos. Dev Cell 59, 1058–1074 e1011, doi:10.1016/j.devcel.2024.02.007 (2024). PubMed DOI
Liu Y. et al. Nuclear-localized eukaryotic translation initiation factor 1A is involved in mouse preimplantation embryo development. J Mol Histol 52, 965–973, doi:10.1007/s10735-021-10014-0 (2021). PubMed DOI
Sadato D. et al. Eukaryotic translation initiation factor 3 (eIF3) subunit e is essential for embryonic development and cell proliferation. FEBS Open Bio 8, 1188–1201, doi:10.1002/2211-5463.12482 (2018). PubMed DOI PMC
Li Y. et al. Regulation of the mammalian maternal-to-embryonic transition by eukaryotic translation initiation factor 4E. Development 148, doi:10.1242/dev.190793 (2021). PubMed DOI PMC
Yang G., Xin Q., Feng I., Wu D. & Dean J. Germ cell-specific eIF4E1b regulates maternal mRNA translation to ensure zygotic genome activation. Genes Dev 37, 418–431, doi:10.1101/gad.350400.123 (2023). PubMed DOI PMC