Spatiotemporal dynamics and selectivity of mRNA translation during mouse pre-implantation development

. 2024 Oct 28 ; () : . [epub] 20241028

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články, preprinty

Perzistentní odkaz   https://www.medvik.cz/link/pmid39553972

Grantová podpora
R01 HD102533 NICHD NIH HHS - United States

Translational regulation is pivotal during preimplantation development. However, how mRNAs are selected for temporal regulation and their dynamic utilization and fate during this period are still unknown. Using a high-resolution ribosome profiling approach, we analyzed the transcriptome, as well as monosome- and polysome-bound RNAs of mouse oocytes and embryos, defining an unprecedented extent of spatiotemporal translational landscapes during this rapid developmental phase. We observed previously unknown mechanisms of translational selectivity, i.e., stage-wise deferral of loading monosome-bound mRNAs to polysome for active translation, continuous translation of both monosome and polysome-bound mRNAs at the same developmental stage, and priming to monosomes after initial activation. We showed that a eukaryotic initiation factor Eif1ad3, which is exclusively translated in the 2-Cell embryo, is required for ribosome biogenesis post embryonic genome activation. Our study thus provides genome-wide datasets and analyses of spatiotemporal translational dynamics accompanying mammalian germ cell and embryonic development and reveals the contribution of a novel translation initiation factor to mammalian pre-implantation development.

Zobrazit více v PubMed

Sonenberg N. & Hinnebusch A. G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136, 731–745, doi:10.1016/j.cell.2009.01.042 (2009). PubMed DOI PMC

Iyyappan R. et al. The translational oscillation in oocyte and early embryo development. Nucleic Acids Res 51, 12076–12091, doi:10.1093/nar/gkad996 (2023). PubMed DOI PMC

Yang G., Xin Q. & Dean J. Degradation and translation of maternal mRNA for embryogenesis. Trends Genet 40, 238–249, doi:10.1016/j.tig.2023.12.008 (2024). PubMed DOI

Susor A. & Kubelka M. Translational Regulation in the Mammalian Oocyte. Results Probl Cell Differ 63, 257–295, doi:10.1007/978-3-319-60855-6_12 (2017). PubMed DOI

Becker K. et al. Quantifying post-transcriptional regulation in the development of Drosophila melanogaster. Nat Commun 9, 4970, doi:10.1038/s41467-018-07455-9 (2018). PubMed DOI PMC

Dang Y. et al. Functional profiling of stage-specific proteome and translational transition across human pre-implantation embryo development at a single-cell resolution. Cell Discov 9, 10, doi:10.1038/s41421-022-00491-2 (2023). PubMed DOI PMC

Gao Y. et al. Protein Expression Landscape of Mouse Embryos during Pre-implantation Development. Cell Rep 21, 3957–3969, doi:10.1016/j.celrep.2017.11.111 (2017). PubMed DOI

Banliat C. et al. The proteomic analysis of bovine embryos developed in vivo or in vitro reveals the contribution of the maternal environment to early embryo. BMC Genomics 23, 839, doi:10.1186/s12864-022-09076-5 (2022). PubMed DOI PMC

Banliat C. et al. Dynamic Changes in the Proteome of Early Bovine Embryos Developed In Vivo. Front Cell Dev Biol 10, 863700, doi:10.3389/fcell.2022.863700 (2022). PubMed DOI PMC

Zhang C., Wang M., Li Y. & Zhang Y. Profiling and functional characterization of maternal mRNA translation during mouse maternal-to-zygotic transition. Sci Adv 8, eabj3967, doi:10.1126/sciadv.abj3967 (2022). PubMed DOI PMC

Xiong Z. et al. Ultrasensitive Ribo-seq reveals translational landscapes during mammalian oocyte-to-embryo transition and pre-implantation development. Nat Cell Biol 24, 968–980, doi:10.1038/s41556-022-00928-6 (2022). PubMed DOI

Masek T. et al. Identifying the Translatome of Mouse NEBD-Stage Oocytes via SSP-Profiling; A Novel Polysome Fractionation Method. Int J Mol Sci 21, doi:10.3390/ijms21041254 (2020). PubMed DOI PMC

Zhu L. et al. High-resolution ribosome profiling reveals translational selectivity for transcripts in bovine preimplantation embryo development. Development 149, doi:10.1242/dev.200819 (2022). PubMed DOI PMC

Fan X. et al. Single-cell RNA-seq analysis of mouse preimplantation embryos by third-generation sequencing. PLoS Biol 18, e3001017, doi:10.1371/journal.pbio.3001017 (2020). PubMed DOI PMC

Lv B. et al. Light-induced injury in mouse embryos revealed by single-cell RNA sequencing. Biol Res 52, 48, doi:10.1186/s40659-019-0256-1 (2019). PubMed DOI PMC

Teixeira F. K. & Lehmann R. Translational Control during Developmental Transitions. Cold Spring Harb Perspect Biol 11, doi:10.1101/cshperspect.a032987 (2019). PubMed DOI PMC

Li D. & Wang J. Ribosome heterogeneity in stem cells and development. J Cell Biol 219, doi:10.1083/jcb.202001108 (2020). PubMed DOI PMC

Hinds P. W. A confederacy of kinases: Cdk2 and Cdk4 conspire to control embryonic cell proliferation. Mol Cell 22, 432–433, doi:10.1016/j.molcel.2006.05.006 (2006). PubMed DOI

Farese R. V. Jr., Ruland S. L., Flynn L. M., Stokowski R. P. & Young S. G. Knockout of the mouse apolipoprotein B gene results in embryonic lethality in homozygotes and protection against diet-induced hypercholesterolemia in heterozygotes. Proc Natl Acad Sci U S A 92, 1774–1778, doi:10.1073/pnas.92.5.1774 (1995). PubMed DOI PMC

Watanabe R. et al. PIG-A and PIG-H, which participate in glycosylphosphatidylinositol anchor biosynthesis, form a protein complex in the endoplasmic reticulum. J Biol Chem 271, 26868–26875, doi:10.1074/jbc.271.43.26868 (1996). PubMed DOI

Ruan X. et al. Zbed3 Is Indispensable for Wnt Signaling Regulation of Cortical Layers Formation in Developing Brain. Cereb Cortex 31, 4078–4091, doi:10.1093/cercor/bhab070 (2021). PubMed DOI

Chen T. et al. Identification of zinc-finger BED domain-containing 3 (Zbed3) as a novel Axin-interacting protein that activates Wnt/beta-catenin signaling. J Biol Chem 284, 6683–6689, doi:10.1074/jbc.M807753200 (2009). PubMed DOI PMC

Gao Z. et al. Zbed3 participates in the subcortical maternal complex and regulates the distribution of organelles. J Mol Cell Biol 10, 74–88, doi:10.1093/jmcb/mjx035 (2018). PubMed DOI

Ding C. et al. RNA-methyltransferase Nsun5 controls the maternal-to-zygotic transition by regulating maternal mRNA stability. Clin Transl Med 12, e1137, doi:10.1002/ctm2.1137 (2022). PubMed DOI PMC

Heissenberger C. et al. Loss of the ribosomal RNA methyltransferase NSUN5 impairs global protein synthesis and normal growth. Nucleic Acids Res 47, 11807–11825, doi:10.1093/nar/gkz1043 (2019). PubMed DOI PMC

Knott J. G. et al. Calmodulin-dependent protein kinase II triggers mouse egg activation and embryo development in the absence of Ca2+ oscillations. Dev Biol 296, 388–395, doi:10.1016/j.ydbio.2006.06.004 (2006). PubMed DOI

Pakrasi P. L. & Dey S. K. Role of calmodulin in blastocyst formation in the mouse. J Reprod Fertil 71, 513–517, doi:10.1530/jrf.0.0710513 (1984). PubMed DOI

Poueymirou W. T. & Schultz R. M. Regulation of mouse preimplantation development: inhibitory effect of the calmodulin antagonist W-7 on the first cleavage. Mol Reprod Dev 26, 211–216, doi:10.1002/mrd.1080260303 (1990). PubMed DOI

Biziaev N. et al. The impact of mRNA poly(A) tail length on eukaryotic translation stages. Nucleic Acids Res 52, 7792–7808, doi:10.1093/nar/gkae510 (2024). PubMed DOI PMC

Passmore L. A. & Coller J. Roles of mRNA poly(A) tails in regulation of eukaryotic gene expression. Nat Rev Mol Cell Biol 23, 93–106, doi:10.1038/s41580-021-00417-y (2022). PubMed DOI PMC

Sachs A. The role of poly(A) in the translation and stability of mRNA. Curr Opin Cell Biol 2, 1092–1098, doi:10.1016/0955-0674(90)90161-7 (1990). PubMed DOI

Lee K., Cho K., Morey R. & Cook-Andersen H. An extended wave of global mRNA deadenylation sets up a switch in translation regulation across the mammalian oocyte-to-embryo transition. Cell Rep 43, 113710, doi:10.1016/j.celrep.2024.113710 (2024). PubMed DOI PMC

Jiang X. et al. The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther 6, 74, doi:10.1038/s41392-020-00450-x (2021). PubMed DOI PMC

Lin S., Choe J., Du P., Triboulet R. & Gregory R. I. The m(6)A Methyltransferase METTL3 Promotes Translation in Human Cancer Cells. Mol Cell 62, 335–345, doi:10.1016/j.molcel.2016.03.021 (2016). PubMed DOI PMC

Meyer K. D. et al. 5' UTR m(6)A Promotes Cap-Independent Translation. Cell 163, 999–1010, doi:10.1016/j.cell.2015.10.012 (2015). PubMed DOI PMC

Zhao B. S., Roundtree I. A. & He C. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol 18, 31–42, doi:10.1038/nrm.2016.132 (2017). PubMed DOI PMC

Wang Y. et al. The RNA m(6)A landscape of mouse oocytes and preimplantation embryos. Nat Struct Mol Biol 30, 703–709, doi:10.1038/s41594-023-00969-x (2023). PubMed DOI PMC

Jackson R. J., Hellen C. U. & Pestova T. V. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 11, 113–127, doi:10.1038/nrm2838 (2010). PubMed DOI PMC

Susor A. et al. Regulation of cap-dependent translation initiation in the early stage porcine parthenotes. Mol Reprod Dev 75, 1716–1725, doi:10.1002/mrd.20913 (2008). PubMed DOI

Schulz K. N. & Harrison M. M. Mechanisms regulating zygotic genome activation. Nat Rev Genet 20, 221–234, doi:10.1038/s41576-018-0087-x (2019). PubMed DOI PMC

Lamacova L. et al. CPEB3 Maintains Developmental Competence of the Oocyte. Cells 13, doi:10.3390/cells13100850 (2024). PubMed DOI PMC

Ozadam H. et al. Single-cell quantification of ribosome occupancy in early mouse development. Nature 618, 1057–1064, doi:10.1038/s41586-023-06228-9 (2023). PubMed DOI PMC

Passmore L. A. & Tang T. T. The long and short of it. Elife 10, doi:10.7554/eLife.70757 (2021). PubMed DOI PMC

Clegg K. B. & Piko L. Poly(A) length, cytoplasmic adenylation and synthesis of poly(A)+ RNA in early mouse embryos. Dev Biol 95, 331–341, doi:10.1016/0012-1606(83)90034-9 (1983). PubMed DOI

Xiang K., Ly J. & Bartel D. P. Control of poly(A)-tail length and translation in vertebrate oocytes and early embryos. Dev Cell 59, 1058–1074 e1011, doi:10.1016/j.devcel.2024.02.007 (2024). PubMed DOI

Liu Y. et al. Nuclear-localized eukaryotic translation initiation factor 1A is involved in mouse preimplantation embryo development. J Mol Histol 52, 965–973, doi:10.1007/s10735-021-10014-0 (2021). PubMed DOI

Sadato D. et al. Eukaryotic translation initiation factor 3 (eIF3) subunit e is essential for embryonic development and cell proliferation. FEBS Open Bio 8, 1188–1201, doi:10.1002/2211-5463.12482 (2018). PubMed DOI PMC

Li Y. et al. Regulation of the mammalian maternal-to-embryonic transition by eukaryotic translation initiation factor 4E. Development 148, doi:10.1242/dev.190793 (2021). PubMed DOI PMC

Yang G., Xin Q., Feng I., Wu D. & Dean J. Germ cell-specific eIF4E1b regulates maternal mRNA translation to ensure zygotic genome activation. Genes Dev 37, 418–431, doi:10.1101/gad.350400.123 (2023). PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace