High-resolution ribosome profiling reveals translational selectivity for transcripts in bovine preimplantation embryo development
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, Research Support, U.S. Gov't, Non-P.H.S., Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 ES032024
NIEHS NIH HHS - United States
PubMed
36227586
PubMed Central
PMC9687001
DOI
10.1242/dev.200819
PII: 280468
Knihovny.cz E-zdroje
- Klíčová slova
- Bovine, Preimplantation embryo development, Ribosome profiling, Transcription, Translation, Translational selectivity,
- MeSH
- blastocysta * metabolismus MeSH
- embryonální vývoj * genetika MeSH
- morula metabolismus MeSH
- oocyty metabolismus MeSH
- ribozomy genetika MeSH
- skot MeSH
- těhotenství MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
High-resolution ribosome fractionation and low-input ribosome profiling of bovine oocytes and preimplantation embryos has enabled us to define the translational landscapes of early embryo development at an unprecedented level. We analyzed the transcriptome and the polysome- and non-polysome-bound RNA profiles of bovine oocytes (germinal vesicle and metaphase II stages) and early embryos at the two-cell, eight-cell, morula and blastocyst stages, and revealed four modes of translational selectivity: (1) selective translation of non-abundant mRNAs; (2) active, but modest translation of a selection of highly expressed mRNAs; (3) translationally suppressed abundant to moderately abundant mRNAs; and (4) mRNAs associated specifically with monosomes. A strong translational selection of low-abundance transcripts involved in metabolic pathways and lysosomes was found throughout bovine embryonic development. Notably, genes involved in mitochondrial function were prioritized for translation. We found that translation largely reflected transcription in oocytes and two-cell embryos, but observed a marked shift in the translational control in eight-cell embryos that was associated with the main phase of embryonic genome activation. Subsequently, transcription and translation become more synchronized in morulae and blastocysts. Taken together, these data reveal a unique spatiotemporal translational regulation that accompanies bovine preimplantation development.
Division of Biomedical Sciences School of Medicine University of California Riverside CA 92521 USA
School of Animal Sciences AgCenter Louisiana State University Baton Rouge LA 70803 USA
Zobrazit více v PubMed
Anderson, P. and Kedersha, N. (2006). RNA granules. J. Cell Biol. 172, 803-808. 10.1083/jcb.200512082 PubMed DOI PMC
Banliat, C., Labas, V., Tomas, D., Teixeira-Gomes, A.-P., Guyonnet, B., Mermillod, P. and Saint-Dizier, M. (2021). Use of MALDI-TOF mass spectrometry to explore the peptidome and proteome of in-vitro produced bovine embryos pre-exposed to oviduct fluid. Reprod. Biol. 21, 100545. 10.1016/j.repbio.2021.100545 PubMed DOI
Banliat, C., Mahé, C., Lavigne, R., Com, E., Pineau, C., Labas, V., Guyonnet, B., Mermillod, P. and Saint-Dizier, M. (2022). Dynamic changes in the proteome of early bovine embryos developed in vivo. Front. Cell Dev. Biol. 10, 863700. 10.3389/fcell.2022.863700 PubMed DOI PMC
Bartke, T., Vermeulen, M., Xhemalce, B., Robson, S. C., Mann, M. and Kouzarides, T. (2010). Nucleosome-interacting proteins regulated by DNA and histone methylation. Cell 143, 470-484. 10.1016/j.cell.2010.10.012 PubMed DOI PMC
Becker, K., Bluhm, A., Casas-Vila, N., Dinges, N., Dejung, M., Sayols, S., Kreutz, C., Roignant, J.-Y., Butter, F. and Legewie, S. (2018). Quantifying post-transcriptional regulation in the development of Drosophila melanogaster. Nat. Commun. 9, 4970. 10.1038/s41467-018-07455-9 PubMed DOI PMC
Botros, L., Sakkas, D. and Seli, E. (2008). Metabolomics and its application for non-invasive embryo assessment in IVF. Mol. Hum. Reprod. 14, 679-690. 10.1093/molehr/gan066 PubMed DOI PMC
Bracewell-Milnes, T., Saso, S., Abdalla, H., Nikolau, D., Norman-Taylor, J., Johnson, M., Holmes, E. and Thum, M.-Y. (2017). Metabolomics as a tool to identify biomarkers to predict and improve outcomes in reproductive medicine: a systematic review. Hum. Reprod. Update 23, 723-736. 10.1093/humupd/dmx023 PubMed DOI
Brannan, K. W., Chaim, I. A., Marina, R. J., Yee, B. A., Kofman, E. R., Lorenz, D. A., Jagannatha, P., Dong, K. D., Madrigal, A. A., Underwood, J. G.et al. (2021). Robust single-cell discovery of RNA targets of RNA-binding proteins and ribosomes. Nat. Methods 18, 507-519. 10.1038/s41592-021-01128-0 PubMed DOI PMC
Budnik, B., Levy, E., Harmange, G. and Slavov, N. (2018). SCoPE-MS: mass spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation. Genome Biol. 19, 161. 10.1186/s13059-018-1547-5 PubMed DOI PMC
Chassé, H., Boulben, S., Costache, V., Cormier, P. and Morales, J. (2017). Analysis of translation using polysome profiling. Nucleic Acids Res. 45, e15. 10.1093/nar/gkw907 PubMed DOI PMC
Cuthbert, J. M., Russell, S. J., White, K. L. and Benninghoff, A. D. (2019). The maternal-to-zygotic transition in bovine in vitro-fertilized embryos is associated with marked changes in small non-coding RNAs. Biol. Reprod. 100, 331-350. 10.1093/biolre/ioy190 PubMed DOI
Cuthbert, J. M., Russell, S. J., Polejaeva, I. A., Meng, Q., White, K. L. and Benninghoff, A. D. (2021). Dynamics of small non-coding RNAs in bovine scNT embryos through the maternal-to-embryonic transition. Biol. Reprod. 105, 918-933. 10.1093/biolre/ioab107 PubMed DOI
Daigneault, B. W., Rajput, S., Smith, G. W. and Ross, P. J. (2018). Embryonic POU5F1 is Required for Expanded Bovine Blastocyst Formation. Sci. Rep. 8, 7753. 10.1038/s41598-018-25964-x PubMed DOI PMC
Demant, M., Deutsch, D. R., Fröhlich, T., Wolf, E. and Arnold, G. J. (2015). Proteome analysis of early lineage specification in bovine embryos. Proteomics 15, 688-701. 10.1002/pmic.201400251 PubMed DOI
Deutsch, D. R., Fröhlich, T., Otte, K. A., Beck, A., Habermann, F. A., Wolf, E. and Arnold, G. J. (2014). Stage-specific proteome signatures in early bovine embryo development. J. Proteome Res. 13, 4363-4376. 10.1021/pr500550t PubMed DOI
Duan, J. E., Jiang, Z. C., Alqahtani, F., Mandoiu, I., Dong, H., Zheng, X., Marjani, S. L., Chen, J. and Tian, X. C. (2019). Methylome dynamics of bovine gametes and in vivo early embryos. Front. Genet. 10, 512. 10.3389/fgene.2019.00512 PubMed DOI PMC
Dufourt, J., Bellec, M., Trullo, A., Dejean, M., De Rossi, S., Favard, C. and Lagha, M. (2021). Imaging translation dynamics in live embryos reveals spatial heterogeneities. Science 372, 840-844. 10.1126/science.abc3483 PubMed DOI
Eulalio, A., Behm-Ansmant, I. and Izaurralde, E. (2007). P bodies: at the crossroads of post-transcriptional pathways. Nat. Rev. Mol. Cell Biol. 8, 9-22. 10.1038/nrm2080 PubMed DOI
Fragouli, E. and Wells, D. (2015). Mitochondrial DNA assessment to determine oocyte and embryo viability. Semin. Reprod. Med. 33, 401-409. 10.1055/s-0035-1567821 PubMed DOI
Gad, A., Hoelker, M., Besenfelder, U., Havlicek, V., Cinar, U., Rings, F., Held, E., Dufort, I., Sirard, M.-A., Schellander, K.et al. (2012). Molecular mechanisms and pathways involved in bovine embryonic genome activation and their regulation by alternative in vivo and in vitro culture conditions. Biol. Reprod. 87, 100. 10.1095/biolreprod.112.099697 PubMed DOI
Ganesh, S., Horvat, F., Drutovic, D., Efenberkova, M., Pinkas, D., Jindrova, A., Pasulka, J., Iyyappan, R., Malik, R., Susor, A.et al. (2020). The most abundant maternal lncRNA Sirena1 acts post-transcriptionally and impacts mitochondrial distribution. Nucleic Acids Res. 48, 3211-3227. 10.1093/nar/gkz1239 PubMed DOI PMC
Gao, Y., Liu, X., Tang, B., Li, C., Kou, Z., Li, L., Liu, W., Wu, Y., Kou, X., Li, J.et al. (2017). Protein expression landscape of mouse embryos during pre-implantation development. Cell Rep. 21, 3957-3969. 10.1016/j.celrep.2017.11.111 PubMed DOI
Graf, A., Krebs, S., Zakhartchenko, V., Schwalb, B., Blum, H. and Wolf, E. (2014). Fine mapping of genome activation in bovine embryos by RNA sequencing. Proc. Natl. Acad. Sci. USA 111, 4139-4144. 10.1073/pnas.1321569111 PubMed DOI PMC
Halstead, M. M., Ma, X., Zhou, C., Schultz, R. M. and Ross, P. J. (2020). Chromatin remodeling in bovine embryos indicates species-specific regulation of genome activation. Nat. Commun. 11, 4654. 10.1038/s41467-020-18508-3 PubMed DOI PMC
Haque, M. E., Jakaria, M., Akther, M., Cho, D.-Y., Kim, I.-S. and Choi, D.-K. (2021). The GCN5: its biological functions and therapeutic potentials. Clin. Sci. (Lond.) 135, 231-257. 10.1042/CS20200986 PubMed DOI
Hasuwa, H., Iwasaki, Y. W., Au Yeung, W. K., Ishino, K., Masuda, H., Sasaki, H. and Siomi, H. (2021). Production of functional oocytes requires maternally expressed PIWI genes and piRNAs in golden hamsters. Nat. Cell Biol. 23, 1002-1012. 10.1038/s41556-021-00745-3 PubMed DOI
Hsu, R. Y. C., Lin, Y.-C., Redon, C., Sun, Q., Singh, D. K., Wang, Y., Aggarwal, V., Mitra, J., Matur, A., Moriarity, B.et al. (2020). ORCA/LRWD1 regulates homologous recombination at ALT-telomeres by Modulating Heterochromatin Organization. iScience 23, 101038. 10.1016/j.isci.2020.101038 PubMed DOI PMC
Huang, D. W., Sherman, B. T. and Lempicki, R. A. (2009). Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1-13. 10.1093/nar/gkn923 PubMed DOI PMC
Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. and Weissman, J. S. (2009). Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218-223. 10.1126/science.1168978 PubMed DOI PMC
Jafarpour, F., Ghazvini Zadegan, F., Ostadhosseini, S., Hajian, M., Kiani-Esfahani, A. and Nasr-Esfahani, M. H. (2020). siRNA inhibition and not chemical inhibition of Suv39h1/2 enhances pre-implantation embryonic development of bovine somatic cell nuclear transfer embryos. PLoS ONE 15, e0233880. 10.1371/journal.pone.0233880 PubMed DOI PMC
Jansova, D., Aleshkina, D., Jindrova, A., Iyyappan, R., An, Q., Fan, G. and Susor, A. (2021). Single molecule RNA localization and translation in the mammalian oocyte and embryo. J. Mol. Biol. 433, 167166. 10.1016/j.jmb.2021.167166 PubMed DOI
Jiang, Z., Sun, J., Dong, H., Luo, O., Zheng, X., Obergfell, C., Tang, Y., Bi, J., O'Neill, R., Ruan, Y.et al. (2014). Transcriptional profiles of bovine in vivo pre-implantation development. BMC Genomics 15, 756. 10.1186/1471-2164-15-756 PubMed DOI PMC
Jiang, Z., Lin, J., Dong, H., Zheng, X., Marjani, S. L., Duan, J., Ouyang, Z., Chen, J. and Tian, X. C. (2018). DNA methylomes of bovine gametes and in vivo produced preimplantation embryos. Biol. Reprod. 99, 949-959. 10.1093/biolre/ioy138 PubMed DOI PMC
Kataruka, S., Modrak, M., Kinterova, V., Malik, R., Zeitler, D. M., Horvat, F., Kanka, J., Meister, G. and Svoboda, P. (2020). MicroRNA dilution during oocyte growth disables the microRNA pathway in mammalian oocytes. Nucleic Acids Res. 48, 8050-8062. 10.1093/nar/gkaa543 PubMed DOI PMC
Kepkova, K. V., Vodicka, P., Toralova, T., Lopatarova, M., Cech, S., Dolezel, R., Havlicek, V., Besenfelder, U., Kuzmany, A., Sirard, M.-A.et al. (2011). Transcriptomic analysis of in vivo and in vitro produced bovine embryos revealed a developmental change in cullin 1 expression during maternal-to-embryonic transition. Theriogenology 75, 1582-1595. 10.1016/j.theriogenology.2010.12.019 PubMed DOI
Krisher, R. L. and Prather, R. S. (2012). A role for the Warburg effect in preimplantation embryo development: metabolic modification to support rapid cell proliferation. Mol. Reprod. Dev. 79, 311-320. 10.1002/mrd.22037 PubMed DOI PMC
Kues, W. A., Sudheer, S., Herrmann, D., Carnwath, J. W., Havlicek, V., Besenfelder, U., Lehrach, H., Adjaye, J. and Niemann, H. (2008). Genome-wide expression profiling reveals distinct clusters of transcriptional regulation during bovine preimplantation development in vivo. Proc. Natl. Acad. Sci. USA 105, 19768-19773. 10.1073/pnas.0805616105 PubMed DOI PMC
Loubalova, Z., Fulka, H., Horvat, F., Pasulka, J., Malik, R., Hirose, M., Ogura, A. and Svoboda, P. (2021). Formation of spermatogonia and fertile oocytes in golden hamsters requires piRNAs. Nat. Cell Biol. 23, 992-1001. 10.1038/s41556-021-00746-2 PubMed DOI PMC
Lu, X., Zhang, Y., Wang, L., Wang, L., Wang, H., Xu, Q., Xiang, Y., Chen, C., Kong, F., Xia, W.et al. (2021). Evolutionary epigenomic analyses in mammalian early embryos reveal species-specific innovations and conserved principles of imprinting. Sci. Adv. 7, eabi6178. 10.1126/sciadv.abi6178 PubMed DOI PMC
Luong, X. G., Daldello, E. M., Rajkovic, G., Yang, C.-R. and Conti, M. (2020). Genome-wide analysis reveals a switch in the translational program upon oocyte meiotic resumption. Nucleic Acids Res. 48, 3257-3276. 10.1093/nar/gkaa010 PubMed DOI PMC
Lütcke, A., Jansson, S., Parton, R. G., Chavrier, P., Valencia, A., Huber, L. A., Lehtonen, E. and Zerial, M. (1993). Rab17, a novel small GTPase, is specific for epithelial cells and is induced during cell polarization. J. Cell Biol. 121, 553-564. 10.1083/jcb.121.3.553 PubMed DOI PMC
Marei, W. F. A., Van Raemdonck, G., Baggerman, G., Bols, P. E. J. and Leroy, J. L. M. R. (2019). Proteomic changes in oocytes after in vitro maturation in lipotoxic conditions are different from those in cumulus cells. Sci. Rep. 9, 3673. 10.1038/s41598-019-40122-7 PubMed DOI PMC
Masek, T., del Llano, E., Gahurova, L., Kubelka, M., Susor, A., Roucova, K., Lin, C.-J., Bruce, A. W. and Pospisek, M. (2020). Identifying the translatome of mouse NEBD-stage oocytes via SSP-profiling; a novel polysome fractionation method. Int. J. Mol. Sci. 21, 1254. 10.3390/ijms21041254 PubMed DOI PMC
Ming, H., Sun, J., Pasquariello, R., Gatenby, L., Herrick, J. R., Yuan, Y., Pinto, C. R., Bondioli, K. R., Krisher, R. L. and Jiang, Z. (2021). The landscape of accessible chromatin in bovine oocytes and early embryos. Epigenetics 16, 300-312. 10.1080/15592294.2020.1795602 PubMed DOI PMC
Misirlioglu, M., Page, G. P., Sagirkaya, H., Kaya, A., Parrish, J. J., First, N. L. and Memili, E. (2006). Dynamics of global transcriptome in bovine matured oocytes and preimplantation embryos. Proc. Natl. Acad. Sci. USA 103, 18905-18910. 10.1073/pnas.0608247103 PubMed DOI PMC
Morgan, M. A. J. and Shilatifard, A. (2020). Reevaluating the roles of histone-modifying enzymes and their associated chromatin modifications in transcriptional regulation. Nat. Genet. 52, 1271-1281. 10.1038/s41588-020-00736-4 PubMed DOI
Nel-Themaat, L. and Nagy, Z. P. (2011). A review of the promises and pitfalls of oocyte and embryo metabolomics. Placenta 32 Suppl. 3, S257-S263. 10.1016/j.placenta.2011.05.011 PubMed DOI
Parker, R. and Sheth, U. (2007). P bodies and the control of mRNA translation and degradation. Mol. Cell 25, 635-646. 10.1016/j.molcel.2007.02.011 PubMed DOI
Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. and Kingsford, C. (2017). Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417-419. 10.1038/nmeth.4197 PubMed DOI PMC
Piqué, M., López, J. M., Foissac, S., Guigó, R. and Méndez, R. (2008). A combinatorial code for CPE-mediated translational control. Cell 132, 434-448. 10.1016/j.cell.2007.12.038 PubMed DOI
Rabaglino, M. B., O'Doherty, A., Bojsen-Møller Secher, J., Lonergan, P., Hyttel, P., Fair, T. and Kadarmideen, H. N. (2021). Application of multi-omics data integration and machine learning approaches to identify epigenetic and transcriptomic differences between in vitro and in vivo produced bovine embryos. PLoS ONE 16, e0252096. 10.1371/journal.pone.0252096 PubMed DOI PMC
Redel, B. K., Brown, A. N., Spate, L. D., Whitworth, K. M., Green, J. A. and Prather, R. S. (2012). Glycolysis in preimplantation development is partially controlled by the Warburg Effect. Mol. Reprod. Dev. 79, 262-271. 10.1002/mrd.22017 PubMed DOI
Robinson, M. D., McCarthy, D. J. and Smyth, G. K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139-140. 10.1093/bioinformatics/btp616 PubMed DOI PMC
Rossant, J. (2011). Developmental biology: a mouse is not a cow. Nature 471, 457-458. 10.1038/471457a PubMed DOI
Scantland, S., Grenon, J.-P., Desrochers, M.-H., Sirard, M.-A., Khandjian, E. W. and Robert, C. (2011). Method to isolate polyribosomal mRNA from scarce samples such as mammalian oocytes and early embryos. BMC Dev. Biol. 11, 8. 10.1186/1471-213X-11-8 PubMed DOI PMC
Schultz, R. M., Stein, P. and Svoboda, P. (2018). The oocyte-to-embryo transition in mouse: past, present, and future. Biol. Reprod. 99, 160-174. 10.1093/biolre/ioy013 PubMed DOI PMC
Singh, R. and Sinclair, K. D. (2007). Metabolomics: approaches to assessing oocyte and embryo quality. Theriogenology 68 Suppl. 1, S56-S62. 10.1016/j.theriogenology.2007.04.007 PubMed DOI
Vander Heiden, M. G., Cantley, L. C. and Thompson, C. B. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033. 10.1126/science.1160809 PubMed DOI PMC
VanInsberghe, M., van den Berg, J., Andersson-Rolf, A., Clevers, H. and van Oudenaarden, A. (2021). Single-cell Ribo-seq reveals cell cycle-dependent translational pausing. Nature 597, 561-565. 10.1038/s41586-021-03887-4 PubMed DOI
Wang, S., Kou, Z., Jing, Z., Zhang, Y., Guo, X., Dong, M., Wilmut, I. and Gao, S. (2010). Proteome of mouse oocytes at different developmental stages. Proc. Natl. Acad. Sci. USA 107, 17639-17644. 10.1073/pnas.1013185107 PubMed DOI PMC
Wang, Y., Khan, A., Marks, A. B., Smith, O. K., Giri, S., Lin, Y.-C., Creager, R., MacAlpine, D. M., Prasanth, K. V., Aladjem, M. I.et al. (2017). Temporal association of ORCA/LRWD1 to late-firing origins during G1 dictates heterochromatin replication and organization. Nucleic Acids Res. 45, 2490-2502. 10.1093/nar/gkw1211 PubMed DOI PMC
Wang, C. Y., Hong, Y. H., Syu, J. S., Tsai, Y. C., Liu, X. Y., Chen, T. Y., Su, Y. M., Kuo, P. L., Lin, Y. M. and Teng, Y. N. (2018a). LRWD1 regulates microtubule nucleation and proper cell cycle progression in the human testicular embryonic carcinoma cells. J. Cell. Biochem. 119, 314-326. 10.1002/jcb.26180 PubMed DOI
Wang, T., Babayev, E., Jiang, Z., Li, G., Zhang, M., Esencan, E., Horvath, T. and Seli, E. (2018b). Mitochondrial unfolded protein response gene Clpp is required to maintain ovarian follicular reserve during aging, for oocyte competence, and development of pre-implantation embryos. Aging Cell 17, e12784. 10.1111/acel.12784 PubMed DOI PMC
Xie, D., Chen, C.-C., Ptaszek, L. M., Xiao, S., Cao, X., Fang, F., Ng, H. H., Lewin, H. A., Cowan, C. and Zhong, S. (2010). Rewirable gene regulatory networks in the preimplantation embryonic development of three mammalian species. Genome Res. 20, 804-815. 10.1101/gr.100594.109 PubMed DOI PMC
Xiong, Z., Xu, K., Lin, Z., Kong, F., Wang, Q., Quan, Y., Sha, Q.-Q., Li, F., Zou, Z., Liu, L.et al. (2022). Ultrasensitive Ribo-seq reveals translational landscapes during mammalian oocyte-to-embryo transition and pre-implantation development. Nat. Cell Biol. 24, 968-980. 10.1038/s41556-022-00928-6 PubMed DOI
Yang, Y., Zhou, C., Wang, Y., Liu, W., Liu, C., Wang, L., Liu, Y., Shang, Y., Li, M., Zhou, S.et al. (2017). The E3 ubiquitin ligase RNF114 and TAB1 degradation are required for maternal-to-zygotic transition. EMBO Rep. 18, 205-216. 10.15252/embr.201642573 PubMed DOI PMC
Zhang, S., Wang, F., Fan, C., Tang, B., Zhang, X. and Li, Z. (2016). Dynamic changes of histone H3 lysine 9 following trimethylation in bovine oocytes and pre-implantation embryos. Biotechnol. Lett. 38, 395-402. 10.1007/s10529-015-2001-3 PubMed DOI
Zhang, Y.-L., Zhao, L.-W., Zhang, J., Le, R., Ji, S.-Y., Chen, C., Gao, Y., Li, D., Gao, S. and Fan, H.-Y. (2018). DCAF13 promotes pluripotency by negatively regulating SUV39H1 stability during early embryonic development. EMBO J. 37, e98981. 10.15252/embj.201898981 PubMed DOI PMC
Zhang, M., Bener, M. B., Jiang, Z., Wang, T., Esencan, E., Scott, R., III, Horvath, T. and Seli, E. (2019a). Mitofusin 1 is required for female fertility and to maintain ovarian follicular reserve. Cell Death Dis. 10, 560. 10.1038/s41419-019-1799-3 PubMed DOI PMC
Zhang, M., Bener, M. B., Jiang, Z., Wang, T., Esencan, E., Scott, R., Horvath, T. and Seli, E. (2019b). Mitofusin 2 plays a role in oocyte and follicle development, and is required to maintain ovarian follicular reserve during reproductive aging. Aging (Albany NY) 11, 3919-3938. 10.18632/aging.102024 PubMed DOI PMC
Zhang, C., Wang, M., Li, Y. and Zhang, Y. (2022). Profiling and functional characterization of maternal mRNA translation during mouse maternal-to-zygotic transition. Sci. Adv. 8, eabj3967. 10.1126/sciadv.abj3967 PubMed DOI PMC
Zhou, S., Guo, Y., Sun, H., Liu, L., Yao, L., Liu, C., He, Y., Cao, S., Zhou, C., Li, M.et al. (2021). Maternal RNF114-mediated target substrate degradation regulates zygotic genome activation in mouse embryos. Development 148, dev199426. 10.1242/dev.199426 PubMed DOI
Zhu, L., Marjani, S. L. and Jiang, Z. (2021). The epigenetics of gametes and early embryos and potential long-range consequences in livestock species-filling in the picture with epigenomic analyses. Front. Genet. 12, 557934. 10.3389/fgene.2021.557934 PubMed DOI PMC
The translational oscillation in oocyte and early embryo development