The most abundant maternal lncRNA Sirena1 acts post-transcriptionally and impacts mitochondrial distribution

. 2020 Apr 06 ; 48 (6) : 3211-3227.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31956907

Tens of thousands of rapidly evolving long non-coding RNA (lncRNA) genes have been identified, but functions were assigned to relatively few of them. The lncRNA contribution to the mouse oocyte physiology remains unknown. We report the evolutionary history and functional analysis of Sirena1, the most expressed lncRNA and the 10th most abundant poly(A) transcript in mouse oocytes. Sirena1 appeared in the common ancestor of mouse and rat and became engaged in two different post-transcriptional regulations. First, antisense oriented Elob pseudogene insertion into Sirena1 exon 1 is a source of small RNAs targeting Elob mRNA via RNA interference. Second, Sirena1 evolved functional cytoplasmic polyadenylation elements, an unexpected feature borrowed from translation control of specific maternal mRNAs. Sirena1 knock-out does not affect fertility, but causes minor dysregulation of the maternal transcriptome. This includes increased levels of Elob and mitochondrial mRNAs. Mitochondria in Sirena1-/- oocytes disperse from the perinuclear compartment, but do not change in number or ultrastructure. Taken together, Sirena1 contributes to RNA interference and mitochondrial aggregation in mouse oocytes. Sirena1 exemplifies how lncRNAs stochastically engage or even repurpose molecular mechanisms during evolution. Simultaneously, Sirena1 expression levels and unique functional features contrast with the lack of functional importance assessed under laboratory conditions.

Zobrazit více v PubMed

Mattick J.S., Rinn J.L.. Discovery and annotation of long noncoding RNAs. Nat. Struct. Mol. Biol. 2015; 22:5–7. PubMed

Ponting C.P., Oliver P.L., Reik W.. Evolution and functions of long noncoding RNAs. Cell. 2009; 136:629–641. PubMed

Kutter C., Watt S., Stefflova K., Wilson M.D., Goncalves A., Ponting C.P., Odom D.T., Marques A.C.. Rapid turnover of long noncoding RNAs and the evolution of gene expression. PLoS Genet. 2012; 8:e1002841. PubMed PMC

Frankish A., Diekhans M., Ferreira A.M., Johnson R., Jungreis I., Loveland J., Mudge J.M., Sisu C., Wright J., Armstrong J. et al. .. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 2019; 47:D766–D773. PubMed PMC

Nakagawa S. Lessons from reverse-genetic studies of lncRNAs. Biochim. Biophys. Acta. 2016; 1859:177–183. PubMed

Ransohoff J.D., Wei Y., Khavari P.A.. The functions and unique features of long intergenic non-coding RNA. Nat. Rev. Mol. Cell Biol. 2018; 19:143–157. PubMed PMC

Edson M.A., Nagaraja A.K., Matzuk M.M.. The mammalian ovary from genesis to revelation. Endocr. Rev. 2009; 30:624–712. PubMed PMC

Veselovska L., Smallwood S.A., Saadeh H., Stewart K.R., Krueger F., Maupetit-Mehouas S., Arnaud P., Tomizawa S., Andrews S., Kelsey G.. Deep sequencing and de novo assembly of the mouse oocyte transcriptome define the contribution of transcription to the DNA methylation landscape. Genome Biol. 2015; 16:209. PubMed PMC

Karlic R., Ganesh S., Franke V., Svobodova E., Urbanova J., Suzuki Y., Aoki F., Vlahovicek K., Svoboda P.. Long non-coding RNA exchange during the oocyte-to-embryo transition in mice. DNA Res. 2017; 24:129–141. PubMed PMC

Nagy A. Manipulating the Mouse Embryo: A Laboratory Manual. 2003; 3rd ednNY: Cold Spring Harbor Laboratory Press.

Wiersma A., Hirsch B., Tsafriri A., Hanssen R.G., Van de Kant M., Kloosterboer H.J., Conti M., Hsueh A.J.. Phosphodiesterase 3 inhibitors suppress oocyte maturation and consequent pregnancy without affecting ovulation and cyclicity in rodents. J. Clin. Invest. 1998; 102:532–537. PubMed PMC

Lukinavicius G., Reymond L., D’Este E., Masharina A., Gottfert F., Ta H., Guther A., Fournier M., Rizzo S., Waldmann H. et al. .. Fluorogenic probes for live-cell imaging of the cytoskeleton. Nat. Methods. 2014; 11:731–733. PubMed

Cong L., Ran F.A., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., Wu X., Jiang W., Marraffini L.A. et al. .. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013; 339:819–823. PubMed PMC

Kitajima T.S., Ohsugi M., Ellenberg J.. Complete kinetochore tracking reveals error-prone homologous chromosome biorientation in mammalian oocytes. Cell. 2011; 146:568–581. PubMed

Mayer A., Baran V., Sakakibara Y., Brzakova A., Ferencova I., Motlik J., Kitajima T.S., Schultz R.M., Solc P.. DNA damage response during mouse oocyte maturation. Cell Cycle. 2016; 15:546–558. PubMed PMC

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B. et al. .. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012; 9:676–682. PubMed PMC

Bolte S., Cordelieres F.P.. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 2006; 224:213–232. PubMed

Pfeiffer M.J., Taher L., Drexler H., Suzuki Y., Makalowski W., Schwarzer C., Wang B., Fuellen G., Boiani M.. Differences in embryo quality are associated with differences in oocyte composition: a proteomic study in inbred mice. Proteomics. 2015; 15:675–687. PubMed

Wang B., Pfeiffer M.J., Drexler H.C., Fuellen G., Boiani M.. Proteomic analysis of mouse oocytes identifies PRMT7 as a reprogramming factor that replaces SOX2 in the induction of pluripotent stem cells. J. Proteome. Res. 2016; 15:2407–2421. PubMed

Wang S., Kou Z., Jing Z., Zhang Y., Guo X., Dong M., Wilmut I., Gao S.. Proteome of mouse oocytes at different developmental stages. Proc. Natl. Acad. Sci. U.S.A. 2010; 107:17639–17644. PubMed PMC

Zhang P., Ni X., Guo Y., Guo X., Wang Y., Zhou Z., Huo R., Sha J.. Proteomic-based identification of maternal proteins in mature mouse oocytes. BMC Genomics. 2009; 10:348. PubMed PMC

Vizcaino J.A., Csordas A., del-Toro N., Dianes J.A., Griss J., Lavidas I., Mayer G., Perez-Riverol Y., Reisinger F., Ternent T. et al. .. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 2016; 44:D447–D456. PubMed PMC

Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R.. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013; 29:15–21. PubMed PMC

Horvat F., Fulka H., Jankele R., Malik R., Jun M., Solcova K., Sedlacek R., Vlahovicek K., Schultz R.M., Svoboda P.. Role of Cnot6l in maternal mRNA turnover. Life Sci. Alliance. 2018; 1:e201800084. PubMed PMC

Kent W.J., Zweig A.S., Barber G., Hinrichs A.S., Karolchik D.. BigWig and BigBed: enabling browsing of large distributed datasets. Bioinformatics. 2010; 26:2204–2207. PubMed PMC

Love M.I., Huber W., Anders S.. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15:550. PubMed PMC

Yu G., Wang L.G., Han Y., He Q.Y.. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012; 16:284–287. PubMed PMC

Demeter T., Vaskovicova M., Malik R., Horvat F., Pasulka J., Svobodova E., Flemr M., Svoboda P.. Main constraints for RNAi induced by expressed long dsRNA in mouse cells. Life Sci. Alliance. 2019; 2:doi:10.26508/lsa.201800289. PubMed PMC

Irizarry R.A., Hobbs B., Collin F., Beazer-Barclay Y.D., Antonellis K.J., Scherf U., Speed T.P.. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003; 4:249–264. PubMed

Ritchie M.E., Silver J., Oshlack A., Holmes M., Diyagama D., Holloway A., Smyth G.K.. A comparison of background correction methods for two-colour microarrays. Bioinformatics. 2007; 23:2700–2707. PubMed

Yang Y.H., Dudoit S., Luu P., Lin D.M., Peng V., Ngai J., Speed T.P.. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 2002; 30:e15. PubMed PMC

Ritchie M.E., Phipson B., Wu D., Hu Y., Law C.W., Shi W., Smyth G.K.. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015; 43:e47. PubMed PMC

Wang L., Park H.J., Dasari S., Wang S., Kocher J.P., Li W.. CPAT: coding-potential assessment tool using an alignment-free logistic regression model. Nucleic Acids Res. 2013; 41:e74. PubMed PMC

Kong L., Zhang Y., Ye Z.Q., Liu X.Q., Zhao S.Q., Wei L., Gao G.. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res. 2007; 35:W345–W349. PubMed PMC

Roller R.J., Kinloch R.A., Hiraoka B.Y., Li S.S., Wassarman P.M.. Gene expression during mammalian oogenesis and early embryogenesis: quantification of three messenger RNAs abundant in fully grown mouse oocytes. Development. 1989; 106:251–261. PubMed

Yue F., Cheng Y., Breschi A., Vierstra J., Wu W., Ryba T., Sandstrom R., Ma Z., Davis C., Pope B.D. et al. .. A comparative encyclopedia of DNA elements in the mouse genome. Nature. 2014; 515:355–364. PubMed PMC

Abe K., Yamamoto R., Franke V., Cao M., Suzuki Y., Suzuki M.G., Vlahovicek K., Svoboda P., Schultz R.M., Aoki F.. The first murine zygotic transcription is promiscuous and uncoupled from splicing and 3′ processing. EMBO J. 2015; 34:1523–1537. PubMed PMC

Choi Y., Ballow D.J., Xin Y., Rajkovic A.. Lim homeobox gene, lhx8, is essential for mouse oocyte differentiation and survival. Biol. Reprod. 2008; 79:442–449. PubMed PMC

Joshi S., Davies H., Sims L.P., Levy S.E., Dean J.. Ovarian gene expression in the absence of FIGLA, an oocyte-specific transcription factor. BMC Dev. Biol. 2007; 7:67. PubMed PMC

Franke V., Ganesh S., Karlic R., Malik R., Pasulka J., Horvat F., Kuzman M., Fulka H., Cernohorska M., Urbanova J. et al. .. Long terminal repeats power evolution of genes and gene expression programs in mammalian oocytes and zygotes. Genome Res. 2017; 27:1384–1394. PubMed PMC

O’HUigin C., Li W.H.. The molecular clock ticks regularly in muroid rodents and hamsters. J. Mol. Evol. 1992; 35:377–384. PubMed

Adkins R.M., Gelke E.L., Rowe D., Honeycutt R.L.. Molecular phylogeny and divergence time estimates for major rodent groups: evidence from multiple genes. Mol. Biol. Evol. 2001; 18:777–791. PubMed

Springer M.S., Murphy W.J., Eizirik E., O’Brien S.J.. Placental mammal diversification and the cretaceous-tertiary boundary. Proc. Natl. Acad. Sci. U.S.A. 2003; 100:1056–1061. PubMed PMC

Freimer J.W., Krishnakumar R., Cook M.S., Blelloch R.. Expression of alternative Ago2 isoform associated with loss of microRNA-driven translational repression in mouse oocytes. Curr. Biol. 2018; 28:296–302. PubMed PMC

Charlesworth A., Meijer H.A., de Moor C.H.. Specificity factors in cytoplasmic polyadenylation. Wiley Interdiscip. Rev. RNA. 2013; 4:437–461. PubMed PMC

Richter J.D., Lasko P.. Translational control in oocyte development. Cold Spring Harb. Perspect. Biol. 2011; 3:a002758. PubMed PMC

Ma J., Flemr M., Strnad H., Svoboda P., Schultz R.M.. Maternally recruited DCP1A and DCP2 contribute to messenger RNA degradation during oocyte maturation and genome activation in mouse. Biol. Reprod. 2013; 88:11. PubMed PMC

Tay J., Hodgman R., Richter J.D.. The control of cyclin B1 mRNA translation during mouse oocyte maturation. Dev. Biol. 2000; 221:1–9. PubMed

Schultz R.M., Montgomery R.R., Belanoff J.R.. Regulation of mouse oocyte meiotic maturation: implication of a decrease in oocyte cAMP and protein dephosphorylation in commitment to resume meiosis. Dev. Biol. 1983; 97:264–273. PubMed

Murchison E.P., Stein P., Xuan Z., Pan H., Zhang M.Q., Schultz R.M., Hannon G.J.. Critical roles for Dicer in the female germline. Genes Dev. 2007; 21:682–693. PubMed PMC

Tang F., Kaneda M., O’Carroll D., Hajkova P., Barton S.C., Sun Y.A., Lee C., Tarakhovsky A., Lao K., Surani M.A.. Maternal microRNAs are essential for mouse zygotic development. Genes Dev. 2007; 21:644–648. PubMed PMC

Tam O.H., Aravin A.A., Stein P., Girard A., Murchison E.P., Cheloufi S., Hodges E., Anger M., Sachidanandam R., Schultz R.M. et al. .. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature. 2008; 453:534–538. PubMed PMC

Watanabe T., Totoki Y., Toyoda A., Kaneda M., Kuramochi-Miyagawa S., Obata Y., Chiba H., Kohara Y., Kono T., Nakano T. et al. .. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature. 2008; 453:539–543. PubMed

Conaway J.W., Bradsher J.N., Tan S., Conaway R.C.. Transcription factor SIII: a novel component of the RNA polymerase II elongation complex. Cell Mol. Biol. Res. 1993; 39:323–329. PubMed

Nguyen H.C., Yang H., Fribourgh J.L., Wolfe L.S., Xiong Y.. Insights into Cullin-RING E3 ubiquitin ligase recruitment: structure of the VHL-EloBC-Cul2 complex. Structure. 2015; 23:441–449. PubMed PMC

Ohh M., Park C.W., Ivan M., Hoffman M.A., Kim T.Y., Huang L.E., Pavletich N., Chau V., Kaelin W.G.. Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat. Cell Biol. 2000; 2:423–427. PubMed

Hwang J., Saffert R.T., Kalejta R.F.. Elongin B-mediated epigenetic alteration of viral chromatin correlates with efficient human cytomegalovirus gene expression and replication. MBio. 2011; 2:e00023–00011. PubMed PMC

Jo M.H., Shin S., Jung S.R., Kim E., Song J.J., Hohng S.. Human argonaute 2 has diverse reaction pathways on target RNAs. Mol. Cell. 2015; 59:117–124. PubMed

Stein P., Rozhkov N.V., Li F., Cardenas F.L., Davydenko O., Vandivier L.E., Gregory B.D., Hannon G.J., Schultz R.M.. Essential role for endogenous siRNAs during meiosis in mouse oocytes. PLoS Genet. 2015; 11:e1005013. PubMed PMC

Nagasawa H., Miyamoto M., Fujimoto M.. [Reproductivity in inbred strains of mice and project for their efficient production (author's transl)] Jikken dobutsu. Exp. Anim. 1973; 22:119–126. PubMed

Poot M., Zhang Y.Z., Kramer J.A., Wells K.S., Jones L.J., Hanzel D.K., Lugade A.G., Singer V.L., Haugland R.P.. Analysis of mitochondrial morphology and function with novel fixable fluorescent stains. J. Histochem. Cytochem. 1996; 44:1363–1372. PubMed

de Paula W.B., Lucas C.H., Agip A.N., Vizcay-Barrena G., Allen J.F.. Energy, ageing, fidelity and sex: oocyte mitochondrial DNA as a protected genetic template. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013; 368:20120263. PubMed PMC

Kogo N., Tazaki A., Kashino Y., Morichika K., Orii H., Mochii M., Watanabe K.. Germ-line mitochondria exhibit suppressed respiratory activity to support their accurate transmission to the next generation. Dev. Biol. 2011; 349:462–469. PubMed

Ganesh S., Svoboda P.. Retrotransposon-associated long non-coding RNAs in mice and men. Pflugers Arch. 2016; 468:1049–1060. PubMed

Bishop J.O., Morton J.G., Rosbash M., Richardson M.. Three abundance classes in HeLa cell messenger RNA. Nature. 1974; 250:199–204. PubMed

Carter M.G., Sharov A.A., VanBuren V., Dudekula D.B., Carmack C.E., Nelson C., Ko M.S.. Transcript copy number estimation using a mouse whole-genome oligonucleotide microarray. Genome Biol. 2005; 6:R61. PubMed PMC

Hastie N.D., Bishop J.O.. The expression of three abundance classes of messenger RNA in mouse tissues. Cell. 1976; 9:761–774. PubMed

Marinov G.K., Williams B.A., McCue K., Schroth G.P., Gertz J., Myers R.M., Wold B.J.. From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing. Genome Res. 2014; 24:496–510. PubMed PMC

Fan X., Zhang X., Wu X., Guo H., Hu Y., Tang F., Huang Y.. Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos. Genome Biol. 2015; 16:148. PubMed PMC

Piko L., Clegg K.B.. Quantitative changes in total RNA, total poly(A), and ribosomes in early mouse embryos. Dev. Biol. 1982; 89:362–378. PubMed

Garcia-Lopez J., Hourcade Jde D., Alonso L., Cardenas D.B., del Mazo J.. Global characterization and target identification of piRNAs and endo-siRNAs in mouse gametes and zygotes. Biochim. Biophys. Acta. 2014; 1839:463–475. PubMed

Yang Q., Lin J., Liu M., Li R., Tian B., Zhang X., Xu B., Liu M., Zhang X., Li Y. et al. .. Highly sensitive sequencing reveals dynamic modifications and activities of small RNAs in mouse oocytes and early embryos. Sci. Adv. 2016; 2:e1501482. PubMed PMC

Dalton C.M., Szabadkai G., Carroll J.. Measurement of ATP in single oocytes: impact of maturation and cumulus cells on levels and consumption. J. Cell Physiol. 2014; 229:353–361. PubMed

Kelly A., West J.D.. Survival and normal function of glycolysis-deficient mouse oocytes. Reproduction. 2002; 124:469–473. PubMed

Flemr M., Ma J., Schultz R.M., Svoboda P.. P-body loss is concomitant with formation of a messenger RNA storage domain in mouse oocytes. Biol. Reprod. 2010; 82:1008–1017. PubMed PMC

Susor A., Jansova D., Cerna R., Danylevska A., Anger M., Toralova T., Malik R., Supolikova J., Cook M.S., Oh J.S. et al. .. Temporal and spatial regulation of translation in the mammalian oocyte via the mTOR-eIF4F pathway. Nat. Commun. 2015; 6:6078. PubMed PMC

Sirey T.M., Roberts K., Haerty W., Bedoya-Reina O., Rogatti-Granados S., Tan J.Y., Li N., Heather L.C., Carter R.N., Cooper S. et al. .. The long non-coding RNA Cerox1 is a post transcriptional regulator of mitochondrial complex I catalytic activity. Elife. 2019; 8:e45051. PubMed PMC

Suh N., Baehner L., Moltzahn F., Melton C., Shenoy A., Chen J., Blelloch R.. MicroRNA function is globally suppressed in mouse oocytes and early embryos. Curr. Biol. 2010; 20:271–277. PubMed PMC

Dumollard R., Carroll J., Duchen M.R., Campbell K., Swann K.. Mitochondrial function and redox state in mammalian embryos. Semin Cell Dev. Biol. 2009; 20:346–353. PubMed

Allen J.F., de Paula W.B.. Mitochondrial genome function and maternal inheritance. Biochem. Soc. Trans. 2013; 41:1298–1304. PubMed

Goudarzi M., Berg K., Pieper L.M., Schier A.F.. Individual long non-coding RNAs have no overt functions in zebrafish embryogenesis, viability and fertility. Elife. 2019; 8:e40815. PubMed PMC

Kumar S., Stecher G., Suleski M., Hedges S.B.. TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 2017; 34:1812–1819. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...