DNA damage response during mouse oocyte maturation
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
HD022681
NICHD NIH HHS - United States
PubMed
26745237
PubMed Central
PMC5056612
DOI
10.1080/15384101.2015.1128592
Knihovny.cz E-zdroje
- Klíčová slova
- DNA damage, MRE11, double strand DNA breaks, meiotic maturation, mouse oocytes,
- MeSH
- ATM protein genetika MeSH
- DNA vazebné proteiny genetika MeSH
- dvouřetězcové zlomy DNA účinky léků MeSH
- enzymy opravy DNA genetika MeSH
- histony genetika MeSH
- homologní protein MRE11 MeSH
- meióza genetika MeSH
- metafáze genetika MeSH
- myši MeSH
- oocyty růst a vývoj metabolismus MeSH
- poškození DNA účinky léků genetika MeSH
- zinostatin aplikace a dávkování MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- Atm protein, mouse MeSH Prohlížeč
- ATM protein MeSH
- DNA vazebné proteiny MeSH
- enzymy opravy DNA MeSH
- H2AX protein, mouse MeSH Prohlížeč
- histony MeSH
- homologní protein MRE11 MeSH
- Mre11a protein, mouse MeSH Prohlížeč
- zinostatin MeSH
Because low levels of DNA double strand breaks (DSBs) appear not to activate the ATM-mediated prophase I checkpoint in full-grown oocytes, there may exist mechanisms to protect chromosome integrity during meiotic maturation. Using live imaging we demonstrate that low levels of DSBs induced by the radiomimetic drug Neocarzinostatin (NCS) increase the incidence of chromosome fragments and lagging chromosomes but do not lead to APC/C activation and anaphase onset delay. The number of DSBs, represented by γH2AX foci, significantly decreases between prophase I and metaphase II in both control and NCS-treated oocytes. Transient treatment with NCS increases >2-fold the number of DSBs in prophase I oocytes, but less than 30% of these oocytes enter anaphase with segregation errors. MRE11, but not ATM, is essential to detect DSBs in prophase I and is involved in H2AX phosphorylation during metaphase I. Inhibiting MRE11 by mirin during meiotic maturation results in anaphase bridges and also increases the number of γH2AX foci in metaphase II. Compromised DNA integrity in mirin-treated oocytes indicates a role for MRE11 in chromosome integrity during meiotic maturation.
b Institute of Animal Physiology Kosice Slovakia
c Laboratory for Chromosome Segregation RIKEN Center for Developmental Biology Kobe Japan
Department of Biology University of Pennsylvania Philadelphia PA USA
Institute of Animal Physiology and Genetics AS CR Libechov Czech Republic
Zobrazit více v PubMed
Altmeyer M, Lukas J. To spread or not to spread-chromatin modifications in response to DNA damage. Curr Opin Genet Dev 2013; 23:156–65; PMID:23312207; http://dx.doi.org/10.1016/j.gde.2012.11.001 PubMed DOI
Stracker TH, Petrini JH. The MRE11 complex: starting from the ends. Nat Rev Mol Cell Biol 2011; 12:90–103; PMID:21252998; http://dx.doi.org/10.1038/nrm3047 PubMed DOI PMC
Rein K, Stracker TH. The MRE11 complex: an important source of stress relief. Exp Cell Res 2014; 329:162–9; PMID:25447316; http://dx.doi.org/10.1016/j.yexcr.2014.10.010 PubMed DOI
Carson CT, Schwartz RA, Stracker TH, Lilley CE, Lee DV, Weitzman MD. The Mre11 complex is required for ATM activation and the G2/M checkpoint. EMBO J 2003; 22:6610–20; PMID:14657032; http://dx.doi.org/10.1093/emboj/cdg630 PubMed DOI PMC
Uziel T, Lerenthal Y, Moyal L, Andegeko Y, Mittelman L, Shiloh Y. Requirement of the MRN complex for ATM activation by DNA damage. EMBO J 2003; 22:5612–21; PMID:14532133; http://dx.doi.org/10.1093/emboj/cdg541 PubMed DOI PMC
Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 2001; 276:42462–7; PMID:11571274; http://dx.doi.org/10.1074/jbc.C100466200 PubMed DOI
Jungmichel S, Stucki M. MDC1: The art of keeping things in focus. Chromosoma 2010; 119:337–49; PMID:20224865; http://dx.doi.org/10.1007/s00412-010-0266-9 PubMed DOI
Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Mol Cell 2010; 40:179–204; PMID:20965415; http://dx.doi.org/10.1016/j.molcel.2010.09.019 PubMed DOI PMC
Baudat F, Manova K, Yuen JP, Jasin M, Keeney S. Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11. Mol Cell 2000; 6:989–98; PMID:11106739; http://dx.doi.org/10.1016/S1097-2765(00)00098-8 PubMed DOI
Kerr JB, Hutt KJ, Michalak EM, Cook M, Vandenberg CJ, Liew SH, Bouillet P, Mills A, Scott CL, Findlay JK, et al.. DNA damage-induced primordial follicle oocyte apoptosis and loss of fertility require TAp63-mediated induction of Puma and Noxa. Mol Cell 2012; 48:343–52; PMID:23000175; http://dx.doi.org/10.1016/j.molcel.2012.08.017 PubMed DOI PMC
Carroll J, Marangos P. The DNA damage response in mammalian oocytes. Front Genet 2013; 4:117; PMID:23805152; http://dx.doi.org/10.3389/fgene.2013.00117 PubMed DOI PMC
Lin F, Ma XS, Wang ZB, Wang ZW, Luo YB, Huang L, Jiang ZZ, Hu MW, Schatten H, Sun QY. Different fates of oocytes with DNA double-strand breaks in vitro and in vivo. Cell Cycle 2014; 13:2674–80; PMID:25486355; http://dx.doi.org/10.4161/15384101.2015.945375 PubMed DOI PMC
Ma JY, Ou Yang YC, Wang ZW, Wang ZB, Jiang ZZ, Luo SM, Hou Y, Liu ZH, Schatten H, Sun QY. The effects of DNA double-strand breaks on mouse oocyte meiotic maturation. Cell Cycle 2013; 12:1233–41; PMID:23518501; http://dx.doi.org/10.4161/cc.24311 PubMed DOI PMC
Marangos P, Carroll J. Oocytes progress beyond prophase in the presence of DNA damage. Curr Biol 2012; 22:989–94; PMID:22578416; http://dx.doi.org/10.1016/j.cub.2012.03.063 PubMed DOI
Yuen WS, Merriman JA, O'Bryan MK, Jones KT. DNA double strand breaks but not interstrand crosslinks prevent progress through meiosis in fully grown mouse oocytes. PLoS One 2012; 7:e43875; PMID:22928046; http://dx.doi.org/10.1371/journal.pone.0043875 PubMed DOI PMC
Ashwood-Smith MJ, Edwards RG. DNA repair by oocytes. Mol Hum Reprod 1996; 2:46–51; PMID:9238657; http://dx.doi.org/10.1093/molehr/2.1.46 PubMed DOI
Titus S, Li F, Stobezki R, Akula K, Unsal E, Jeong K, Dickler M, Robson M, Moy F, Goswami S, et al.. Impairment of BRCA1-related DNA double-strand break repair leads to ovarian aging in mice and humans. Sci Transl Med 2013; 5:172ra21; PMID:23408054 PubMed PMC
Brazill JL, Masui Y. Changing levels of uv light and carcinogen-induced unscheduled DNA synthesis in mouse oocytes during meiotic maturation. Exp Cell Res 1978; 112:121–5; PMID:415889; http://dx.doi.org/10.1016/0014-4827(78)90532-3 PubMed DOI
Masui Y, Pedersen RA. Ultraviolet light-induced unscheduled DNA synthesis in mouse oocytes during meiotic maturation. Nature 1975; 257:705–6; PMID:1237799; http://dx.doi.org/10.1038/257705a0 PubMed DOI
Kujjo LL, Laine T, Pereira RJ, Kagawa W, Kurumizaka H, Yokoyama S, Perez GI. Enhancing survival of mouse oocytes following chemotherapy or aging by targeting Bax and Rad51. PLoS One 2010; 5:e9204; PMID:20169201; http://dx.doi.org/10.1371/journal.pone.0009204 PubMed DOI PMC
Perez GI, Acton BM, Jurisicova A, Perkins GA, White A, Brown J, Trbovich AM, Kim MR, Fissore R, Xu J, et al.. Genetic variance modifies apoptosis susceptibility in mature oocytes via alterations in DNA repair capacity and mitochondrial ultrastructure. Cell Death Differ 2007; 14:524–33; PMID:17039249; http://dx.doi.org/10.1038/sj.cdd.4402050 PubMed DOI
Hadjantonakis AK, Papaioannou VE. Dynamic in vivo imaging and cell tracking using a histone fluorescent protein fusion in mice. BMC Biotechnol 2004; 4:33; PMID:15619330; http://dx.doi.org/10.1186/1472-6750-4-33 PubMed DOI PMC
Sakakibara Y, Hashimoto S, Nakaoka Y, Kouznetsova A, Hoog C, Kitajima TS. Bivalent separation into univalents precedes age-related meiosis I errors in oocytes. Nat Commun 2015; 6:7550; PMID:26130582; http://dx.doi.org/10.1038/ncomms8550 PubMed DOI PMC
Herbert M, Levasseur M, Homer H, Yallop K, Murdoch A, McDougall A. Homologue disjunction in mouse oocytes requires proteolysis of securin and cyclin B1. Nat Cell Biol 2003; 5:1023–5; PMID:14593421; http://dx.doi.org/10.1038/ncb1062 PubMed DOI
Ichijima Y, Sakasai R, Okita N, Asahina K, Mizutani S, Teraoka H. Phosphorylation of histone H2AX at M phase in human cells without DNA damage response. Biochem Biophys Res Commun 2005; 336:807–12; PMID:16153602; http://dx.doi.org/10.1016/j.bbrc.2005.08.164 PubMed DOI
McManus KJ, Hendzel MJ. ATM-dependent DNA damage-independent mitotic phosphorylation of H2AX in normally growing mammalian cells. Mol Biol Cell 2005; 16:5013–25; PMID:16030261; http://dx.doi.org/10.1091/mbc.E05-01-0065 PubMed DOI PMC
Tu WZ, Li B, Huang B, Wang Y, Liu XD, Guan H, Zhang SM, Tang Y, Rang WQ, Zhou PK. gammaH2AX foci formation in the absence of DNA damage: mitotic H2AX phosphorylation is mediated by the DNA-PKcs/CHK2 pathway. FEBS Lett 2013; 587:3437–43; PMID:24021642; http://dx.doi.org/10.1016/j.febslet.2013.08.028 PubMed DOI
Golding SE, Rosenberg E, Valerie N, Hussaini I, Frigerio M, Cockcroft XF, Chong WY, Hummersone M, Rigoreau L, Menear KA, et al.. Improved ATM kinase inhibitor KU-60019 radiosensitizes glioma cells, compromises insulin, AKT and ERK prosurvival signaling, and inhibits migration and invasion. Mol Cancer Therapeutics 2009; 8:2894–902; PMID:19808981; http://dx.doi.org/10.1158/1535-7163.MCT-09-0519 PubMed DOI PMC
Ward IM, Chen J. Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. J Biol Chem 2001; 276:47759–62; PMID:11673449; http://dx.doi.org/10.1074/jbc.M009785200 PubMed DOI
Royo H, Prosser H, Ruzankina Y, Mahadevaiah SK, Cloutier JM, Baumann M, Fukuda T, Hoog C, Toth A, de Rooij DG, et al.. ATR acts stage specifically to regulate multiple aspects of mammalian meiotic silencing. Genes Dev 2013; 27:1484–94; PMID:23824539; http://dx.doi.org/10.1101/gad.219477.113 PubMed DOI PMC
Dupre A, Boyer-Chatenet L, Sattler RM, Modi AP, Lee JH, Nicolette ML, Kopelovich L, Jasin M, Baer R, Paull TT, et al.. A forward chemical genetic screen reveals an inhibitor of the Mre11-Rad50-Nbs1 complex. Nat Chem Biol 2008; 4:119–25; PMID:18176557; http://dx.doi.org/10.1038/nchembio.63 PubMed DOI PMC
Rozier L, Guo Y, Peterson S, Sato M, Baer R, Gautier J, Mao Y. The MRN-CtIP pathway is required for metaphase chromosome alignment. Mol Cell 2013; 49:1097–107; PMID:23434370; http://dx.doi.org/10.1016/j.molcel.2013.01.023 PubMed DOI PMC
Bakhoum SF, Kabeche L, Murnane JP, Zaki BI, Compton DA. DNA-damage response during mitosis induces whole-chromosome missegregation. Cancer Discov 2014; 4:1281–9; PMID:25107667; http://dx.doi.org/10.1158/2159-8290.CD-14-0403 PubMed DOI PMC
Chiang T, Duncan FE, Schindler K, Schultz RM, Lampson MA. Evidence that weakened centromere cohesion is a leading cause of age-related aneuploidy in oocytes. Curr Biol 2010; 20:1522–8; PMID:20817534; http://dx.doi.org/10.1016/j.cub.2010.06.069 PubMed DOI PMC
Kuo LJ, Yang LX. Gamma-H2AX - a novel biomarker for DNA double-strand breaks. In Vivo 2008; 22:305–9; PMID:18610740 PubMed
Mah LJ, El-Osta A, Karagiannis TC. gammaH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia 2010; 24:679–86; PMID:20130602; http://dx.doi.org/10.1038/leu.2010.6 PubMed DOI
Wrann S, Kaufmann MR, Wirthner R, Stiehl DP, Wenger RH. HIF mediated and DNA damage independent histone H2AX phosphorylation in chronic hypoxia. Biol Chem 2013; 394:519–28; PMID:23241668; http://dx.doi.org/10.1515/hsz-2012-0311 PubMed DOI
Kujjo LL, Ronningen R, Ross P, Pereira RJ, Rodriguez R, Beyhan Z, Goissis MD, Baumann T, Kagawa W, Camsari C, et al.. RAD51 plays a crucial role in halting cell death program induced by ionizing radiation in bovine oocytes. Biol Reprod 2012; 86:76; PMID:22190703; http://dx.doi.org/10.1095/biolreprod.111.092064 PubMed DOI
Acilan C, Potter DM, Saunders WS. DNA repair pathways involved in anaphase bridge formation. Genes Chromosomes Cancer 2007; 46:522–31; PMID:17366618; http://dx.doi.org/10.1002/gcc.20425 PubMed DOI
Lemmens BB, Johnson NM, Tijsterman M. COM-1 promotes homologous recombination during Caenorhabditis elegans meiosis by antagonizing Ku-mediated non-homologous end joining. PLoS Genetics 2013; 9:e1003276; PMID:23408909; http://dx.doi.org/10.1371/journal.pgen.1003276 PubMed DOI PMC
Yin Y, Smolikove S. Impaired resection of meiotic double-strand breaks channels repair to nonhomologous end joining in Caenorhabditis elegans. Mol Cell Biol 2013; 33:2732–47; PMID:23671188; http://dx.doi.org/10.1128/MCB.00055-13 PubMed DOI PMC
Terasawa M, Shinohara A, Shinohara M. Double-strand break repair-adox: Restoration of suppressed double-strand break repair during mitosis induces genomic instability. Cancer Sci 2014; 105:1519–25; PMID:25287622; http://dx.doi.org/10.1111/cas.12551 PubMed DOI PMC
Lee DH, Acharya SS, Kwon M, Drane P, Guan Y, Adelmant G, Kalev P, Shah J, Pellman D, Marto JA, et al.. Dephosphorylation enables the recruitment of 53BP1 to double-strand DNA breaks. Mol Cell 2014; 54:512–25; PMID:24703952; http://dx.doi.org/10.1016/j.molcel.2014.03.020 PubMed DOI PMC
Orthwein A, Fradet-Turcotte A, Noordermeer SM, Canny MD, Brun CM, Strecker J, Escribano-Diaz C, Durocher D. Mitosis inhibits DNA double-strand break repair to guard against telomere fusions. Science 2014; 344:189–93; PMID:24652939; http://dx.doi.org/10.1126/science.1248024 PubMed DOI
Terasawa M, Shinohara A, Shinohara M. Canonical non-homologous end joining in mitosis induces genome instability and is suppressed by M-phase-specific phosphorylation of XRCC4. PLoS Genetics 2014; 10:e1004563; PMID:25166505; http://dx.doi.org/10.1371/journal.pgen.1004563 PubMed DOI PMC
Zhang Y, Jasin M. An essential role for CtIP in chromosomal translocation formation through an alternative end-joining pathway. Nat Struct Mol Biol 2011; 18:80–4; PMID:21131978; http://dx.doi.org/10.1038/nsmb.1940 PubMed DOI PMC
Montgomery E, Wilentz RE, Argani P, Fisher C, Hruban RH, Kern SE, Lengauer C. Analysis of anaphase figures in routine histologic sections distinguishes chromosomally unstable from chromosomally stable malignancies. Cancer Biol Ther 2003; 2:248–52; PMID:12878857; http://dx.doi.org/10.4161/cbt.2.3.362 PubMed DOI
Verdun RE, Crabbe L, Haggblom C, Karlseder J. Functional human telomeres are recognized as DNA damage in G2 of the cell cycle. Mol Cell 2005; 20:551–61; PMID:16307919; http://dx.doi.org/10.1016/j.molcel.2005.09.024 PubMed DOI
Tsafriri A, Chun SY, Zhang R, Hsueh AJ, Conti M. Oocyte maturation involves compartmentalization and opposing changes of cAMP levels in follicular somatic and germ cells: studies using selective phosphodiesterase inhibitors. Dev Biol 1996; 178:393–402; PMID:8812137; http://dx.doi.org/10.1006/dbio.1996.0226 PubMed DOI
Solc P, Saskova A, Baran V, Kubelka M, Schultz RM, Motlik J. CDC25A phosphatase controls meiosis I progression in mouse oocytes. Dev Biol 2008; 317:260–9; PMID:18367163; http://dx.doi.org/10.1016/j.ydbio.2008.02.028 PubMed DOI PMC
Kitajima TS, Ohsugi M, Ellenberg J. Complete kinetochore tracking reveals error-prone homologous chromosome biorientation in mammalian oocytes. Cell 2011; 146:568–81; PMID:21854982; http://dx.doi.org/10.1016/j.cell.2011.07.031 PubMed DOI
Kudo NR, Wassmann K, Anger M, Schuh M, Wirth KG, Xu H, Helmhart W, Kudo H, McKay M, Maro B, et al.. Resolution of chiasmata in oocytes requires separase-mediated proteolysis. Cell 2006; 126:135–46; PMID:16839882; http://dx.doi.org/10.1016/j.cell.2006.05.033 PubMed DOI
Schuh M, Ellenberg J. Self-organization of MTOCs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes. Cell 2007; 130:484–98; PMID:17693257; http://dx.doi.org/10.1016/j.cell.2007.06.025 PubMed DOI
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, et al.. Fiji: an open-source platform for biological-image analysis. Nat Methods 2012; 9:676–82; PMID:22743772; http://dx.doi.org/10.1038/nmeth.2019 PubMed DOI PMC
Luisier F, Vonesch C, Blu T, Unser M. Fast interscale wavelet denoising of Poisson-corrupted images. Signal Proc 2010; 90:415–27; http://dx.doi.org/10.1016/j.sigpro.2009.07.009 DOI
Bolte S, Cordelieres FP. A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 2006; 224:213–32; PMID:17210054; http://dx.doi.org/10.1111/j.1365-2818.2006.01706.x PubMed DOI
CHK1-CDC25A-CDK1 regulate cell cycle progression and protect genome integrity in early mouse embryos
Checkpoint Kinase 1 Is a Key Signal Transducer of DNA Damage in the Early Mammalian Cleavage Embryo
RanGTP and importin β regulate meiosis I spindle assembly and function in mouse oocytes
DNA damage in the oocytes SACs