RanGTP and importin β regulate meiosis I spindle assembly and function in mouse oocytes
Language English Country England, Great Britain Media print-electronic
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
LO1609
National Sustainability Program of the Czech Ministry of Education, Youth and Sports (MEYS) - International
LTAUSA17097
National Sustainability Program of the Czech Ministry of Education, Youth and Sports (MEYS) - International
R01 HD086577
NICHD NIH HHS - United States
S10 OD020007
NIH HHS - United States
PubMed
31617608
PubMed Central
PMC6939199
DOI
10.15252/embj.2019101689
Knihovny.cz E-resources
- Keywords
- RanGTP, importazole, importin β, meiosis I, oocyte,
- MeSH
- Spindle Apparatus physiology MeSH
- beta Karyopherins genetics metabolism MeSH
- Nuclear Proteins genetics metabolism MeSH
- Meiosis physiology MeSH
- Microtubules metabolism MeSH
- Mutation MeSH
- Mice MeSH
- Oocytes cytology metabolism MeSH
- Cell Cycle Proteins genetics metabolism MeSH
- ran GTP-Binding Protein genetics metabolism MeSH
- Chromosome Segregation MeSH
- Guanine Nucleotide Exchange Factors genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- beta Karyopherins MeSH
- Nuclear Proteins MeSH
- Cell Cycle Proteins MeSH
- ran GTP-Binding Protein MeSH
- Rcc1 protein, mouse MeSH Browser
- Guanine Nucleotide Exchange Factors MeSH
Homologous chromosome segregation during meiosis I (MI) in mammalian oocytes is carried out by the acentrosomal MI spindles. Whereas studies in human oocytes identified Ran GTPase as a crucial regulator of the MI spindle function, experiments in mouse oocytes questioned the generality of this notion. Here, we use live-cell imaging with fluorescent probes and Förster resonance energy transfer (FRET) biosensors to monitor the changes in Ran and importin β signaling induced by perturbations of Ran in mouse oocytes while examining the MI spindle dynamics. We show that unlike RanT24N employed in previous studies, a RanT24N, T42A double mutant inhibits RanGEF without perturbing cargo binding to importin β and disrupts MI spindle function in chromosome segregation. Roles of Ran and importin β in the coalescence of microtubule organizing centers (MTOCs) and MI spindle assembly are further supported by the use of the chemical inhibitor importazole, whose effects are partially rescued by the GTP hydrolysis-resistant RanQ69L mutant. These results indicate that RanGTP is essential for MI spindle assembly and function both in humans and mice.
Department of Chemical and Biomolecular Engineering Whiting School of Engineering Baltimore MD USA
Institute of Animal Physiology and Genetics of the Czech Academy of Sciences Libechov Czech Republic
See more in PubMed
Balboula AZ, Nguyen AL, Gentilello AS, Quartuccio SM, Drutovic D, Solc P, Schindler K (2016) Haspin kinase regulates microtubule‐organizing center clustering and stability through Aurora kinase C in mouse oocytes. J Cell Sci 129: 3648–3660 PubMed PMC
Bastiaens P, Caudron M, Niethammer P, Karsenti E (2006) Gradients in the self‐organization of the mitotic spindle. Trends Cell Biol 16: 125–134 PubMed
Baumann C, Wang X, Yang L, Viveiros MM (2017) Error‐prone meiotic division and subfertility in mice with oocyte‐conditional knockdown of pericentrin. J Cell Sci 130: 1251–1262 PubMed PMC
Bennabi I, Terret ME, Verlhac MH (2016) Meiotic spindle assembly and chromosome segregation in oocytes. J Cell Biol 215: 611–619 PubMed PMC
Bolte S, Cordelieres FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsci 224: 213–232 PubMed
Breuer M, Kolano A, Kwon M, Li CC, Tsai TF, Pellman D, Brunet S, Verlhac MH (2010) HURP permits MTOC sorting for robust meiotic spindle bipolarity, similar to extra centrosome clustering in cancer cells. J Cell Biol 191: 1251–1260 PubMed PMC
Brunet S, Dumont J, Lee KW, Kinoshita K, Hikal P, Gruss OJ, Maro B, Verlhac MH (2008) Meiotic regulation of TPX2 protein levels governs cell cycle progression in mouse oocytes. PLoS ONE 3: e3338 PubMed PMC
Bury L, Coelho PA, Simeone A, Ferries S, Eyers CE, Eyers PA, Zernicka‐Goetz M, Glover DM (2017) Plk4 and Aurora A cooperate in the initiation of acentriolar spindle assembly in mammalian oocytes. J Cell Biol 216: 3571–3590 PubMed PMC
Carabatsos MJ, Combelles CM, Messinger SM, Albertini DF (2000) Sorting and reorganization of centrosomes during oocyte maturation in the mouse. Microsci Res Tech 49: 435–444 PubMed
Caudron M, Bunt G, Bastiaens P, Karsenti E (2005) Spatial coordination of spindle assembly by chromosome‐mediated signaling gradients. Science 309: 1373–1376 PubMed
Clarke PR, Zhang C (2008) Spatial and temporal coordination of mitosis by Ran GTPase. Nat Rev Mol Cell Biol 9: 464–477 PubMed
Clift D, Schuh M (2015) A three‐step MTOC fragmentation mechanism facilitates bipolar spindle assembly in mouse oocytes. Nat Commun 6: 7217 PubMed PMC
Clift D, McEwan WA, Labzin LI, Konieczny V, Mogessie B, James LC, Schuh M (2017) A method for the acute and rapid degradation of endogenous proteins. Cell 171: 1692–1706 e1618 PubMed PMC
Combelles CM, Albertini DF (2001) Microtubule patterning during meiotic maturation in mouse oocytes is determined by cell cycle‐specific sorting and redistribution of gamma‐tubulin. Dev Biol 239: 281–294 PubMed
Courtois A, Solc P, Kitajima TS (2018) Triple‐color live imaging of mouse oocytes. Methods Mol Biol 1818: 89–97 PubMed
Dasso M, Seki T, Azuma Y, Ohba T, Nishimoto T (1994) A mutant form of the Ran/TC4 protein disrupts nuclear function in Xenopus laevis egg extracts by inhibiting the RCC1 protein, a regulator of chromosome condensation. EMBO J 13: 5732–5744 PubMed PMC
Delaval B, Doxsey SJ (2010) Pericentrin in cellular function and disease. J Cell Biol 188: 181–190 PubMed PMC
Dickmanns A, Bischoff FR, Marshallsay C, Luhrmann R, Ponstingl H, Fanning E (1996) The thermolability of nuclear protein import in tsBN2 cells is suppressed by microinjected Ran‐GTP or Ran‐GDP, but not by RanQ69L or RanT24N. J Cell Sci 109(Pt 6): 1449–1457 PubMed
Dumont J, Petri S, Pellegrin F, Terret ME, Bohnsack MT, Rassinier P, Georget V, Kalab P, Gruss OJ, Verlhac MH (2007) A centriole‐ and RanGTP‐independent spindle assembly pathway in meiosis I of vertebrate oocytes. J Cell Biol 176: 295–305 PubMed PMC
Forbes DJ, Travesa A, Nord MS, Bernis C (2015) Nuclear transport factors: global regulation of mitosis. Curr Opin Cell Biol 35: 78–90 PubMed PMC
Freedman BS, Miller KE, Heald R (2010) Xenopus egg extracts increase dynamics of histone H1 on sperm chromatin. PLoS ONE 5: e13111 PubMed PMC
Gorlich D, Seewald MJ, Ribbeck K (2003) Characterization of Ran‐driven cargo transport and the RanGTPase system by kinetic measurements and computer simulation. EMBO J 22: 1088–1100 PubMed PMC
Gruss OJ, Carazo‐Salas RE, Schatz CA, Guarguaglini G, Kast J, Wilm M, Le Bot N, Vernos I, Karsenti E, Mattaj IW (2001) Ran induces spindle assembly by reversing the inhibitory effect of importin alpha on TPX2 activity. Cell 104: 83–93 PubMed
Gruss OJ (2018) Animal female meiosis: the challenges of eliminating centrosomes. Cells 7: E73 PubMed PMC
Hadjantonakis AK, Papaioannou VE (2004) Dynamic in vivo imaging and cell tracking using a histone fluorescent protein fusion in mice. BMC Biotechnol 4: 33 PubMed PMC
Hasegawa K, Ryu SJ, Kalab P (2013) Chromosomal gain promotes formation of a steep RanGTP gradient that drives mitosis in aneuploid cells. J Cell Biol 200: 151–161 PubMed PMC
Holubcova Z, Blayney M, Elder K, Schuh M (2015) Human oocytes. Error‐prone chromosome‐mediated spindle assembly favors chromosome segregation defects in human oocytes. Science 348: 1143–1147 PubMed PMC
Hughes M, Zhang C, Avis JM, Hutchison CJ, Clarke PR (1998) The role of the ran GTPase in nuclear assembly and DNA replication: characterisation of the effects of Ran mutants. J Cell Sci 111(Pt 20): 3017–3026 PubMed
Jakel S, Mingot JM, Schwarzmaier P, Hartmann E, Gorlich D (2002) Importins fulfil a dual function as nuclear import receptors and cytoplasmic chaperones for exposed basic domains. EMBO J 21: 377–386 PubMed PMC
Kaiser SE, Brickner JH, Reilein AR, Fenn TD, Walter P, Brunger AT (2005) Structural basis of FFAT motif‐mediated ER targeting. Structure 13: 1035–1045 PubMed
Kalab P, Weis K, Heald R (2002) Visualization of a Ran‐GTP gradient in interphase and mitotic Xenopus egg extracts. Science 295: 2452–2456 PubMed
Kalab P, Pralle A, Isacoff EY, Heald R, Weis K (2006) Analysis of a RanGTP‐regulated gradient in mitotic somatic cells. Nature 440: 697–701 PubMed
Kalab P, Heald R (2008) The RanGTP gradient ‐ a GPS for the mitotic spindle. J Cell Sci 121: 1577–1586 PubMed PMC
Kalab P, Solc P, Motlik J (2011) The role of RanGTP gradient in vertebrate oocyte maturation. Results Probl Cell Differ 53: 235–267 PubMed
Kitajima TS, Ohsugi M, Ellenberg J (2011) Complete kinetochore tracking reveals error‐prone homologous chromosome biorientation in mammalian oocytes. Cell 146: 568–581 PubMed
Lakowicz JR (2006) Principles of fluorescence spectroscopy. New York, NY: Springer; xxvi, 954 pp.
Liman ER, Tytgat J, Hess P (1992) Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. Neuron 9: 861–871 PubMed
Liu Q, Yu J, Zhuo X, Jiang Q, Zhang C (2010) Pericentrin contains five NESs and an NLS essential for its nucleocytoplasmic trafficking during the cell cycle. Cell Res 20: 948–962 PubMed
Lounsbury KM, Richards SA, Carey KL, Macara IG (1996) Mutations within the Ran/TC4 GTPase. Effects on regulatory factor interactions and subcellular localization. J Biol Chem 271: 32834–32841 PubMed
Lukinavicius G, Reymond L, D'Este E, Masharina A, Gottfert F, Ta H, Guther A, Fournier M, Rizzo S, Waldmann H et al (2014) Fluorogenic probes for live‐cell imaging of the cytoskeleton. Nat Methods 11: 731–733 PubMed
Luksza M, Queguigner I, Verlhac MH, Brunet S (2013) Rebuilding MTOCs upon centriole loss during mouse oogenesis. Dev Biol 382: 48–56 PubMed
Ma W, Baumann C, Viveiros MM (2010) NEDD1 is crucial for meiotic spindle stability and accurate chromosome segregation in mammalian oocytes. Dev Biol 339: 439–450 PubMed
Maresca TJ, Groen AC, Gatlin JC, Ohi R, Mitchison TJ, Salmon ED (2009) Spindle assembly in the absence of a RanGTP gradient requires localized CPC activity. Curr Biol 19: 1210–1215 PubMed PMC
Mayer A, Baran V, Sakakibara Y, Brzakova A, Ferencova I, Motlik J, Kitajima TS, Schultz RM, Solc P (2016) DNA damage response during mouse oocyte maturation. Cell Cycle 15: 546–558 PubMed PMC
Murphy GA, Moore MS, Drivas G, Perez de la Ossa P, Villamarin A, D'Eustachio P, Rush MG (1997) A T42A Ran mutation: differential interactions with effectors and regulators, and defect in nuclear protein import. Mol Biol Cell 8: 2591–2604 PubMed PMC
Nachury MV, Maresca TJ, Salmon WC, Waterman‐Storer CM, Heald R, Weis K (2001) Importin beta is a mitotic target of the small GTPase Ran in spindle assembly. Cell 104: 95–106 PubMed
Neumayer G, Belzil C, Gruss OJ, Nguyen MD (2014) TPX2: of spindle assembly, DNA damage response, and cancer. Cell Mol Life Sci 71: 3027–3047 PubMed PMC
Nguyen AL, Drutovic D, Vazquez BN, El Yakoubi W, Gentilello AS, Malumbres M, Solc P, Schindler K (2018) Genetic Interactions between the aurora kinases reveal new requirements for AURKB and AURKC during oocyte meiosis. Curr Biol 28: 3458–3468 e3455 PubMed PMC
O'Connell CB, Loncarek J, Kalab P, Khodjakov A (2009) Relative contributions of chromatin and kinetochores to mitotic spindle assembly. J Cell Biol 187: 43–51 PubMed PMC
Oh D, Yu CH, Needleman DJ (2016) Spatial organization of the Ran pathway by microtubules in mitosis. Proc Natl Acad Sci USA 113: 8729–8734 PubMed PMC
Palacios I, Weis K, Klebe C, Mattaj IW, Dingwall C (1996) RAN/TC4 mutants identify a common requirement for snRNP and protein import into the nucleus. J Cell Biol 133: 485–494 PubMed PMC
Petry S, Groen AC, Ishihara K, Mitchison TJ, Vale RD (2013) Branching microtubule nucleation in Xenopus egg extracts mediated by augmin and TPX2. Cell 152: 768–777 PubMed PMC
Rapsomaniki MA, Kotsantis P, Symeonidou IE, Giakoumakis NN, Taraviras S, Lygerou Z (2012) easyFRAP: an interactive, easy‐to‐use tool for qualitative and quantitative analysis of FRAP data. Bioinformatics 28: 1800–1801 PubMed
Saskova A, Solc P, Baran V, Kubelka M, Schultz RM, Motlik J (2008) Aurora kinase A controls meiosis I progression in mouse oocytes. Cell Cycle 7: 2368–2376 PubMed PMC
Schatten H, Sun QY (2015) Centrosome and microtubule functions and dysfunctions in meiosis: implications for age‐related infertility and developmental disorders. Reprod Fertil Dev 27: 934–943 PubMed
Schindelin J, Arganda‐Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B et al (2012) Fiji: an open‐source platform for biological‐image analysis. Nat Methods 9: 676–682 PubMed PMC
Schuh M, Ellenberg J (2007) Self‐organization of MTOCs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes. Cell 130: 484–498 PubMed
Sillje HH, Nagel S, Korner R, Nigg EA (2006) HURP is a Ran‐importin beta‐regulated protein that stabilizes kinetochore microtubules in the vicinity of chromosomes. Curr Biol 16: 731–742 PubMed
Simerly C, Manil‐Segalen M, Castro C, Hartnett C, Kong D, Verlhac MH, Loncarek J, Schatten G (2018) Separation and loss of centrioles from primordidal germ cells to mature oocytes in the mouse. Sci Rep 8: 12791 PubMed PMC
Soderholm JF, Bird SL, Kalab P, Sampathkumar Y, Hasegawa K, Uehara‐Bingen M, Weis K, Heald R (2011) Importazole, a small molecule inhibitor of the transport receptor importin‐beta. ACS Chem Biol 6: 700–708 PubMed PMC
Solc P, Baran V, Mayer A, Bohmova T, Panenkova‐Havlova G, Saskova A, Schultz RM, Motlik J (2012) Aurora kinase A drives MTOC biogenesis but does not trigger resumption of meiosis in mouse oocytes matured in vivo . Biol Reprod 87: 85 PubMed PMC
Solc P, Kitajima TS, Yoshida S, Brzakova A, Kaido M, Baran V, Mayer A, Samalova P, Motlik J, Ellenberg J (2015) Multiple requirements of PLK1 during mouse oocyte maturation. PLoS ONE 10: e0116783 PubMed PMC
Stein P, Schindler K (2011) Mouse oocyte microinjection, maturation and ploidy assessment. J Vis Exp 53: e2851 PubMed PMC
Szollosi D, Calarco P, Donahue RP (1972) Absence of centrioles in the first and second meiotic spindles of mouse oocytes. J Cell Sci 11: 521–541 PubMed
Szollosi D, Mandelbaum J, Plachot M, Salat‐Baroux J, Cohen J (1986) Ultrastructure of the human preovulatory oocyte. J In Vitro Fert Embryo Transf 3: 232–242 PubMed
Taylor T, Denson JP, Esposito D (2017) Optimizing expression and solubility of proteins in E. coli using modified media and induction parameters. Methods Mol Biol 1586: 65–82 PubMed
Zhang MS, Arnaoutov A, Dasso M (2014) RanBP1 governs spindle assembly by defining mitotic Ran‐GTP production. Dev Cell 31: 393–404 PubMed PMC
Zhang R, Roostalu J, Surrey T, Nogales E (2017) Structural insight into TPX2‐stimulated microtubule assembly. Elife 6: e30959 PubMed PMC