Spatio-temporal requirements of Aurora kinase A in mouse oocyte meiotic spindle building
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39081293
PubMed Central
PMC11284559
DOI
10.1016/j.isci.2024.110451
PII: S2589-0042(24)01676-6
Knihovny.cz E-zdroje
- Klíčová slova
- cell biology,
- Publikační typ
- časopisecké články MeSH
Meiotic spindles are critical to ensure chromosome segregation during gamete formation. Oocytes lack centrosomes and use alternative microtubule-nucleation mechanisms for spindle building. How these mechanisms are regulated is still unknown. Aurora kinase A (AURKA) is essential for mouse oocyte meiosis because in pro-metaphase I it triggers microtubule organizing-center fragmentation and its expression compensates for the loss of the two other Aurora kinases (AURKB/AURKC). Although knockout mouse models were useful for foundational studies, AURK spatial and temporal functions are not yet resolved. We provide high-resolution analyses of AURKA/AURKC requirements during meiotic spindle-building and identify the subcellular populations that carry out these functions: 1) AURKA is required in early spindle assembly and later for spindle stability, whereas 2) AURKC is required in late pro-metaphase, and 3) Targeted AURKA constructs expressed in triple AURK knockout oocytes reveal that spindle pole-localized AURKA is the most important population controlling spindle building and stability mechanisms.
Department of Cell Biology Faculty of Science Charles University Prague Czech Republic
Department of Genetics Rutgers The State University of New Jersey New Brunswick NJ 08901 USA
Human Genetics Institute of New Jersey Piscataway NJ 08854 USA
The Czech Academy of Sciences Institute of Information Theory and Automation Piscataway NJ 08854 USA
Zobrazit více v PubMed
So C., Menelaou K., Uraji J., Harasimov K., Steyer A.M., Seres K.B., Bucevičius J., Lukinavičius G., Möbius W., Sibold C., et al. Mechanism of spindle pole organization and instability in human oocytes. Science. 2022;375 doi: 10.1126/science.abj3944. PubMed DOI
Schatten H., Sun Q.Y. Centrosome and microtubule functions and dysfunctions in meiosis: implications for age-related infertility and developmental disorders. Reprod. Fertil. Dev. 2015;27:934–943. doi: 10.1071/RD14493. PubMed DOI
Manandhar G., Schatten H., Sutovsky P. Centrosome reduction during gametogenesis and its significance. Biol. Reprod. 2005;72:2–13. doi: 10.1095/biolreprod.104.031245. PubMed DOI
Holubcová Z., Blayney M., Elder K., Schuh M. Human oocytes. Error-prone chromosome-mediated spindle assembly favors chromosome segregation defects in human oocytes. Science (New York, N.Y.) 2015;348:1143–1147. doi: 10.1126/science.aaa9529. PubMed DOI PMC
Schuh M., Ellenberg J. Self-organization of MTOCs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes. Cell. 2007;130:484–498. doi: 10.1016/j.cell.2007.06.025. PubMed DOI
Dumont J., Petri S., Pellegrin F., Terret M.E., Bohnsack M.T., Rassinier P., Georget V., Kalab P., Gruss O.J., Verlhac M.H. A centriole- and RanGTP-independent spindle assembly pathway in meiosis I of vertebrate oocytes. J. Cell Biol. 2007;176:295–305. doi: 10.1083/jcb.200605199. PubMed DOI PMC
Drutovic D., Duan X., Li R., Kalab P., Solc P. RanGTP and importin beta regulate meiosis I spindle assembly and function in mouse oocytes. EMBO J. 2020;39 doi: 10.15252/embj.2019101689. PubMed DOI PMC
Combelles C.M., Albertini D.F. Microtubule patterning during meiotic maturation in mouse oocytes is determined by cell cycle-specific sorting and redistribution of gamma-tubulin. Dev. Biol. 2001;239:281–294. doi: 10.1006/dbio.2001.0444. PubMed DOI
Ma W., Viveiros M.M. Depletion of pericentrin in mouse oocytes disrupts microtubule organizing center function and meiotic spindle organization. Mol. Reprod. Dev. 2014;81:1019–1029. doi: 10.1002/mrd.22422. PubMed DOI PMC
Brunet S., Dumont J., Lee K.W., Kinoshita K., Hikal P., Gruss O.J., Maro B., Verlhac M.H. Meiotic regulation of TPX2 protein levels governs cell cycle progression in mouse oocytes. PLoS One. 2008;3 doi: 10.1371/journal.pone.0003338. PubMed DOI PMC
Megraw T.L., Kaufman T.C. In: Current Topics in Developmental Biology. Palazzo R.E., Schatten G.P., editors. Academic Press; 1999. The centrosome in Drosophila oocyte development; pp. 385–407. PubMed DOI
Clift D., Schuh M. A three-step MTOC fragmentation mechanism facilitates bipolar spindle assembly in mouse oocytes. Nat. Commun. 2015;6:7217. doi: 10.1038/ncomms8217. PubMed DOI PMC
Tyc K.M., El Yakoubi W., Bag A., Landis J., Zhan Y., Treff N.R., Scott R.T., Jr., Tao X., Schindler K., Xing J. Exome sequencing links CEP120 mutation to maternally derived aneuploid conception risk. Hum. Reprod. 2020;35:2134–2148. doi: 10.1093/humrep/deaa148. PubMed DOI PMC
Wu T., Dong J., Fu J., Kuang Y., Chen B., Gu H., Luo Y., Gu R., Zhang M., Li W., et al. The mechanism of acentrosomal spindle assembly in human oocytes. Science. 2022;378 doi: 10.1126/science.abq7361. PubMed DOI
So C., Seres K.B., Steyer A.M., Monnich E., Clift D., Pejkovska A., Mobius W., Schuh M. A liquid-like spindle domain promotes acentrosomal spindle assembly in mammalian oocytes. Science. 2019;364 doi: 10.1126/science.aat9557. PubMed DOI PMC
Shuda K., Schindler K., Ma J., Schultz R.M., Donovan P.J. Aurora kinase B modulates chromosome alignment in mouse oocytes. Mol. Reprod. Dev. 2009;76:1094–1105. doi: 10.1002/mrd.21075. PubMed DOI PMC
Ding J., Swain J.E., Smith G.D. Aurora kinase-A regulates microtubule organizing center (MTOC) localization, chromosome dynamics, and histone-H3 phosphorylation in mouse oocytes. Mol. Reprod. Dev. 2011;78:80–90. doi: 10.1002/mrd.21272. PubMed DOI
Kratka C., Drutovic D., Blengini C.S., Schindler K. Using ZINC08918027 inhibitor to determine Aurora kinase-chromosomal passenger complex isoforms in mouse oocytes. BMC Res. Notes. 2022;15:96. doi: 10.1186/s13104-022-05987-4. PubMed DOI PMC
Balboula A.Z., Nguyen A.L., Gentilello A.S., Quartuccio S.M., Drutovic D., Solc P., Schindler K. Haspin kinase regulates microtubule-organizing center clustering and stability through Aurora kinase C in mouse oocytes. J. Cell Sci. 2016;129:3648–3660. doi: 10.1242/jcs.189340. PubMed DOI PMC
Blengini C.S., Ibrahimian P., Vaskovicova M., Drutovic D., Solc P., Schindler K. Aurora kinase A is essential for meiosis in mouse oocytes. PLoS Genet. 2021;17 doi: 10.1371/journal.pgen.1009327. PubMed DOI PMC
Nguyen A.L., Drutovic D., Vazquez B.N., El Yakoubi W., Gentilello A.S., Malumbres M., Solc P., Schindler K. Genetic Interactions between the Aurora Kinases Reveal New Requirements for AURKB and AURKC during Oocyte Meiosis. Curr. Biol. 2018;28:3458–3468.e5. doi: 10.1016/j.cub.2018.08.052. PubMed DOI PMC
Schindler K., Davydenko O., Fram B., Lampson M.A., Schultz R.M. Maternally recruited Aurora C kinase is more stable than Aurora B to support mouse oocyte maturation and early development. Proc. Natl. Acad. Sci. USA. 2012;109:E2215–E2222. doi: 10.1073/pnas.1120517109. PubMed DOI PMC
Solc P., Baran V., Mayer A., Bohmova T., Panenkova-Havlova G., Saskova A., Schultz R.M., Motlik J. Aurora kinase A drives MTOC biogenesis but does not trigger resumption of meiosis in mouse oocytes matured in vivo. Biol. Reprod. 2012;87:85. doi: 10.1095/biolreprod.112.101014. PubMed DOI PMC
Wang X., Baumann C., De La Fuente R., Viveiros M.M. CEP215 and AURKA regulate spindle pole focusing and aMTOC organization in mouse oocytes. Reproduction. 2020;159:261–274. doi: 10.1530/REP-19-0263. PubMed DOI PMC
Blengini C.S., Ik Jung G., Aboelenain M., Schindler K. A field guide to Aurora kinase inhibitors: an oocyte perspective. Reproduction. 2022;164:V5–V7. doi: 10.1530/rep-22-0292. PubMed DOI PMC
Li S., Deng Z., Fu J., Xu C., Xin G., Wu Z., Luo J., Wang G., Zhang S., Zhang B., et al. Spatial Compartmentalization Specializes the Function of Aurora A and Aurora B. J. Biol. Chem. 2015;290:17546–17558. doi: 10.1074/jbc.M115.652453. PubMed DOI PMC
Wang E., Ballister E.R., Lampson M.A. Aurora B dynamics at centromeres create a diffusion-based phosphorylation gradient. J. Cell Biol. 2011;194:539–549. doi: 10.1083/jcb.201103044. PubMed DOI PMC
Pfisterer M., Robert R., Saul V.V., Pritz A., Seibert M., Feederle R., Schmitz M.L. The Aurora B-controlled PP1/RepoMan complex determines the spatial and temporal distribution of mitotic H2B S6 phosphorylation. Open Biol. 2024;14 doi: 10.1098/rsob.230460. PubMed DOI PMC
Clift D., McEwan W.A., Labzin L.I., Konieczny V., Mogessie B., James L.C., Schuh M. A Method for the Acute and Rapid Degradation of Endogenous Proteins. Cell. 2017;171:1692–1706.e18. doi: 10.1016/j.cell.2017.10.033. PubMed DOI PMC
Baumann C., Wang X., Yang L., Viveiros M.M. Error-prone meiotic division and subfertility in mice with oocyte-conditional knockdown of pericentrin. J. Cell Sci. 2017;130:1251–1262. doi: 10.1242/jcs.196188. PubMed DOI PMC
Wang X., Baumann C., De La Fuente R., Viveiros M.M. Loss of acentriolar MTOCs disrupts spindle pole Aurora A and assembly of the liquid-like meiotic spindle domain in oocytes. J. Cell Sci. 2021;134 doi: 10.1242/jcs.256297. PubMed DOI PMC
Iemura K., Natsume T., Maehara K., Kanemaki M.T., Tanaka K. Chromosome oscillation promotes Aurora A-dependent Hec1 phosphorylation and mitotic fidelity. J. Cell Biol. 2021;220 doi: 10.1083/jcb.202006116. PubMed DOI PMC
Courtois A., Yoshida S., Takenouchi O., Asai K., Kitajima T.S. Stable kinetochore–microtubule attachments restrict MTOC position and spindle elongation in oocytes. EMBO Rep. 2021;22 doi: 10.15252/embr.202051400. PubMed DOI PMC
Grant R., Abdelbaki A., Bertoldi A., Gavilan M.P., Mansfeld J., Glover D.M., Lindon C. Constitutive regulation of mitochondrial morphology by Aurora A kinase depends on a predicted cryptic targeting sequence at the N-terminus. Open Biol. 2018;8 doi: 10.1098/rsob.170272. PubMed DOI PMC
Bertolin G., Bulteau A.L., Alves-Guerra M.C., Burel A., Lavault M.T., Gavard O., Le Bras S., Gagné J.P., Poirier G.G., Le Borgne R., et al. Aurora kinase A localises to mitochondria to control organelle dynamics and energy production. Elife. 2018;7 doi: 10.7554/eLife.38111. PubMed DOI PMC
Richter J.D., Lasko P. Translational control in oocyte development. Cold Spring Harb. Perspect. Biol. 2011;3 doi: 10.1101/cshperspect.a002758. PubMed DOI PMC
Han S.J., Martins J.P.S., Yang Y., Kang M.K., Daldello E.M., Conti M. The Translation of Cyclin B1 and B2 is Differentially Regulated during Mouse Oocyte Reentry into the Meiotic Cell Cycle. Sci. Rep. 2017;7 doi: 10.1038/s41598-017-13688-3. PubMed DOI PMC
Aboelenain M., Schindler K. Aurora kinase B inhibits aurora kinase A to control maternal mRNA translation in mouse oocytes. Development. 2021;148 doi: 10.1242/dev.199560. PubMed DOI PMC
Kunitomi C., Romero M., Daldello E.M., Schindler K., Conti M. Multiple intersecting pathways are involved in the phosphorylation of CPEB1 to activate translation during mouse oocyte meiosis. bioRxiv. 2024 doi: 10.1101/2024.01.17.575938. Preprint at. PubMed DOI PMC
Kitajima T.S., Ohsugi M., Ellenberg J. Complete kinetochore tracking reveals error-prone homologous chromosome biorientation in mammalian oocytes. Cell. 2011;146:568–581. doi: 10.1016/j.cell.2011.07.031. PubMed DOI
Blengini C.S., Schindler K. Immunofluorescence Technique to Detect Subcellular Structures Critical to Oocyte Maturation. Methods Mol. Biol. 2018;1818:67–76. doi: 10.1007/978-1-4939-8603-3_8. PubMed DOI
Wang Z., Wu T., Shi L., Zhang L., Zheng W., Qu J.Y., Niu R., Qi R.Z. Conserved motif of CDK5RAP2 mediates its localization to centrosomes and the Golgi complex. J. Biol. Chem. 2010;285:22658–22665. doi: 10.1074/jbc.M110.105965. PubMed DOI PMC
Ferencova I., Vaskovicova M., Drutovic D., Knoblochova L., Macurek L., Schultz R.M., Solc P. CDC25B is required for the metaphase I-metaphase II transition in mouse oocytes. J. Cell Sci. 2022;135 doi: 10.1242/jcs.252924. PubMed DOI
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Milletari F., Navab N., Ahmadi S.A. Fourth International Conference on 3D Vision; 2016. V-net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation; pp. 565–571.