CO-Induced Dimer Decay Responsible for Gem-Dicarbonyl Formation on a Model Single-Atom Catalyst
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
864628
HORIZON EUROPE European Research Council
F81
Austrian Science Fund
Y 847-N20
Austrian Science Fund
PubMed
38294119
DOI
10.1002/anie.202317347
Knihovny.cz E-zdroje
- Klíčová slova
- Scanning tunneling microscopy, density functional theory, metal-oxide surfaces, single-atom catalysis,
- Publikační typ
- časopisecké články MeSH
The ability to coordinate multiple reactants at the same active site is important for the wide-spread applicability of single-atom catalysis. Model catalysts are ideal to investigate the link between active site geometry and reactant binding, because the structure of single-crystal surfaces can be precisely determined, the adsorbates imaged by scanning tunneling microscopy (STM), and direct comparisons made to density functional theory. In this study, we follow the evolution of Rh1 adatoms and minority Rh2 dimers on Fe3O4(001) during exposure to CO using time-lapse STM at room temperature. CO adsorption at Rh1 sites results exclusively in stable Rh1CO monocarbonyls, because the Rh atom adapts its coordination to create a stable pseudo-square planar environment. Rh1(CO)2 gem-dicarbonyl species are also observed, but these form exclusively through the breakup of Rh2 dimers via an unstable Rh2(CO)3 intermediate. Overall, our results illustrate how minority species invisible to area-averaging spectra can play an important role in catalytic systems, and show that the decomposition of dimers or small clusters can be an avenue to produce reactive, metastable configurations in single-atom catalysis.
Advanced Research Center for Nanolithography 1098XG Amsterdam Netherlands
Central European Institute of Technology Brno University of Technology Brno 612 00 Czechia
Dipartimento di Fisica e Astronomia Università di Bologna Bologna 40127 Italy
Zobrazit více v PubMed
S. K. Kaiser, Z. P. Chen, D. F. Akl, S. Mitchell, J. Perez-Ramirez, Chem. Rev. 2020, 120, 11703–11809;
A. Wang, J. Li, T. Zhang, Nat. Chem. Rev. 2018, 2, 65–81;
X. F. Yang, A. Q. Wang, B. T. Qiao, J. Li, J. Y. Liu, T. Zhang, Accounts Chem Res 2013, 46, 1740–1748.
L. Nie, D. Mei, H. Xiong, B. Peng, Z. Ren, X. I. P. Hernandez, A. DeLaRiva, M. Wang, M. H. Engelhard, L. Kovarik, Science 2017, 358, 1419–1423;
M. Moses-DeBusk, M. Yoon, L. F. Allard, D. R. Mullins, Z. Wu, X. Yang, G. Veith, G. M. Stocks, C. K. Narula, J. Am. Chem. Soc. 2013, 135, 12634–12645.
F. Li, Y. Li, X. C. Zeng, Z. Chen, ACS Catal. 2015, 5, 544–552;
H. Xu, C.-Q. Xu, D. Cheng, J. Li, Catalysis Science, Technology 2017, 7, 5860–5871.
J. Jones, H. Xiong, A. T. DeLaRiva, E. J. Peterson, H. Pham, S. R. Challa, G. Qi, S. Oh, M. H. Wiebenga, X. I. Pereira Hernández, Science 2016, 353, 150–154.
K. Ding, A. Gulec, A. M. Johnson, N. M. Schweitzer, G. D. Stucky, L. D. Marks, P. C. Stair, Science 2015, 350, 189–192;
C. Dessal, T. Len, F. Morfin, J.-L. Rousset, M. Aouine, P. Afanasiev, L. Piccolo, ACS Catal. 2019, 9, 5752–5759.
I. Ro, J. Qi, S. Lee, M. Xu, X. Yan, Z. Xie, G. Zakem, A. Morales, J. G. Chen, X. Pan, Nature 2022, 609, 287–292;
R. Lang, T. Li, D. Matsumura, S. Miao, Y. Ren, Y. T. Cui, Y. Tan, B. Qiao, L. Li, A. Wang, Angew. Chem. Int. Ed. 2016, 55, 16054–16058;
M. G. Farpón, W. Henao, P. N. Plessow, E. Andrés, R. Arenal, C. Marini, G. Agostini, F. Studt, G. Prieto, Angew. Chem. 2023, 135, e202214048;
L. Wang, W. Zhang, S. Wang, Z. Gao, Z. Luo, X. Wang, R. Zeng, A. Li, H. Li, M. Wang, X. Zheng, J. Zhu, W. Zhang, C. Ma, R. Si, J. Zeng, Nat. Commun. 2016, 7, 14036;
J. Amsler, B. B. Sarma, G. Agostini, G. Prieto, P. N. Plessow, F. Studt, J. Am. Chem. Soc. 2020, 142, 5087–5096;
I. Ro, M. Xu, G. W. Graham, X. Pan, P. Christopher, ACS Catal. 2019, 9, 10899–10912.
R. Bliem, E. McDermott, P. Ferstl, M. Setvin, O. Gamba, J. Pavelec, M. Schneider, M. Schmid, U. Diebold, P. Blaha, Science 2014, 346, 1215–1218.
B. Arndt, R. Bliem, O. Gamba, J. E. S. van der Hoeven, H. Noei, U. Diebold, G. S. Parkinson, A. Stierle, Surf. Sci. 2016, 653, 76–81.
J. Hulva, M. Meier, R. Bliem, Z. Jakub, F. Kraushofer, M. Schmid, U. Diebold, C. Franchini, G. S. Parkinson, Science 2021, 371, 375–379;
Z. Jakub, J. Hulva, P. T. Ryan, D. A. Duncan, D. J. Payne, R. Bliem, M. Ulreich, P. Hofegger, F. Kraushofer, M. Meier, Nanoscale 2020, 12, 5866–5875.
R. Bliem, J. Pavelec, O. Gamba, E. McDermott, Z. Wang, S. Gerhold, M. Wagner, J. Osiecki, K. Schulte, M. Schmid, Phys. Rev. B 2015, 92, 075440.
Z. Jakub, J. Hulva, M. Meier, R. Bliem, F. Kraushofer, M. Setvin, M. Schmid, U. Diebold, C. Franchini, G. S. Parkinson, Angew. Chem. Int. Ed. 2019, 58, 13961–13968.
P. Meakin, J. Jesson, C. Tolman, J. Am. Chem. Soc. 1972, 94, 3240–3242;
J. A. Osborn, F. H. Jardine, J. F. Young, G. Wilkinson, J. Chem. Soc. A 1966, 1711–1732.
G. S. Parkinson, Z. Novotny, G. Argentero, M. Schmid, J. Pavelec, R. Kosak, P. Blaha, U. Diebold, Nat. Mater. 2013, 12, 724–728;
M. Meier, J. Hulva, Z. Jakub, F. Kraushofer, M. Bobić, R. Bliem, M. Setvin, M. Schmid, U. Diebold, C. Franchini, Sci. Adv. 2022, 8, eabn4580.
B. Qiao, A. Wang, X. Yang, L. F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, T. Zhang, Nat. Chem. 2011, 3, 634–641;
M. Kottwitz, Y. Li, H. Wang, A. I. Frenkel, R. G. Nuzzo, Chemistry-Methods 2021, 1, 278–294.
Q. L. Chen, C. Dwyer, G. Sheng, C. Z. Zhu, X. N. Li, C. L. Zheng, Y. H. Zhu, Adv. Mater. 2020, 32, 1907619;
X. Tang, J. Ye, L. Guo, T. Pu, L. Cheng, X. M. Cao, Y. Guo, L. Wang, Y. Guo, W. Zhan, Adv. Mater. 2023, 35, 2208504.
H. Yan, Y. Lin, H. Wu, W. H. Zhang, Z. H. Sun, H. Cheng, W. Liu, C. L. Wang, J. J. Li, X. H. Huang, T. Yao, J. L. Yang, S. Q. Wei, J. L. Lu, Nat. Commun. 2017, 8, 1070.
W. Guo, J. Yin, Z. Xu, W. Li, Z. Peng, C. Weststrate, X. Yu, Y. He, Z. Cao, X. Wen, Science 2022, 375, 1188–1191.
A. Datye, Y. Wang, Natl. Sci. Rev. 2018, 5, 630–632.
H. Jeong, G. Lee, B.-S. Kim, J. Bae, J. W. Han, H. Lee, J. Am. Chem. Soc. 2018, 140, 9558–9565;
M. Farnesi Camellone, F. Dvořák, M. Vorokhta, A. Tovt, I. Khalakhan, V. Johánek, T. Skála, I. Matolínová, S. Fabris, J. Mysliveček, ACS Catal. 2022, 12, 4859–4871;
Q. Wan, F. Wei, Y. Wang, F. Wang, L. Zhou, S. Lin, D. Xie, H. Guo, Nanoscale 2018, 10, 17893–17901;
K. Liu, X. Zhao, G. Ren, T. Yang, Y. Ren, A. F. Lee, Y. Su, X. Pan, J. Zhang, Z. Chen, J. Yang, X. Liu, T. Zhou, W. Xi, J. Luo, C. Zeng, H. Matsumoto, W. Liu, Q. Jiang, K. Wilson, A. Wang, B. Qiao, W. Li, T. Zhang, Nat. Commun. 2020, 11, 1263.
Y.-G. Wang, D. C. Cantu, M.-S. Lee, J. Li, V.-A. Glezakou, R. Rousseau, J. Am. Chem. Soc. 2016, 138, 10467–10476.