Prominent Perspective on Existing Biological Hallmarks of Alzheimer's Disease
Jazyk angličtina Země Spojené arabské emiráty Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
38591203
DOI
10.2174/0115680266292514240404040341
PII: CTMC-EPUB-139644
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer’s disease, biomarkers, diagnosis., neurodegenerative diseases, tau protein, β-amyloid peptide,
- MeSH
- Alzheimerova nemoc * farmakoterapie diagnóza metabolismus MeSH
- amyloidní beta-protein metabolismus antagonisté a inhibitory MeSH
- biologické markery * analýza metabolismus MeSH
- lidé MeSH
- proteiny tau metabolismus antagonisté a inhibitory MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- amyloidní beta-protein MeSH
- biologické markery * MeSH
- proteiny tau MeSH
Biomarkers are the most significant diagnosis tools tending towards unique approaches and solutions for the prevention and cure of Alzheimer's Disease (AD). The current report provides a clear perception of the concept of various biomarkers and their prominent features through analysis to provide a possible solution for the inhibition of events in AD. Scientists around the world truly believe that crucial hallmarks can serve as critical tools in the early diagnosis, cure, and prevention, as well as the future of medicine. The awareness and understanding of such biomarkers would provide solutions to the puzzled mechanism of this neuronal disorder. Some of the argued biomarkers in the present article are still in an experimental phase as they need to undergo specific clinical trials before they can be considered for treatment.
Centre of Basic Sciences Pt Ravishankar Shukla University Raipur 492010 India
School of Studies in Chemistry Pt Ravishankar Shukla University Raipur 492010 India
Zobrazit více v PubMed
Kodintsev A.N.; Izmozherova N.V.; Popov A.A.; Volkova L.I.; Antropova I.P.; Ryabinina A.V.; Biochemical platelet markers of cognitive impairments in alzheimer’s disease. Neurochem J 2023,17(1),10-18 DOI
Wang S.; Liu Y.; Zhu A.; Tian Y.; in vivo electrochemical biosensors: Recent advances in molecular design, electrode materials, and electrochemical devices. Anal Chem 2023,95(1),388-406 PubMed DOI
Sharma S.; Singh N.; Exploration of neurodiagnostic biomarkers of alzheimer’s. Rivista Medicine 2021(2),31-33
Li J.; Ni W.; Jin D.; Yu Y.; Xiao M.M.; Zhang Z.Y.; Zhang G.J.; Nanosensor-driven detection of neuron-derived exosomal AΒ with graphene electrolyte-gated transistor for alzheimer’s disease diagnosis. Anal Chem 2023,95(13),5719-5728 PubMed DOI
Sharma S.; Singh N.; Nepovimova E.; Korabecny J.; Kuca K.; Satnami M.L.; Ghosh K.K.; Interaction of synthesized nitrogen enriched graphene quantum dots with novel anti-Alzheimer’s drugs: spectroscopic insights. J Biomol Struct Dyn 2020,38(6),1822-1837 PubMed
Xu L.; Lai L.; Wen Y.; Lin J.; Chen B.; Zhong Y.; Cheng Y.; Zhang X.; Guan J.; Mikulis D.J.; Lin Y.; Yan G.; Wu R.; Angiopep-2, an MRI biomarker, dynamically monitors amyloid deposition in early Alzheimer’s disease. ACS Chem Neurosci 2023,14(2),226-234 PubMed DOI
Sharma S.; Banjare M.K.; Singh N.; Korábečný J.; Kuča K.; Ghosh K.K.; Multi-spectroscopic monitoring of molecular interactions between an amino acid-functionalized ionic liquid and potential anti-Alzheimer’s drugs. RSC Advances 2020,10(64),38873-38883 PubMed DOI
Duan R.; Hong C.G.; Chen M.L.; Wang X.; Pang Z.L.; Xie H.; Liu Z.Z.; Targeting autophagy receptors OPTN and SQSTM1 as a novel therapeutic strategy for osteoporosis complicated with Alzheimer’s disease. Chem Biol Interact 2023,377,110462 PubMed DOI
Leng H.; Yang J.; Long L.; Yan Y.; Shi W.J.; Zhang L.; Yan J.; GFP-based red-emissive fluorescent probes for dual imaging of β-amyloid plaques and mitochondrial viscosity. Bioorg Chem 2023,136,106540 PubMed DOI
Sharma S.; Banjare M.K.; Singh N.; Korábečný J.; Fišar Z.; Kuča K.; Ghosh K.K.; Exploring spectroscopic insights into molecular recognition of potential anti-Alzheimer’s drugs within the hydrophobic pockets of β-cycloamylose. J Mol Liq 2020,311,113269 DOI
Ausó E.; Gómez-Vicente V.; Esquiva G.; Biomarkers for Alzheimer’s disease early diagnosis. J Pers Med 2020,10(3),114 PubMed DOI
Thomas E.A.; Salivary Biomarkers and Neurodegenerative Conditions. Salivary Bioscience: Foundations of Interdisciplinary Saliva Research and Applications 2020,263-286 DOI
Wang M.; Tang G.; Zhou C.; Guo H.; Hu Z.; Hu Q.; Li G.; Revisiting the intersection of microglial activation and neuroinflammation in Alzheimer’s disease from the perspective of ferroptosis. Chem Biol Interact 2023,375,110387 PubMed DOI
Reitz C.; Brayne C.; Mayeux R.; Epidemiology of Alzheimer disease. Nat Rev Neurol 2011,7(3),137-152 PubMed DOI
Yun S.M.; Cho S.J.; Jo C.; Park M.H.; Han C.; Koh Y.H.; Elevation of plasma soluble amyloid precursor protein beta in Alzheimer’s disease. Arch Gerontol Geriatr 2020,87,103995 PubMed DOI
Tang K.; Hynan L.S.; Baskin F.; Rosenberg R.N.; Platelet amyloid precursor protein processing: A bio-marker for Alzheimer’s disease. J Neurol Sci 2006,240(1-2),53-58 PubMed DOI
Perneczky R.; Guo L.H.; Kagerbauer S.M.; Soluble amyloid precursor protein β as blood-based biomarker of Alzheimer's disease. Transl Psychiatry 2013,3(2),e227 DOI
Delaby C.; Hirtz C.; Lehmann S.; Overview of the blood biomarkers in Alzheimer’s disease: Promises and challenges. Rev Neurol 2022 PubMed
Sunderland T.; Mirza N.; Putnam K.T.; Linker G.; Bhupali D.; Durham R.; Soares H.; Kimmel L.; Friedman D.; Bergeson J.; Csako G.; Levy J.A.; Bartko J.J.; Cohen R.M.; Cerebrospinal fluid β-amyloid1–42 and tau in control subjects at risk for Alzheimer’s disease: The effect of APOE ε4 allele. Biol Psychiatry 2004,56(9),670-676 PubMed DOI
Cedazo-Minguez A.; Winblad B.; Biomarkers for Alzheimer’s disease and other forms of dementia: Clinical needs, limitations and future aspects. Exp Gerontol 2010,45(1),5-14 PubMed DOI
Assini A.; Cammarata S.; Vitali A.; Colucci M.; Giliberto L.; Borghi R.; Inglese M.L.; Volpe S.; Ratto S.; Dagna-Bricarelli F.; Baldo C.; Argusti A.; Odetti P.; Piccini A.; Tabaton M.; Plasma levels of amyloid β-protein 42 are increased in women with mild cognitive impairment. Neurology 2004,63(5),828-831 PubMed DOI
Borroni B.; Di Luca M.; Padovani A.; Predicting Alzheimer dementia in mild cognitive impairment patients. Eur J Pharmacol 2006,545(1),73-80 PubMed DOI
Brettschneider S.; Morgenthaler N.G.; Teipel S.J.; Fischer-Schulz C.; Bürger K.; Dodel R.; Du Y.; Möller H.J.; Bergmann A.; Hampel H.; Decreased serum amyloid β1–42 autoantibody levels in Alzheimer’s disease, determined by a newly developed immuno-precipitation assay with radiolabeled amyloid β1–42 peptide. Biol Psychiatry 2005,57(7),813-816 PubMed DOI
Olsson B.; Lautner R.; Andreasson U.; Öhrfelt A.; Portelius E.; Bjerke M.; Hölttä M.; Rosén C.; Olsson C.; Strobel G.; Wu E.; Dakin K.; Petzold M.; Blennow K.; Zetterberg H.; CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol 2016,15(7),673-684 PubMed DOI
Sjögren M.; Vanderstichele H.; Ågren H.; Zachrisson O.; Edsbagge M.; Wikkelsø C.; Skoog I.; Wallin A.; Wahlund L.O.; Marcusson J.; Nägga K.; Andreasen N.; Davidsson P.; Vanmechelen E.; Blennow K.; Tau and Abeta42 in cerebrospinal fluid from healthy adults 21-93 years of age: establishment of reference values. Clin Chem 2001,47(10),1776-1781 PubMed DOI
Hampel H.; Blennow K.; Shaw L.M.; Hoessler Y.C.; Zetterberg H.; Trojanowski J.Q.; Total and phosphorylated tau protein as biological markers of Alzheimer’s disease. Exp Gerontol 2010,45(1),30-40 PubMed DOI
Blennow K.; CSF biomarkers for Alzheimer’s disease: use in early diagnosis and evaluation of drug treatment. Expert Rev Mol Diagn 2005,5(5),661-672 PubMed DOI
Olsson B.; Portelius E.; Cullen N.C.; Sandelius Å.; Zetterberg H.; Andreasson U.; Höglund K.; Irwin D.J.; Grossman M.; Weintraub D.; Chen-Plotkin A.; Wolk D.; McCluskey L.; Elman L.; Shaw L.M.; Toledo J.B.; McBride J.; Hernandez-Con P.; Lee V.M.Y.; Trojanowski J.Q.; Blennow K.; Association of cerebrospinal fluid neurofilament light protein levels with cognition in patients with dementia, motor neuron disease, and movement disorders. JAMA Neurol 2019,76(3),318-325 PubMed DOI
Chaves M.L.; Camozzato A.L.; Ferreira E.D.; Piazenski I.; Kochhann R.; Dall’Igna O.; Mazzini G.S.; Souza D.O.; Portela L.V.; Serum levels of S100B and NSE proteins in Alzheimer’s disease patients. J Neuroinflammation 2010,7(1),6 PubMed DOI
Elahi F.M.; Casaletto K.B.; La Joie R.; Plasma biomarkers of astrocytic and neuronal dysfunction in early-and late-onset Alzheimer’s disease. Alzheimers Dement 2019 PubMed
Hye A.; Kerr F.; Archer N.; Foy C.; Poppe M.; Brown R.; Hamilton G.; Powell J.; Anderton B.; Lovestone S.; Glycogen synthase kinase-3 is increased in white cells early in Alzheimer’s disease. Neurosci Lett 2004,373(1),1-4 PubMed DOI
de Barry J.; Liégeois C.M.; Janoshazi A.; Protein kinase C as a peripheral biomarker for Alzheimer’s disease. Exp Gerontol 2010,45(1),64-69 PubMed DOI
Llorens F.; Thüne K.; Tahir W.; Kanata E.; Diaz-Lucena D.; Xanthopoulos K.; Kovatsi E.; Pleschka C.; Garcia-Esparcia P.; Schmitz M.; Ozbay D.; Correia S.; Correia Â.; Milosevic I.; Andréoletti O.; Fernández-Borges N.; Vorberg I.M.; Glatzel M.; Sklaviadis T.; Torres J.M.; Krasemann S.; Sánchez-Valle R.; Ferrer I.; Zerr I.; YKL-40 in the brain and cerebrospinal fluid of neurodegenerative dementias. Mol Neurodegener 2017,12(1),83 PubMed DOI
Kvartsberg H.; Portelius E.; Andreasson U.; Brinkmalm G.; Hellwig K.; Lelental N.; Kornhuber J.; Hansson O.; Minthon L.; Spitzer P.; Maler J.M.; Zetterberg H.; Blennow K.; Lewczuk P.; Characterization of the postsynaptic protein neurogranin in paired cerebrospinal fluid and plasma samples from Alzheimer’s disease patients and healthy controls. Alzheimers Res Ther 2015,7(1),40 PubMed DOI
Wang G.P.; Khatoon S.; Iqbal K.; Grundke-Iqbal I.; Brain ubiquitin is markedly elevated in Alzheimer disease. Brain Res 1991,566(1-2),146-151 PubMed DOI
Lukens J.N.; Van Deerlin V.; Clark C.M.; Xie S.X.; Johnson F.B.; Comparisons of telomere lengths in peripheral blood and cerebellum in Alzheimer’s disease. Alzheimers Dement 2009,5(6),463-469 PubMed DOI
Hochstrasser T.; Weiss E.; Marksteiner J.; Humpel C.; Soluble cell adhesion molecules in monocytes of Alzheimer’s disease and mild cognitive impairment. Exp Gerontol 2010,45(1),70-74 PubMed DOI
Clarke R.; Smith A.D.; Jobst K.A.; Refsum H.; Sutton L.; Ueland P.M.; Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease. Arch Neurol 1998,55(11),1449-1455 PubMed DOI
Hansson O.; Blennow K.; Zetterberg H.; Dage J.; Blood biomarkers for Alzheimer’s disease in clinical practice and trials. Nature Aging 2023,3(5),506-519 PubMed DOI
Hansson O.; Edelmayer R.M.; Boxer A.L.; Carrillo M.C.; Mielke M.M.; Rabinovici G.D.; Salloway S.; Sperling R.; Zetterberg H.; Teunissen C.E.; The Alzheimer’s Association appropriate use recommendations for blood biomarkers in Alzheimer’s disease. Alzheimers Dement 2022,18(12),2669-2686 PubMed DOI
Garcia-Escobar G.; Manero R.M.; Fernández-Lebrero A.; Ois A.; Navalpotro-Gómez I.; Puente-Periz V.; Contador-Muñana J.; Estragués-Gazquez I.; Puig-Pijoan A.; Jiménez-Balado J.; Blood biomarkers of alzheimer’s disease and cognition: a literature review. Biomolecules 2024,14(1),93 PubMed DOI
Smirnov D.S.; Ashton N.J.; Blennow K.; Zetterberg H.; Simrén J.; Lantero-Rodriguez J.; Karikari T.K.; Hiniker A.; Rissman R.A.; Salmon D.P.; Galasko D.; Plasma biomarkers for Alzheimer’s Disease in relation to neuropathology and cognitive change. Acta Neuropathol 2022,143(4),487-503 PubMed DOI
Johansson C.; Thordardottir S.; Laffita-Mesa J.; Rodriguez-Vieitez E.; Zetterberg H.; Blennow K.; Graff C.; Plasma biomarker profiles in autosomal dominant Alzheimer’s disease. Brain 2023,146(3),1132-1140 PubMed DOI
Álvarez-Sánchez L.; Peña-Bautista C.; Ferré-González L.; Cubas L.; Balaguer A.; Casanova-Estruch B.; Baquero M.; Cháfer-Pericás C.; Early alzheimer’s disease screening approach using plasma biomarkers. Int J Mol Sci 2023,24(18),14151 PubMed DOI
Doecke J.D.; Laws S.M.; Faux N.G.; Wilson W.; Burnham S.C.; Lam C.P.; Mondal A.; Bedo J.; Bush A.I.; Brown B.; De Ruyck K.; Ellis K.A.; Fowler C.; Gupta V.B.; Head R.; Macaulay S.L.; Pertile K.; Rowe C.C.; Rembach A.; Rodrigues M.; Rumble R.; Szoeke C.; Taddei K.; Taddei T.; Trounson B.; Ames D.; Masters C.L.; Martins R.N.; Blood-based protein biomarkers for diagnosis of Alzheimer disease. Arch Neurol Alzheimer’s Disease Neuroimaging Initiative 2012,69(10),1318-1325 PubMed DOI
Palmqvist S.; Janelidze S.; Stomrud E.; Zetterberg H.; Karl J.; Zink K.; Bittner T.; Mattsson N.; Eichenlaub U.; Blennow K.; Hansson O.; Performance of fully automated plasma assays as screening tests for Alzheimer disease–related β-amyloid status. JAMA Neurol 2019,76(9),1060-1069 PubMed DOI
Li Y.; Schindler S.E.; Bollinger J.G.; Ovod V.; Mawuenyega K.G.; Weiner M.W.; Shaw L.M.; Masters C.L.; Fowler C.J.; Trojanowski J.Q.; Korecka M.; Martins R.N.; Janelidze S.; Hansson O.; Bateman R.J.; Validation of plasma amyloid-β 42/40 for detecting Alzheimer disease amyloid plaques. Neurology 2022,98(7),e688-e699 PubMed DOI
Lantero Rodriguez J.; Karikari T.K.; Suárez-Calvet M.; Troakes C.; King A.; Emersic A.; Aarsland D.; Hye A.; Zetterberg H.; Blennow K.; Ashton N.J.; Plasma p-tau181 accurately predicts Alzheimer’s disease pathology at least 8 years prior to post-mortem and improves the clinical characterisation of cognitive decline. Acta Neuropathol 2020,140(3),267-278 PubMed DOI
Ashton N.J.; Pascoal T.A.; Karikari T.K.; Benedet A.L.; Lantero-Rodriguez J.; Brinkmalm G.; Snellman A.; Schöll M.; Troakes C.; Hye A.; Gauthier S.; Vanmechelen E.; Zetterberg H.; Rosa-Neto P.; Blennow K.; Plasma p-tau231: a new biomarker for incipient Alzheimer’s disease pathology. Acta Neuropathol 2021,141(5),709-724 PubMed DOI
Sato C.; Barthélemy N.R.; Mawuenyega K.G.; Patterson B.W.; Gordon B.A.; Jockel-Balsarotti J.; Sullivan M.; Crisp M.J.; Kasten T.; Kirmess K.M.; Kanaan N.M.; Yarasheski K.E.; Baker-Nigh A.; Benzinger T.L.S.; Miller T.M.; Karch C.M.; Bateman R.J.; Tau kinetics in neurons and the human central nervous system. Neuron 2018,97(6),1284-1298.e7 PubMed DOI
Mattsson-Carlgren N.; Janelidze S.; Bateman R.J.; Smith R.; Stomrud E.; Serrano G.E.; Reiman E.M.; Palmqvist S.; Dage J.L.; Beach T.G.; Hansson O.; Soluble P-tau217 reflects amyloid and tau pathology and mediates the association of amyloid with tau. EMBO Mol Med 2021,13(6),e14022 PubMed DOI
Therriault J.; Vermeiren M.; Servaes S.; Tissot C.; Ashton N.J.; Benedet A.L.; Karikari T.K.; Lantero-Rodriguez J.; Brum W.S.; Lussier F.Z.; Bezgin G.; Stevenson J.; Rahmouni N.; Kunach P.; Wang Y.T.; Fernandez-Arias J.; Socualaya K.Q.; Macedo A.C.; Ferrari-Souza J.P.; Ferreira P.C.L.; Bellaver B.; Leffa D.T.; Zimmer E.R.; Vitali P.; Soucy J.P.; Triana-Baltzer G.; Kolb H.C.; Pascoal T.A.; Saha-Chaudhuri P.; Gauthier S.; Zetterberg H.; Blennow K.; Rosa-Neto P.; Association of phosphorylated tau biomarkers with amyloid positron emission tomography vs. tau positron emission tomography. JAMA Neurol 2023,80(2),188-199 PubMed DOI
Ashton N.J.; Brum W.S.; Di Molfetta G.; Benedet A.L.; Arslan B.; Jonaitis E.; Langhough R.E.; Cody K.; Wilson R.; Carlsson C.M.; Vanmechelen E.; Montoliu-Gaya L.; Lantero-Rodriguez J.; Rahmouni N.; Tissot C.; Stevenson J.; Servaes S.; Therriault J.; Pascoal T.; Lleó A.; Alcolea D.; Fortea J.; Rosa-Neto P.; Johnson S.; Jeromin A.; Blennow K.; Zetterberg H.; Diagnostic Accuracy of a Plasma Phosphorylated Tau 217 Immunoassay for Alzheimer Disease Pathology. JAMA Neurol 2024,81(3),255-263 PubMed DOI
Ferreira P.C.L.; Therriault J.; Tissot C.; Ferrari-Souza J.P.; Benedet A.L.; Povala G.; Bellaver B.; Leffa D.T.; Brum W.S.; Lussier F.Z.; Bezgin G.; Servaes S.; Vermeiren M.; Macedo A.C.; Cabrera A.; Stevenson J.; Triana-Baltzer G.; Kolb H.; Rahmouni N.; Klunk W.E.; Lopez O.L.; Villemagne V.L.; Cohen A.; Tudorascu D.L.; Zimmer E.R.; Karikari T.K.; Ashton N.J.; Zetterberg H.; Blennow K.; Gauthier S.; Rosa-Neto P.; Pascoal T.A.; Plasma p-tau231 and p-tau217 inform on tau tangles aggregation in cognitively impaired individuals. Alzheimers Dement 2023,19(10),4463-4474 PubMed DOI
Salvadó G.; Ossenkoppele R.; Ashton N.J.; Beach T.G.; Serrano G.E.; Reiman E.M.; Zetterberg H.; Mattsson-Carlgren N.; Janelidze S.; Blennow K.; Hansson O.; Specific associations between plasma biomarkers and postmortem amyloid plaque and tau tangle loads. EMBO Mol Med 2023,15(5),e17123 PubMed DOI
Lantero-Rodriguez J.; Tissot C.; Snellman A.; Servaes S.; Benedet A.L.; Rahmouni N.; Montoliu-Gaya L.; Therriault J.; Brum W.S.; Stevenson J.; Lussier F.Z.; Bezgin G.; Macedo A.C.; Chamoun M.; Mathotaarachi S.S.; Pascoal T.A.; Ashton N.J.; Zetterberg H.; Neto P.R.; Blennow K.; Plasma and CSF concentrations of N-terminal tau fragments associate with in vivo neurofibrillary tangle burden. Alzheimers Dement 2023,19(12),5343-5354 PubMed DOI
Vrillon A.; Ashton N.J.; Karikari T.K.; Götze K.; Cognat E.; Dumurgier J.; Lilamand M.; Zetterberg H.; Blennow K.; Paquet C.; Comparison of CSF and plasma NfL and pNfH for Alzheimer’s disease diagnosis: a memory clinic study. J Neurol 2023,1-4 PubMed
Arslan B; Zetterberg H; Ashton NJ; Blood-based biomarkers in Alzheimer’s disease–moving towards a new era of diagnostics. Clini Chem Labora Medi (CCLM) 2024 DOI
Lehmann S.; Schraen-Maschke S.; Vidal J.S.; Blanc F.; Paquet C.; Allinquant B.; Bombois S.; Gabelle A.; Delaby C.; Hanon O.; Blood neurofilament levels predict cognitive decline across the alzheimer’s disease continuum. Int J Mol Sci BALTAZAR Study Group 2023,24(24),17361 PubMed DOI
Pereira J.B.; Janelidze S.; Smith R.; Mattsson-Carlgren N.; Palmqvist S.; Teunissen C.E.; Zetterberg H.; Stomrud E.; Ashton N.J.; Blennow K.; Hansson O.; Plasma GFAP is an early marker of amyloid-β but not tau pathology in Alzheimer’s disease. Brain 2021,144(11),3505-3516 PubMed DOI
Cicognola C.; Janelidze S.; Hertze J.; Zetterberg H.; Blennow K.; Mattsson-Carlgren N.; Hansson O.; Plasma glial fibrillary acidic protein detects Alzheimer pathology and predicts future conversion to Alzheimer dementia in patients with mild cognitive impairment. Alzheimers Res Ther 2021,13(1),68 PubMed DOI
Zheng X.; Yang J.; Hou Y.; Shi X.; Liu K.; Prediction of clinical progression in nervous system diseases: plasma glial fibrillary acidic protein (GFAP). Eur J Med Res 2024,29(1),51 PubMed DOI
Fang T.; Dai Y.; Hu X.; Xu Y.; Qiao J.; Evaluation of serum neurofilament light chain and glial fibrillary acidic protein in the diagnosis of Alzheimer’s disease. Front Neurol 2024,15,1320653 PubMed DOI
Schindler S.E.; Atri A.; The role of cerebrospinal fluid and other biomarker modalities in the Alzheimer’s disease diagnostic revolution. Nature Aging 2023,3(5),460-462 PubMed DOI
Watson C.M.; Dammer E.B.; Ping L.; Duong D.M.; Modeste E.; Carter E.K.; Johnson E.C.B.; Levey A.I.; Lah J.J.; Roberts B.R.; Seyfried N.T.; Quantitative mass spectrometry analysis of cerebrospinal fluid protein biomarkers in alzheimer’s disease. Sci Data 2023,10(1),261 PubMed DOI
Li Y.; Chen Z.; Wang Q.; Lv X.; Cheng Z.; Wu Y.; Tang F.; Shen Y.; Gao F.; Identification of hub proteins in cerebrospinal fluid as potential biomarkers of Alzheimer’s disease by integrated bioinformatics. J Neurol 2023,270(3),1487-1500 PubMed DOI
Rocha NP; Teixeira AL; de Souza LC; Fluid-Based Biomarkers of Alzheimer’s Disease. Biomarkers in Neuropsychiatry: A Primer 2023,153-161 DOI
McGettigan S.; Nolan Y.; Ghosh S.; O’Mahony D.; The emerging role of blood biomarkers in diagnosis and treatment of Alzheimer’s disease. Eur Geriatr Med 2023,14(5),913-917 PubMed DOI
Gao P.Y.; Ou Y.N.; Huang Y.M.; Wang Z.B.; Fu Y.; Ma Y.H.; Li Q.Y.; Ma L.Y.; Cui R.P.; Mi Y.C.; Tan L.; Yu J.T.; Associations between liver function and cerebrospinal fluid biomarkers of Alzheimer’s disease pathology in non-demented adults: The CABLE study. J Neurochem 2024,168(1),39-51 PubMed DOI
Trombetta B.A.; Wu C.Y.; Kuo E.; de Geus M.B.; Dodge H.H.; Carlyle B.C.; Kivisäkk P.; Arnold S.E.; Cerebrospinal fluid biomarker profiling of diverse pathophysiological domains in Alzheimer’s disease. Alzheimers Dement 2024,10(1),e12440 PubMed DOI
Mravinacová S.; Alanko V.; Bergström S.; Bridel C.; Pijnenburg Y.; Hagman G.; Kivipelto M.; Teunissen C.; Nilsson P.; Matton A.; Månberg A.; CSF protein ratios with enhanced potential to reflect Alzheimer’s disease pathology and neurodegeneration. Mol Neurodegener 2024,19(1),15 PubMed DOI
Tao Q.Q.; Cai X.; Xue Y.Y.; Ge W.; Yue L.; Li X.Y.; Lin R.R.; Peng G.P.; Jiang W.; Li S.; Zheng K.M.; Jiang B.; Jia J.P.; Guo T.; Wu Z.Y.; Alzheimer’s disease early diagnostic and staging biomarkers revealed by large-scale cerebrospinal fluid and serum proteomic profiling. Innovation 2024,5(1),100544 PubMed DOI
Dakterzada F.; Jové M.; Huerto R.; Carnes A.; Sol J.; Pamplona R.; Piñol-Ripoll G.; Cerebrospinal fluid neutral lipids predict progression from mild cognitive impairment to Alzheimer’s disease. Geroscience 2023,46(1),683-696 PubMed DOI
Bateman R.J.; Xiong C.; Benzinger T.L.S.; Fagan A.M.; Goate A.; Fox N.C.; Marcus D.S.; Cairns N.J.; Xie X.; Blazey T.M.; Holtzman D.M.; Santacruz A.; Buckles V.; Oliver A.; Moulder K.; Aisen P.S.; Ghetti B.; Klunk W.E.; McDade E.; Martins R.N.; Masters C.L.; Mayeux R.; Ringman J.M.; Rossor M.N.; Schofield P.R.; Sperling R.A.; Salloway S.; Morris J.C.; Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med Dominantly Inherited Alzheimer Network 2012,367(9),795-804 PubMed DOI
Mattsson N.; Zetterberg H.; Hansson O.; Andreasen N.; Parnetti L.; Jonsson M.; Herukka S.K.; van der Flier W.M.; Blankenstein M.A.; Ewers M.; Rich K.; Kaiser E.; Verbeek M.; Tsolaki M.; Mulugeta E.; Rosén E.; Aarsland D.; Visser P.J.; Schröder J.; Marcusson J.; de Leon M.; Hampel H.; Scheltens P.; Pirttilä T.; Wallin A.; Jönhagen M.E.; Minthon L.; Winblad B.; Blennow K.; CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA 2009,302(4),385-393 PubMed DOI
Shaw L.M.; Vanderstichele H.; Knapik-Czajka M.; Clark C.M.; Aisen P.S.; Petersen R.C.; Blennow K.; Soares H.; Simon A.; Lewczuk P.; Dean R.; Siemers E.; Potter W.; Lee V.M.Y.; Trojanowski J.Q.; Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann Neurol Alzheimer’s Disease Neuroimaging Initiative 2009,65(4),403-413 PubMed DOI
Hansson O.; Zetterberg H.; Buchhave P.; Londos E.; Blennow K.; Minthon L.; Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol 2006,5(3),228-234 PubMed DOI
Papaliagkas V.; Kalinderi K.; Vareltzis P.; Moraitou D.; Papamitsou T.; Chatzidimitriou M.; CSF Biomarkers in the Early Diagnosis of Mild Cognitive Impairment and Alzheimer’s Disease. Int J Mol Sci 2023,24(10),8976 PubMed DOI
Alexopoulos P.; Werle L.; Roesler J.; Thierjung N.; Gleixner L.S.; Yakushev I.; Laskaris N.; Wagenpfeil S.; Gourzis P.; Kurz A.; Perneczky R.; Conflicting cerebrospinal fluid biomarkers and progression to dementia due to Alzheimer’s disease. Alzheimers Res Ther Alzheimer’s Disease Neuroimaging Initiative (ADNI) 2016,8(1),51 PubMed DOI
Algeciras-Schimnich A.; Bornhorst J.A.; Importance of cerebrospinal fluid (CSF) collection protocol for the accurate diagnosis of Alzheimer’s disease when using CSF biomarkers. Alzheimers Dement 2024,alz.13721 PubMed DOI
Humpel C.; Identifying and validating biomarkers for Alzheimer’s disease. Trends Biotechnol 2011,29(1),26-32 PubMed DOI
Hölttä M.; Hansson O.; Andreasson U.; Hertze J.; Minthon L.; Nägga K.; Andreasen N.; Zetterberg H.; Blennow K.; Evaluating amyloid-β oligomers in cerebrospinal fluid as a biomarker for Alzheimer’s disease. PLoS One 2013,8(6),e66381 PubMed DOI
Guillén N.; Contador J.; Buongiorno M.; Álvarez I.; Culell N.; Alcolea D.; Lleó A.; Fortea J.; Piñol-Ripoll G.; Carnes-Vendrell A.; Lourdes Ispierto M.; Vilas D.; Puig-Pijoan A.; Fernández-Lebrero A.; Balasa M.; Sánchez-Valle R.; Lladó A.; Agreement of cerebrospinal fluid biomarkers and amyloid-PET in a multicenter study. Eur Arch Psychiatry Clin Neurosci 2023,1-0 PubMed DOI
Souza I.D.; Anderson J.L.; Tumas V.; Queiroz M.E.C.; Direct coupling of fiber-in-tube solid-phase microextraction with tandem mass spectrometry to determine amyloid beta peptides as biomarkers for Alzheimer’s disease in cerebrospinal fluid samples. Talanta 2023,254,124186 PubMed DOI
Athaide Rocha K.M.; Machado F.R.; Poetini M.; Giacomeli R.; Boeira S.P.; Jesse C.R.; Gomes de Gomes M.; Assessment of suberoylanilide hydroxamic acid on a Alzheimer’s disease model induced by β-amyloid in aged female mice: Neuromodulatory and epigenetic effect. Chem Biol Interact 2023,375,110429 PubMed DOI
Beyer L.; Stocker H.; Rujescu D.; Holleczek B.; Stockmann J.; Nabers A.; Brenner H.; Gerwert K.; Amyloid-beta misfolding and GFAP predict risk of clinical Alzheimer’s disease diagnosis within 17 years. Alzheimers Dement 2023,19(3),1020-1028 PubMed DOI
Relini A.; Marano N.; Gliozzi A.; Misfolding of amyloidogenic proteins and their interactions with membranes. Biomolecules 2013,4(1),20-55 PubMed DOI
An J.; Kim K.; Lim H.J.; Kim H.Y.; Shin J.; Park I.; Cho I.; Kim H.Y.; Kim S.; McLean C.; Choi K.Y.; Kim Y.; Lee K.H.; Kim J.S.; Early onset diagnosis in Alzheimer’s disease patients via amyloid-β oligomers-sensing probe in cerebrospinal fluid. Nat Commun 2024,15(1),1004 PubMed DOI
Sharma A.; Angnes L.; Sattarahmady N.; Negahdary M.; Heli H.; Electrochemical immunosensors developed for amyloid-beta and Tau proteins, leading biomarkers of alzheimer’s disease. Biosensors 2023,13(7),742 PubMed DOI
Li Z; Fan Z; Zhang Q.; The Associations of Phosphorylated Tau 181 and Tau 231 Levels in Plasma and Cerebrospinal Fluid with Cognitive Function in Alzheimer’s Disease: A Systematic Review and Meta-Analysis. J Alzheimer's Disease 2024,1-20
Hampel H.; Blennow K.; CSF tau and β-amyloid as biomarkers for mild cognitive impairment. Dialogues Clin Neurosci 2004,6(4),379-390 PubMed DOI
Blennow K.; Zetterberg H.; Biomarkers for Alzheimer’s disease: current status and prospects for the future. J Intern Med 2018,284(6),643-663 PubMed DOI
Gonzalez-Ortiz F.; Turton M.; Kac P.R.; Smirnov D.; Premi E.; Ghidoni R.; Benussi L.; Cantoni V.; Saraceno C.; Rivolta J.; Ashton N.J.; Borroni B.; Galasko D.; Harrison P.; Zetterberg H.; Blennow K.; Karikari T.K.; Brain-derived tau: a novel blood-based biomarker for Alzheimer’s disease-type neurodegeneration. Brain 2023,146(3),1152-1165 PubMed DOI
Dang M.; Chen Q.; Zhao X.; Chen K.; Li X.; Zhang J.; Lu J.; Ai L.; Chen Y.; Zhang Z.; Tau as a biomarker of cognitive impairment and neuropsychiatric symptom in Alzheimer’s disease. Hum Brain Mapp 2023,44(2),327-340 PubMed DOI
Lantero-Rodriguez J.; Montoliu-Gaya L.; Benedet A.L.; Vrillon A.; Dumurgier J.; Cognat E.; Brum W.S.; Rahmouni N.; Stevenson J.; Servaes S.; Therriault J.; Becker B.; Brinkmalm G.; Snellman A.; Huber H.; Kvartsberg H.; Ashton N.J.; Zetterberg H.; Paquet C.; Rosa-Neto P.; Blennow K.; CSF p-tau205: a biomarker of tau pathology in Alzheimer’s disease. Acta Neuropathol 2024,147(1),12 PubMed DOI
Braak H.; Del Tredici K.; The pathological process underlying Alzheimer’s disease in individuals under thirty. Acta Neuropathol 2011,121(2),171-181 PubMed DOI
Hasegawa M.; Molecular mechanisms in the pathogenesis of Alzheimer’s disease and tauopathies-prion-like seeded aggregation and phosphorylation. Biomolecules 2016,6(2),24 PubMed DOI
Medina M.; Hernández F.; Avila J.; New features about tau function and dysfunction. Biomolecules 2016,6(2),21 PubMed DOI
Bukar Maina M.; Al-Hilaly Y.; Serpell L.; Bukar Maina M.; Al-Hilaly Y.K.; Serpell L.C.; Nuclear tau and its potential role in Alzheimer’s disease. Biomolecules 2016,6(1),9 PubMed DOI
Harada R.; Okamura N.; Furumoto S.; Tago T.; Yanai K.; Arai H.; Kudo Y.; Characteristics of tau and its ligands in PET imaging. Biomolecules 2016,6(1),7 PubMed DOI
Šimić G.; Babić Leko M.; Wray S.; Harrington C.; Delalle I.; Jovanov-Milošević N.; Bažadona D.; Buée L.; de Silva R.; Di Giovanni G.; Wischik C.; Hof P.; Tau protein hyperphosphorylation and aggregation in Alzheimer’s disease and other tauopathies, and possible neuroprotective strategies. Biomolecules 2016,6(1),6 PubMed DOI
Preische O.; Schultz, S.A.; Apel, A.; Kuhle, J.; Kaeser, S.A.; Barro, C.; Gräber, S.; Kuder-Buletta, E.; LaFougere, C.; Laske, C.; Vöglein, J.; Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer’s disease. Nature Medicine 2016,25(2),277-283 PubMed DOI
Preische O.; Schultz S.A.; Apel A.; Kuhle J.; Kaeser S.A.; Barro C.; Gräber S.; Kuder-Buletta E.; LaFougere C.; Laske C.; Vöglein J.; Levin J.; Masters C.L.; Martins R.; Schofield P.R.; Rossor M.N.; Graff-Radford N.R.; Salloway S.; Ghetti B.; Ringman J.M.; Noble J.M.; Chhatwal J.; Goate A.M.; Benzinger T.L.S.; Morris J.C.; Bateman R.J.; Wang G.; Fagan A.M.; McDade E.M.; Gordon B.A.; Jucker M.; Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer’s disease. Nat Med Dominantly Inherited Alzheimer Network 2019,25(2),277-283 PubMed DOI
Leitão M.J.; Baldeiras I.; Herukka S.K.; Phosphorylated tau/amyloid beta 1-42 ratio in ventricular cerebrospinal fluid reflects outcome in idiopathic normal pressure hydrocephalus. Fluids Barriers CNS 2015,12(1),1-11
Mitra J.; Guerrero E.; Hegde P.; Wang H.; Boldogh I.; Rao K.; Mitra S.; Hegde M.; New perspectives on oxidized genome damage and repair inhibition by pro-oxidant metals in neurological diseases. Biomolecules 2014,4(3),678-703 PubMed DOI
Hane F.; Leonenko Z.; Effect of metals on kinetic pathways of amyloid-β aggregation. Biomolecules 2014,4(1),101-116 PubMed DOI
Olkkonen V.M.; Béaslas O.; Nissilä E.; Oxysterols and their cellular effectors. Biomolecules 2012,2(1),76-103 PubMed DOI
Hroudová J.; Singh N.; Fišar Z.; Mitochondrial dysfunctions in neurodegenerative diseases: relevance to Alzheimer’s disease. BioMed Res Int 2014,2014,1-9 PubMed DOI
Mansour Y.; Blackburn K.; González-González L.O.; Calderon-Garciduenas L.; Kulesza R.J.; Auditory brainstem dysfunction, non-invasive biomarkers for early diagnosis and monitoring of Alzheimer’s disease in young urban residents exposed to air pollution. Am J Alzheimer’s Dis 2019,1-9