Checkpoint Kinase 1 Is a Key Signal Transducer of DNA Damage in the Early Mammalian Cleavage Embryo
Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
VEGA 2/0072/19
Slovak Academy of Sciences
PubMed
37047751
PubMed Central
PMC10095474
DOI
10.3390/ijms24076778
PII: ijms24076778
Knihovny.cz E-resources
- Keywords
- Chk1 kinase, DNA damage, cell cycle checkpoint, cleaving embryo,
- MeSH
- Checkpoint Kinase 1 * metabolism MeSH
- Embryo, Mammalian enzymology MeSH
- Embryonic Development * genetics MeSH
- DNA Damage * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Checkpoint Kinase 1 * MeSH
After fertilization, remodeling of the oocyte and sperm genome is essential for the successful initiation of mitotic activity in the fertilized oocyte and subsequent proliferative activity of the early embryo. Despite the fact that the molecular mechanisms of cell cycle control in early mammalian embryos are in principle comparable to those in somatic cells, there are differences resulting from the specific nature of the gene totipotency of the blastomeres of early cleavage embryos. In this review, we focus on the Chk1 kinase as a key transduction factor in monitoring the integrity of DNA molecules during early embryogenesis.
See more in PubMed
Musson R., Gąsior Ł., Bisogno S., Ptak G.E. DNA damage in preimplantation embryos and gametes: Specification, clinical relevance and repair strategies. Hum. Reprod. Update. 2022;28:376–399. doi: 10.1093/humupd/dmab046. PubMed DOI PMC
Munisha M., Schimenti J.C. Genome maintenance during embryogenesis. DNA Repair. 2021;106:103195. doi: 10.1016/j.dnarep.2021.103195. PubMed DOI
Santos F., Hendrich B., Reik W., Dean W. Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev. Biol. 2002;241:172–182. doi: 10.1006/dbio.2001.0501. PubMed DOI
Pailas A., Niaka K., Zorzompokou C., Marangos P. The DNA Damage Response in Fully Grown Mammalian Oocytes. Cells. 2022;11:798. doi: 10.3390/cells11050798. PubMed DOI PMC
Ladstatter S., Tachibana-Konwalski K. A Surveillance mechanism ensure repair of DNA lesions during zygotic reprogramming. Cell. 2016;167:1774–1787. doi: 10.1016/j.cell.2016.11.009. PubMed DOI PMC
Kort D.H., Chia G., Treff N.R., Tanaka A.J., King T., Vensand L.B. Human embryo commonly form abnormal nuclei during development: A mechanism of DNA damage, embryonic aneuploidy, and developmental arrest. Hum. Reprod. 2016;31:312–313. doi: 10.1093/humrep/dev281. PubMed DOI
Yurttas P., Morency E., Coonrod S.A. Use of proteomics to identify highly abundant maternal factors that drive the egg-to-embryo transition. Reproduction. 2010;139:809–823. doi: 10.1530/REP-09-0538. PubMed DOI
Hörmanseder E., Tischer T., Mayer T.U. Modulation of cell cycle control during oocyte-to-embryo transitions. EMBO J. 2013;32:2191–2203. doi: 10.1038/emboj.2013.164. PubMed DOI PMC
Santos M.A., Teklenburg G., Macklon N.S., Van Opstal D., Schuring-Blom G.H., Krijtenburg P.J., de Vreeden-Elbertse J., Fauser B.C., Baart E.B. The fate of the mosaic embryo: Chromosomal constitution and development of day 4, 5 and 8 human embryos. Hum. Reprod. 2010;25:1916–1926. doi: 10.1093/humrep/deq139. PubMed DOI
Mertzanidou A., Wilton L., Cheng J., Spits C., Vanneste E., Moreau Y., Vermeesch J.R., Sermon K. Microarray analysis reveals abnormal chromosomal complements in over 70% of 14 normally developing human embryos. Hum. Reprod. 2013;28:256–264. doi: 10.1093/humrep/des362. PubMed DOI
Mu X.F., Jin X.L., Farnham M.M.J., Li Y., O’Neil C. DNA damage-sensing kinases mediate the mouse 2-cell embryo’s response to genotoxic stress. Biol. Reprod. 2011;85:524–535. doi: 10.1095/biolreprod.110.089334. PubMed DOI
Pacchierotti F., Ranaldi R., Derijck A.A., Heijden G.V.D., Boer P.D. In vivo repair of DNA damage induced by X-rays in the early stages of mouse fertilization, and the influence of maternal PARP1 ablation. Mutat. Res. 2011;714:44–52. doi: 10.1016/j.mrfmmm.2011.06.010. PubMed DOI
Ahmadi A., Ng S.C. Fertilizing ability of DNA-damaged spermatozoa. J. Exp. Zool. 1999;284:696–704. doi: 10.1002/(SICI)1097-010X(19991101)284:6<696::AID-JEZ11>3.0.CO;2-E. PubMed DOI
Fatehi A.N., Bevers M.M., Schoevers E., Roelen B.A.J., Colenbrander B., Gadella B.M. DNA damage in bovine sperm does not block fertilization and early embryonic development but induces apoptosis after the first cleavages. J. Androl. 2006;27:176–188. doi: 10.2164/jandrol.04152. PubMed DOI
Sedó C.A., Bilinski M., Lorenzi D., Uriondo H., Noblía F., Longobucco V., Lagar E.V., Nodar F. Effect of sperm DNA fragmentation on embryo development: Clinical and biological aspects. J. Bras. Assist. Reprod. 2017;21:343–350. doi: 10.5935/1518-0557.20170061. PubMed DOI PMC
Wossidlo M., Arand J., Sebastiano V., Leikhov K., Boiani M., Reihardt R., Scholler H., Walter J. Dynamic link od DNA demethylation, DNA strand breaks and repair in mouse zygotes. EMBO J. 2010;29:1877–1888. doi: 10.1038/emboj.2010.80. PubMed DOI PMC
House N.C.M., Koch M.R., Freudenreich C.H. Chromatin modification and DNA repair beyond double-strand breaks. Front. Genet. 2014;5:296. doi: 10.3389/fgene.2014.00296. PubMed DOI PMC
Derijck A.H.A., van der Heijden G.W., Giele M., Philippens M.E.P., van Bavel C.A.W., de Boer P. γH2AX signalling during sperm chromatin remodelling in the mouse zygote. DNA Repair. 2006;5:959–971. doi: 10.1016/j.dnarep.2006.05.043. PubMed DOI
Carbone M.C., Tatone C., Delle Monache S., Marci R., Caserta D., Colonna R., Amicarelli F. Antioxidant enzymatic defences in human follicular fluid: Characterization and age-dependent changes. Mol. Hum. Reprod. 2003;9:639–643. doi: 10.1093/molehr/gag090. PubMed DOI
Burton G.J., Hempstock J., Jauniaux E. Oxygen, early embryonic metabolism and free radical-mediated embryopathies. Reprod. Biomed. Online. 2003;6:84–96. doi: 10.1016/S1472-6483(10)62060-3. PubMed DOI
Luddi A., Capaldo A., Focarelli R., Gori M., Morgante G., Piomboni P., de Leo V. Antioxidants reduce oxidative stress in follicular fluid of aged women undergoing IVF. Reprod. Biol. Endocrinol. 2016;14:57. doi: 10.1186/s12958-016-0184-7. PubMed DOI PMC
Huber S., Fieder M. Evidence for a maximum “shelf-life” of oocytes in mammals suggests that human menopause may be an implication of meiotic arrest. Sci. Rep. 2018;8:140099. doi: 10.1038/s41598-018-32502-2. PubMed DOI PMC
Yamauchi Y., Riel J.M., Ward M.A. Paternal DNA damage resulting from various sperm treatments persists after fertilization and is similar before and after DNA replication. J. Androl. 2012;33:229–238. doi: 10.2164/jandrol.111.013532. PubMed DOI PMC
Fernandez-Diez C., Gonzalez-Rojo S., Montfort J., Le Cam A., Bobe J., Robles V., Perez-Cerezales S., Herraez M.P. Inhibition of zygotic DNA repair: Transcriptome analysis of the offspring in trout (Oncorhynchus mykiss) Reproduction. 2015;149:101–111. doi: 10.1530/REP-14-0382. PubMed DOI
Ren X., Chen X., Wang Z., Wang D. Is transcription in sperm stationary or dynamic? J. Reprod. Dev. 2017;63:439–443. doi: 10.1262/jrd.2016-093. PubMed DOI PMC
Martin J.H., Aitken R.J., Bromfield E.G., Nixon B. DNA damage and repair in the female germline: Contributions to ART. Hum. Reprod. Update. 2019;25:180–201. doi: 10.1093/humupd/dmy040. PubMed DOI
Garcıa-Rodríguez A., Gosálvez J., Agarwal A., Roy R., Johnston S. DNA damage and repair in human reproductive cells. Int. J. Mol. Sci. 2019;20:31. doi: 10.3390/ijms20010031. PubMed DOI PMC
Khokhlova E.V., Fesenko Z.S., Sopova J.V., Leonova E.I. Features of DNA repair in the early stages of mammalian embryonic development. Genes. 2020;11:1138. doi: 10.3390/genes11101138. PubMed DOI PMC
Aitken R.J. Role of sperm DNA damage in creating de-novo mutations in human offspring: The ‘post-meiotic oocyte collusion’ hypothesis. RBMO. 2022;45:109–124. doi: 10.1016/j.rbmo.2022.03.012. PubMed DOI
Byrne A.T., Southgate J., Brison D.R., Leese H.J. Analysis of apoptosis in the preimplantation bovine embryo using TUNEL. J. Reprod. Fertil. 1999;117:97–105. doi: 10.1530/jrf.0.1170097. PubMed DOI
Dumoulin J.C., Coonen E., Bras M., van Wissen L.C., Ignoul-Vanvuchelen R., Bergers- Jansen J.M., Derhaag J., Geraedts J.P., Evers J. Comparison of in-vitro development of embryos originating from either conventional in-vitro fertilization or intracytoplasmic sperm injection. Hum. Reprod. 2000;15:402–409. doi: 10.1093/humrep/15.2.402. PubMed DOI
Shukla V., Høffding M.K., Hoffmann E.R. Genome diversity and instability in human germ cells and preimplantation embryos. Semin. Cell Dev. Biol. 2021;113:132–147. doi: 10.1016/j.semcdb.2020.12.007. PubMed DOI PMC
Girardi L., Serdarogullari M., Patassini C., Poli M., Fabiani M., Caroselli S., Coban O., Findikli N., Boynukalin F.K., Bahceci M., et al. Incidence, origin, and predictive model for the detection and clinical management of segmental aneuploidies in human embryos. Am. J. Hum. Genet. 2020;106:525–534. doi: 10.1016/j.ajhg.2020.03.005. PubMed DOI PMC
Mayer A., Baran V., Sakakibara Y., Brzakova A., Ferencova I., Motlik J., Kitajima T.S., Schultz R.M., Solc P. DNA damage response during mouse oocyte maturation. Cell Cycle. 2016;15:546–558. doi: 10.1080/15384101.2015.1128592. PubMed DOI PMC
Baran V., Pisko J. Cleavage of early mouse embryo with damaged DNA. Inter. J. Mol. Sci. 2022;23:3516. doi: 10.3390/ijms23073516. PubMed DOI PMC
Gawecka J.E., Marh J., Ortega M., Yamauchi Y., Ward M.A., Ward W.S. Mouse zygotes respond sperm DNA damage by delaying paternal DNA replication and embryonic development. PLoS ONE. 2013;8:e56385. doi: 10.1371/journal.pone.0056385. PubMed DOI PMC
Barton T.S., Robaire B., Hales B.F. DNA damage recognition in rat zygote following chronic paternal cyclophospamide exposure. Toxicol. Sci. 2007;100:492–503. doi: 10.1093/toxsci/kfm242. PubMed DOI
Colaco S., Sakkas D. Paternal factors contributing to embryo quality. J. Assist. Reprod. Genet. 2018;35:1953–1968. doi: 10.1007/s10815-018-1304-4. PubMed DOI PMC
Ma J.Y., Ou-Yang Y.C., Wang Z.W., Wang Z.B., Jing Z.Z., Luo S.H., Hou Y., Liu Y.H., Schatten H., Sun Q.Y. The effect of DNA double-strand breaks on mouse oocyte meiotic maturation. Cell Cycle. 2013;12:1233–1241. doi: 10.4161/cc.24311. PubMed DOI PMC
Marangos P., Carroll J. Oocytes progress beyond prophase in the presence DNA damage. Curr. Biol. 2012;22:989–994. doi: 10.1016/j.cub.2012.03.063. PubMed DOI
Menezo Y., Dale B., Cohen M. DNA damage and repair in human oocyte and embryos: A review. Zygote. 2010;18:357–365. doi: 10.1017/S0967199410000286. PubMed DOI
Bazrgar M., Gourabi H., Yazdi P.E., Vazirinasab H., Fakhri M., Hassani F., Valojerdi M.R. DNA repair signalling pathway genes are overexpressed in poor-quality pre-implantation human embryos with complex aneuploidy. Eur. J. Obs. Gynecol. Reprod. Biol. 2014;175:152–156. doi: 10.1016/j.ejogrb.2014.01.010. PubMed DOI
Palmer N., Kaldis P. Regulation of the embryonic cell cycle during mammalian preimplantation development. Curr. Top. Dev. Biol. 2016;120:2–53. doi: 10.1016/bs.ctdb.2016.05.001. PubMed DOI
Shaltiel I.A., Krenning L., Bruinsma W., Medema R.H. The same, only different—DNA damage checkpoints and their reversal throughout the cell cycle. J. Cell Sci. 2015;128:607–620. doi: 10.1242/jcs.163766. PubMed DOI
Wang W.H., Sun Q.Y. Meiotic spindle, spindle checkpoint and embryonic aneuploidy. Front. Biosci. 2016;11:620–636. doi: 10.2741/1822. PubMed DOI
Ford E., Currie C.E., Taylor D.M., Erent M., Marston A.L., Hartshorne G.M., McAinsh A.D. The First Mitotic Division of the Human Embryo Is Highly Error-Prone. bioRxiv. 2020:1–13. doi: 10.1101/2020.07.17.208744. PubMed DOI PMC
Cavazza T., Takeda Y., Politi A.Z., Aushev M., Aldag P., Baker C., Choudhary M., Bucevičius J., Lukinavičius G., Elder K., et al. Parental Genome Unification Is Highly Error-Prone in Mammalian Embryos. Cell. 2021;184:2860–2877.e22. doi: 10.1016/j.cell.2021.04.013. PubMed DOI PMC
Palmerola K.L., Amrane S., Angeles A.D.L., Xu S., Wang N., Pinho J., Zuccaro M.V., Taglialatela A., Massey D.J., Turocy J., et al. Replication Stress Impairs Chromosome Segregation and Preimplantation Development in Human Embryos. Cell. 2022;185:2988–3007.e20. doi: 10.1016/j.cell.2022.06.028. PubMed DOI
Svoboda P. Mammalian zygotic genome activation. Semin. Cell Dev. Biol. 2018;84:18–126. doi: 10.1016/j.semcdb.2017.12.006. PubMed DOI
Yukawa M., Oda S., Mitani H., Nagata M., Aoki F. Deficiency in response to DNA double-strand breaks in mouse early preimplantation embryos. Biochem. Biophys. Res. Commun. 2007;358:578–584. doi: 10.1016/j.bbrc.2007.04.162. PubMed DOI
Marchetti F., Bishop J.B., Lowe X., Generoso W.M., Hozier J., Wyrobek A.J. Etoposide induces heritable chromosomal aberration and aneuploidy during male meiosis in mouse. Proc. Natl. Acad. Sci. USA. 2001;98:3953–3957. doi: 10.1073/pnas.061404598. PubMed DOI PMC
Carson S.A., Kallen A.N. Diagnosis and Management of Infertility: A Review. JAMA. 2021;326:65–76. doi: 10.1001/jama.2021.4788. PubMed DOI PMC
Gruhn J.R., Hoffman E.R. Errors of the Egg: The Establishment and Progression of Human Aneuploidy Research in the Maternal Germline. Annu. Rev. Genet. 2022;56:369–390. doi: 10.1146/annurev-genet-072820-033609. PubMed DOI
Middelkamp S., van Tol H.T.A., Spierings D.C.J., Boymans S., Guryev V., Roelen B.J.A., Lansdorp P.M., Cuppen E., Kuijk E.W. Sperm DNA damage causes genomic instability in early embryonic development. Sci. Adv. 2020;6:eaaz7602. doi: 10.1126/sciadv.aaz7602. PubMed DOI PMC
Ribas-Maynou J., Novo S., Torres T., Salas-Huetos A., Rovira S., Antich M., Yeste M. Sperm DNA integrity does play a crucial role for embryo development after ICSI, notably when good-quality oocytes from young donors are used. Biol. Res. 2022;55:41. doi: 10.1186/s40659-022-00409-y. PubMed DOI PMC
Capalbo A., Poli M., Rienzi L., Girardi L., Patassini C., Fabiani M., Cimadomo D., Benini F., Farcomeni A., Cuzzi J., et al. Mosaic Human Preimplantation Embryos and Their Developmental Potential in a Prospective, Non-Selection Clinical Trial. Am. J. Hum. Genet. 2021;108:2238–2247. doi: 10.1016/j.ajhg.2021.11.002. PubMed DOI PMC
Manic G., Obrist F., Sistigu A., Vitale I. Trial watch: Targeting ATM-CHK2 and ATR-CHK1 pathways for anticancer therapy. Mol. Cell. Oncol. 2015;2:e1012976. doi: 10.1080/23723556.2015.1012976. PubMed DOI PMC
Weber A.M., Ryan A.J. ATM and ATR as therapeutic targets in cancer. Pharmacol. Ther. 2015;149((Suppl. SC)):124–138. doi: 10.1016/j.pharmthera.2014.12.001. PubMed DOI
Simoneau A., Zou L. An extending ATR–CHK1 circuitry: The replication stress response and beyond. Curr. Opin. Genet. Dev. 2021;71:92–98. doi: 10.1016/j.gde.2021.07.003. PubMed DOI
Muralidharan S.V., Nilsson L.M., Lindberg M.F., Nilsson J.A. Small Molecule Inhibitors and a Kinase-Dead Expressing Mouse Model Demonstrate That the Kinase Activity of Chk1 Is Essential for Mouse Embryos and Cancer Cells. Life Sci. Alliance. 2020;3:e202000671. doi: 10.26508/lsa.202000671. PubMed DOI PMC
Qiu Z., Oleinick N.L., Zhang J. ATR/CHK1 inhibitors and cancer therapy. Radiother. Oncol. 2018;126:450–464. doi: 10.1016/j.radonc.2017.09.043. PubMed DOI PMC
Takai H., Tominaga K., Motoyama N., Minamishima Y.A., Nagahama H., Tsukiyama T., Ikeda K., Nakayama K., Nakanishi M., Nakayama K.-I. Aberrant cell cycle checkpoint function and early embryonic death in Chk1(−/−) mice. Genes Dev. 2000;14:1439–1447. doi: 10.1101/gad.14.12.1439. PubMed DOI PMC
Takai H., Naka K., Okada Y., Watanabe M., Harada N., Saito S., Anderson C.W., Appella E., Nakanishi M., Suzuki H., et al. Chk2-deficient mice exhibit radioresistance and defective p53-mediated transcription. EMBO J. 2002;21:5195–5205. doi: 10.1093/emboj/cdf506. PubMed DOI PMC
Sidi S., Sanda T., Kennedy R.D., Hagen A.T., Jette C.A., Hoffmans R., Pascual J., Imamura S., Kishi S., Amatruda J.F., et al. Chk1 suppresses a caspase-2 apoptotic response to DNA damage that bypasses p53, Bcl-2, and caspase-3. Cell. 2008;133:864–877. doi: 10.1016/j.cell.2008.03.037. PubMed DOI PMC
Smits V.A.J., Gillespie D.A. DNA damage control: Regulation and functions of checkpoint kinase 1. FEBS J. 2015;282:3681–3692. doi: 10.1111/febs.13387. PubMed DOI
Li J., Cui P., Sun Q., Du Z., Chen Z., Li Z., Liu C., Cao Y., Yang Z., Liu R., et al. PSPC1 regulates CHK1 phosphorylation through phase separation and participates in mouse oocyte maturation. Acta Biochim. Biophys. Sin. 2021;53:1527–1537. doi: 10.1093/abbs/gmab123. PubMed DOI
Michelena J., Gatti M., Teloni F., Imhof R., Altmeyer M. Basal CHK1 activity safeguards its stability to maintain intrinsic S-phase checkpoint functions. J. Cell Biol. 2019;218:2865–2875. doi: 10.1083/jcb.201902085. PubMed DOI PMC
Chen L., Chao S.B., Wang Z.B., Qi S.T., Zhu X.L., Yang S.W., Yang C.R., Zhang Q.H., Ouyang Y.C., Hou Y., et al. Checkpoint kinase 1 is essential for meiotic cell cycle regulation in mouse oocytes. Cell Cycle. 2012;11:1948–1955. doi: 10.4161/cc.20279. PubMed DOI
Dai X.X., Duan X., Liu H.L., Cui X.S., Kim N.H., Sun S.C. Chk2 regulates cell cycle progression during mouse oocyte maturation and early embryo development. Mol. Cell. 2014;37:126. doi: 10.14348/molcells.2014.2259. PubMed DOI PMC
Stringer J.M., Winship A., Liew S.H., Hutt K. The capacity of oocytes for DNA repair. Cell. Mol. Life Sci. 2018;75:2777–2792. doi: 10.1007/s00018-018-2833-9. PubMed DOI PMC
Zhang M., Kothari P., Mullins M., Lampson M.A. Regulation of zygotic genome activation and DNA damage checkpoint acquisition at the mid-blastula transition. Cell Cycle. 2014;13:3828–3838. doi: 10.4161/15384101.2014.967066. PubMed DOI PMC
Martinez-Marchal A., Huang Y., Guillot-Ferriols M.T., Ferrer-RodaI M., Guixe A., Garcia-Caldes M., Roig I. The DNA damage response is required for oocyte cyst breakdown and follicle formation in mice. PLOS Genet. 2020;16:e1009067. doi: 10.1371/journal.pgen.1009067. PubMed DOI PMC
Remillard-Labrosse G., Dean N.L., Allais A., Mihajlovic A.I., Jin S.G., Son W.Y., Chung J.T., Pansera M., Henderson S., Mahfoudh A., et al. Human oocytes harboring damaged DNA can complete meiosis I. Fertil. Steril. 2020;113:1080–1089. doi: 10.1016/j.fertnstert.2019.12.029. PubMed DOI
Rinaldi V.D., Bolcun-Filas E., Kogo H., Kurahashi H., Schimenti J.C. The DNA damage checkpoint eliminates mouse oocytes with chromosome synapsis failure. Mol. Cell. 2017;67:1026–1036. doi: 10.1016/j.molcel.2017.07.027. PubMed DOI PMC
Smith H.L., Southgate H., Tweddle D.A., Curtin N.J. DNA damage checkpoint kinases in cancer. Expert Rev. Mol. Med. 2020;22:e2. doi: 10.1017/erm.2020.3. PubMed DOI
Rinaldi V.D., Bloom J.C., Schimenti J.C. Oocyte Elimination Through DNA Damage Signaling from CHK1/CHK2 to p53 and p63. Genetics. 2020;215:373–378. doi: 10.1534/genetics.120.303182. PubMed DOI PMC
Gillespie D.A. When more is less: Heritable gain-of-function chk1 mutations impair human fertility. FEBS J. 2022:1–6. doi: 10.1111/febs.16415. PubMed DOI
Crncec A., Hochegger H. Triggering mitosis. FEBS Lett. 2019;593:2868–2888. doi: 10.1002/1873-3468.13635. PubMed DOI
Ju J.Q., Li X.H., Pan M.H., Xu Y., Sun M.H., Xu Y., Sun S.C. CHK1 monitors spindle assembly checkpoint and DNA damage repair during the first cleavage of mouse early embryos. Cell Prolif. 2020;53:e12895. doi: 10.1111/cpr.12895. PubMed DOI PMC
Iyer D.R., Rhind N. The Intra-S Checkpoint Responses to DNA Damage. Genes. 2017;8:74. doi: 10.3390/genes8020074. PubMed DOI PMC
Kermi E., Lo Furno D. Maiorano. Regulation of DNA replication in early embryonic cleavages. Genes. 2017;8:42. doi: 10.3390/genes8010042. PubMed DOI PMC
Gómez-González B., Aguilera A. Transcription-mediated replication hindrance: A major driver of genome instability. Genes Dev. 2019;33:1008–1026. doi: 10.1101/gad.324517.119. PubMed DOI PMC
Gnan S., Liu Y., Spagnuolo M., Chen C.L. The Impact of Transcription-mediated Replication Stress on Genome Instability and Human Disease. Genome Instab. Dis. 2020;1:207–234. doi: 10.1007/s42764-020-00021-y. DOI
Jackson S.P., Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461:1071–1078. doi: 10.1038/nature08467. PubMed DOI PMC
Niida H., Nakanishi M. DNA damage checkpoints in mammals. Mutagenesis. 2006;21:3–9. doi: 10.1093/mutage/gei063. PubMed DOI
Sancar A., Lindsey-Boltz L.A., Unsal-Kacmaz K., Linn S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 2004;73:39–85. doi: 10.1146/annurev.biochem.73.011303.073723. PubMed DOI
Goto H., Natsume T., Kanemaki M.T., Kaito A., Wang S., Gabazza E.C., Inagaki M., Mizoguchi A. Chk1-mediated Cdc25A degradation as a critical mechanism for normal cell cycle progression. J. Cell Sci. 2019;132:jcs223123. doi: 10.1242/jcs.223123. PubMed DOI
Sur S., Agrawal D.K. Phosphatases and kinases regulating CDC25 activity in the cell cycle: Clinical implications of CDC25 overexpression and potential treatment strategies. Mol. Cell. Biochem. 2016;416:33–46. doi: 10.1007/s11010-016-2693-2. PubMed DOI PMC
Saldivar J., Cortez D., Cimprich K.A. The essential kinase ATR: Ensuring faithful duplication of a challenging genome. Nat. Rev. Mol. Cell Biol. 2017;18:622–636. doi: 10.1038/nrm.2017.67. PubMed DOI PMC
Branigan T.B., Kozono D., Schade A.E., Deraska P., Rivas H.G., Sambel L., Reavis H.D., Shapiro G.I., D’Andrea A.D., DeCaprio J.A. MMB-FOXM1-Driven Premature Mitosis Is Required for CHK1 Inhibitor Sensitivity. Cell Rep. 2021;34:108808. doi: 10.1016/j.celrep.2021.108808. PubMed DOI PMC
Lam M.H., Liu Q., Elledge S.J., Rosen J.M. Chk1 Is Haploinsufficient for MultipleFunctions Critical to Tumor Suppression. Cancer Cell. 2004;6:45–59. doi: 10.1016/j.ccr.2004.06.015. PubMed DOI
Zonderland G., Vanzo R., Amitash S., Martín-Doncel E., Coscia F., Mund A., Lerdrup M., Benada J., Boos D., Toledo L. The TRESLIN-MTBP Complex Couples Completion of DNA Replication with S/G2 Transition. Mol. Cell. 2022;82:3350–3365.e7. doi: 10.1016/j.molcel.2022.08.006. PubMed DOI PMC
Mocanu C., Karanika K., Fernández-Casañas M., Herbert A., Olukoga T., Özgürses M.E., Chan K.L. DNA replication is highly resilient and persistent under the challenge of mild replication stress. Cell Rep. 2022;39:110701. doi: 10.1016/j.celrep.2022.110701. PubMed DOI PMC
Peng B., Shi R., Bian J., Li Y., Wang P., Wang H., Liao J., Zhu W.G., Xu X. PARP1 and CHK1 coordinate PLK1 enzymatic activity during the DNA damage response to promote homologous recombination-mediated repair. Nucleic Acids Res. 2021;49:7554–7570. doi: 10.1093/nar/gkab584. PubMed DOI PMC
Lebrec V., Poteau M., Morretton J.P., Gavet O. Chk1 dynamics in G2 phase upon replication stress predict daughter cell outcome. Dev. Cell. 2022;57:638–653. doi: 10.1016/j.devcel.2022.02.013. PubMed DOI
Solc P., Schultz R.M., Motlik J. Prophase I arrest and progression to metaphase I in mouse oocytes: Comparison of resumption of meiosis and recovery from G2-arrest in somatic cells. Mol. Hum. Reprod. 2010;16:654–664. doi: 10.1093/molehr/gaq034. PubMed DOI PMC
Neizer-Ashun F., Bhattacharya R. Reality CHEK: Understanding the biology and clinical potential of CHK1. Cancer Lett. 2021;497:202–211. doi: 10.1016/j.canlet.2020.09.016. PubMed DOI
Zhang H., Chen T., Wu K., Hou Z., Zhao S., Zhang C., Gao Y., Gao M., Chen Z.J. Dominant mutations in CHK1 cause pronuclear fusion failure and zygote arrest that can be rescued by CHK1 inhibitor. Cell Res. 2021;31:814–817. doi: 10.1038/s41422-021-00507-8. PubMed DOI PMC
Chen B., Guo J., Wang T., Lee Q., Ming J., Ding F., Li H., Zhang Z., Li L., Cao Y., et al. Maternal heterozygous mutation in CHEK1 leads to mitotic arrest in human zygotes. Protein Cell. 2022;13:148–154. doi: 10.1007/s13238-021-00844-9. PubMed DOI PMC
Musacchio A., Salmon E.D. The spindle-assembly checkpoint in space and time. Nat. Rev. Mol. Cell Biol. 2007;8:379–393. doi: 10.1038/nrm2163. PubMed DOI
Wei Y., Multi S., Yang C.R., Ma J., Zhang Q.H., Wang Z.B., Li M., Wei L., Ge Z.-J., Zhang C.-H., et al. Spindle assembly checkpoint regulates mitotic cell cycle progression during preimplantation embryo development. PLoS ONE. 2011;6:e21557. doi: 10.1371/journal.pone.0021557. PubMed DOI PMC
Tang J., Erikson R.L., Liu X. Checkpoint kinase 1 (Chk1) is required for mitotic progression through negative regulation of polo-like kinase 1 (Plk1) Proc. Natl. Acad. Sci. USA. 2006;103:11964–11969. doi: 10.1073/pnas.0604987103. PubMed DOI PMC
Peddibhotla S., Lam M.H., Gonzalez-Rimbau M., Rosen J.M. The DNA-Damage Effector Checkpoint Kinase 1 Is Essential for Chromosome Segregation and Cytokinesis. Proc. Natl. Acad. Sci. USA. 2009;106:5159–5164. doi: 10.1073/pnas.0806671106. PubMed DOI PMC
Carrassa L., Sanchez Y., Erba E., Damia G. U2OS cells lacking Chk1 undergo aberrant mitosis and fail to activate the spindle checkpoint. J. Cell. Mol. Med. 2009;13:1565–1576. doi: 10.1111/j.1582-4934.2008.00362.x. PubMed DOI PMC
Fishler T., Li Y.Y., Wang R.H., Kim H.S., Sengupta K., Vassilopoulos A., Lahusen T., Xu X., Lee M.H., Liu Q., et al. Genetic Instability and Mammary Tumor Formation in Mice Carrying Mammary-Specific Disruption of Chk1 and P53. Oncogene. 2010;29:4007–4017. doi: 10.1038/onc.2010.163. PubMed DOI PMC
Zachos G., Black E.J., Walker M., Scott M.T., Vagnarelli P., Earnshaw W.C., Gillespie D.A.F. Chk1 is required for spindle checkpoint function. Dev. Cell. 2007;12:247–260. doi: 10.1016/j.devcel.2007.01.003. PubMed DOI PMC
Chila R., Celenza C., Lupi M., Damia G., Carrassa L. Chk1-Mad2 interaction: A crosslink between the DNA damage checkpoint and the mitotic spindle checkpoint. Cell Cycle. 2013;12:1083–1090. doi: 10.4161/cc.24090. PubMed DOI PMC
Yang X., Xu W., Hu Z., Zhang Y., Xu N. Chk1 is required for the metaphase-anaphase transition via regulating the expression and localization of Cdc20 and Mad2. Life Sci. 2014;106:12–18. doi: 10.1016/j.lfs.2014.04.011. PubMed DOI
Petsalaki E., Zachos G. Chk1 and Mps1 jointly regulate correction of merotelic kinetochore attachments. Pt 5J. Cell Sci. 2013;126:1235–1246. doi: 10.1242/jcs.119677. PubMed DOI
Liu X.M., Chen F., Wang L., Zhang F., Huo L.J. Checkpoint kinases are required for oocyte meiotic progression by the maintenance of normal spindle structure and chromosome condensation. Exp. Cell Res. 2021;405:112657. doi: 10.1016/j.yexcr.2021.112657. PubMed DOI
Jacobs K., deVelde H., Paepe C.D., Serson K., Spits C. Mitotic spindle disruption in human preimplantation embryos activates the spindle assembly checkpoint but not apoptosis until day 5 of development. Molec. Hum. Reprod. 2017;23:321–329. doi: 10.1093/molehr/gax007. PubMed DOI
Wang C., Tang M., Chen Z., Nie L., Li S., Xiong Y., Szymonowicz K.A., Park J.-M., Zhang H., Feng X., et al. Genetic vulnerabilities upon inhibition of DNA damage response. Nucleic Acids Res. 2021;49:8214–8231. doi: 10.1093/nar/gkab643. PubMed DOI PMC