Cleavage of Early Mouse Embryo with Damaged DNA
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2/0072/19
Slovak Academy of Sciences VEGA
APVV-18-0389
Slovak Research and Development Agency
#20-27742S
Czech Science Foundation
PubMed
35408877
PubMed Central
PMC8998204
DOI
10.3390/ijms23073516
PII: ijms23073516
Knihovny.cz E-zdroje
- Klíčová slova
- DNA damage, micronucleus, mouse embryogenesis, neocarzinostatin, γH2A.X,
- MeSH
- blastocysta * MeSH
- DNA MeSH
- embryo savčí * MeSH
- embryonální vývoj genetika MeSH
- myši MeSH
- poškození DNA MeSH
- savci genetika MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA MeSH
The preimplantation period of embryogenesis is crucial during mammalian ontogenesis. During this period, the mitotic cycles are initiated, the embryonic genome is activated, and the primary differentiation of embryonic cells occurs. All cellular abnormalities occurring in this period are the primary cause of fetal developmental disorders. DNA damage is a serious cause of developmental failure. In the context of DNA damage response on the cellular level, we analyzed the course of embryogenesis and phenotypic changes during the cleavage of a preimplantation embryo. Our results document that DNA damage induced before the resumption of DNA synthesis in a zygote can significantly affect the preimplantation development of the embryo. This developmental ability is related to the level of the DNA damage. We showed that one-cell embryos can correct the first cleavage cycle despite low DNA damage and incomplete replication. It seems that the phenomenon creates a predisposition to a segregation disorder of condensed chromatin that results in the formation of micronuclei in the developmental stages following the first cleavage. We conclude that zygote tolerates a certain degree of DNA damage and considers its priority to complete the first cleavage stage and continue embryogenesis as far as possible.
Zobrazit více v PubMed
Musson R., Gąsior Ł., Bisogno S., Ptak G.E. DNA damage in preomplantation embryos and gametes: Specification, clinical relevance and repair strategies. Hum. Reprod. Update. 2022:dmab046. doi: 10.1093/humupd/dmab046. PubMed DOI PMC
Munisha M., Schimenti J.C. Genome maintenance during embryogenesis. DNA Repair. 2021;106:103195. doi: 10.1016/j.dnarep.2021.103195. PubMed DOI
Santos F., Hendrich B., Reik W., Dean W. Dynamic reprogamming of DNA methylation in the early mouse embryo. Dev. Biol. 2002;241:172–182. doi: 10.1006/dbio.2001.0501. PubMed DOI
Wossidlo M., Arand J., Sebastiano V., Leikhov K., Boiani M., Reihardt R., Scholler H., Walter J. Dynamic link od DNA demethylation, DNA strand breaks and repair in mouse zygotes. EMBO J. 2010;29:1877–1888. doi: 10.1038/emboj.2010.80. PubMed DOI PMC
Menezo Y., Dale B., Cohen M. DNA damage and repair in human oocyte and embryos: A review. Zygote. 2010;18:357–365. doi: 10.1017/S0967199410000286. PubMed DOI
Bazrgar M., Gourabi H., Yazdi P.E., Vazirinasab H., Fakhri M., Hassani F., Valojerdi M.R. DNA repair signalling pathway genes are overexpressed in poor-quality pre-implantation human embryos with complex aneuploidy. Eur. J. Obs. Gynecol. Reprod. Biol. 2014;175:152–156. doi: 10.1016/j.ejogrb.2014.01.010. PubMed DOI
Ladstatter S., Tachibana-Konwalski K. A Surveillance mechanism ensure repair of DNA lesions during zygotic reprogramming. Cell. 2016;167:1774–1787. doi: 10.1016/j.cell.2016.11.009. PubMed DOI PMC
Shukla V., Høffding M.K., Hoffmann E.R. Genome diversity and instability in human germ cells and preimplantation embryos. Semin. Cell Dev. Biol. 2021;113:132–147. doi: 10.1016/j.semcdb.2020.12.007. PubMed DOI PMC
Girardi L., Serdarogullari M., Patassini C., Poli M., Fabiani M., Caroselli S., Coban O., Findikli N., Boynukalin F.K., Bahceci M., et al. Incidence, origin, and predictive model for the detection and clinical management of segmental aneuploidies in human embryos. Am. J. Hum. Genet. 2020;106:525–534. doi: 10.1016/j.ajhg.2020.03.005. PubMed DOI PMC
Palmer N., Kaldis P. Regulation of the embryonic cell cycle during mammalian preimplantation development. Curr. Top. Dev. Biol. 2016;120:2–53. doi: 10.1016/bs.ctdb.2016.05.001. PubMed DOI
Mu X.F., Jin X.L., Farnham M.M.J., Li Y., O’Neil C. DNA damage-sensing kinases mediate the mouse 2-cell embryo’s response to genotoxic stress. Biol. Reprod. 2011;85:524–535. doi: 10.1095/biolreprod.110.089334. PubMed DOI
House N.C.M., Koch M.R., Freudenreich C.H. Chromatin modification and DNA repair beyond double-strand breaks. Front. Genet. 2014;5:296. doi: 10.3389/fgene.2014.00296. PubMed DOI PMC
Derijck A.H.A., van der Heijden G.W., Giele M., Philippens M.E.P., van Bavel C.A.W., de Boer P. γH2AX signalling during sperm chromatin remodelling in the mouse zygote. DNA Repair. 2006;5:959–971. doi: 10.1016/j.dnarep.2006.05.043. PubMed DOI
Yukawa M., Oda S., Mitani H., Nagata M., Aoki F. Deficiency in response to DNA double-strand breaks in mouse early preimplantation embryos. Biochem. Biophys. Res. Commun. 2007;358:578–584. doi: 10.1016/j.bbrc.2007.04.162. PubMed DOI
Wang Z.W., Ma X.S., Ma J.Y., Luo Y.B., Lin F., Wang Z.B., Fan H.Y., Schatten H., Sun Q.Y. Laser microbeam-induced DNA damage inhibits cell division in early fertilized eggs and early embryos. Cell Cycle. 2013;12:3336–3344. doi: 10.4161/cc.26327. PubMed DOI PMC
Ma J.Y., Ou-Yang Y.C., Wang Z.W., Wang Z.B., Jing Z.Z., Luo S.H., Hou Y., Liu Y.H., Schatten H., Sun Q.Y. The effect of DNA double-strand breaks on mouse oocyte meiotic maturation. Cell Cycle. 2013;12:1233–1241. doi: 10.4161/cc.24311. PubMed DOI PMC
Marchetti F., Bishop J.B., Lowe X., Generoso W.M., Hozier J., Wyrobek A.J. Etoposide induces heritable chromosomal aberration and aneuploidy during male meiosis in mouse. Proc. Natl. Acad. Sci. USA. 2001;98:3953–3957. doi: 10.1073/pnas.061404598. PubMed DOI PMC
Mayer A., Baran V., Sakakibara Y., Brzakova A., Ferencova I., Motlik J., Kitajima T.S., Schultz R.M., Solc P. DNA damage response during mouse oocyte maturation. Cell Cycle. 2016;15:546–558. doi: 10.1080/15384101.2015.1128592. PubMed DOI PMC
Gawecka J.E., Marh J., Ortega M., Yamauchi Y., Ward M.A., Ward W.S. Mouse zygotes respond sperm DNA damage by delaying paternal DNA replication and embryonic development. PLoS ONE. 2013;8:e56385. doi: 10.1371/journal.pone.0056385. PubMed DOI PMC
Maragos P., Carroll J. Oocytes progress beyond prophase in the presence DNA damage. Curr. Biol. 2012;22:989–994. doi: 10.1016/j.cub.2012.03.063. PubMed DOI
Jacquet P., Buset J., Vankerkom J., Baatout S., deSaint-Georges L., Schoonjansm W., Desaintes C. Mouse one-cell embryo undergoing aradiation-induced G2 arrest may re-enter S-phase in absence of cytokinesis. Can. J. Physiol. Pharm. 2002;80:618–624. doi: 10.1139/y02-093. PubMed DOI
Barton T.S., Robaire B., Hales B.F. DNA damage recognition in rat zygote following chronic paternal cyclophospamide exposure. Toxicol. Sci. 2007;100:492–503. doi: 10.1093/toxsci/kfm242. PubMed DOI
Kort D.H., Chia G., Treff N.R., Tanaka A.J., King T., Vensand L.B. Human embryo commonly form abnormal nuclei during development: A mechanism of DNA damage, embryonic aneuploidy, and developmental arrest. Hum. Reprod. 2016;31:312–313. doi: 10.1093/humrep/dev281. PubMed DOI
Golberg I.H. Free radical mechanisms in neocarzinostatin-induced DNA damage. Free Radic. Biol. Med. 1987;3:41–54. doi: 10.1016/0891-5849(87)90038-4. PubMed DOI
Dedon P.C., Goldberg I.H. Free-radical mechanisms involved in the formation of sequence-dependent bistranded DNA lesions by the antitumor antibiotics bleomycin, neocarzinostatin, and calicheamicin. Chem. Res. Toxicol. 1992;5:311–332. doi: 10.1021/tx00027a001. PubMed DOI
Yuen W.S., Merriman J.A., O’Bryan M.K., Jones K.T. DNA double strand breaks but not interstrand crosslinks prevent progress through meiosis in fully grown mouse oocytes. PLoS ONE. 2012;7:e43875. doi: 10.1371/journal.pone.0043875. PubMed DOI PMC
Wrann S., Kaufmann M.R., Wirthner R., Stiel D.P., Werner R.H. HIF mediated and DNA damage independent histone H2A.X phosphorylation in chronic hypoxia. Biol. Chem. 2013;394:519–528. doi: 10.1515/hsz-2012-0311. PubMed DOI
Tu W.Z., Li B., Huang B., Wang Y., Liu X.D., Guan H., Zhang S.M., Tang Y., Rang W.Q., Zhou P.K. Gamma H2A.X foci formation in the absence of DNA damage mitotic H2A.X phosphorylation is mediated by the DNA-PKcs/CHK2 pathway. FEBS Lett. 2013;587:3437–3443. doi: 10.4161/15384101.2014.947786. PubMed DOI
Borhani N., Rajaei F., Salehi Z., Javadi A. Analysis od DNA fragmentation in mouse embryos exposed to an low-frequency electromagnetic field. Electromagn. Biol. Med. 2011;30:246–252. doi: 10.3109/15368378.2011.589556. PubMed DOI
Xiao J., Liu Y., Li Z., Zhou Y., Lin H., Wu X., Chen M., Xioa W. Effects of the insemination of hydrogen peroxide-treated epididymal mouse spermatozoa on γH2AX repair and embryo development. PLoS ONE. 2012;7:e38742. doi: 10.1371/journal.pone.0038742. PubMed DOI PMC
Grenier L., Robaire B., Hales B.F. The activation of DNA damage detection and repair responses in cleavage-stage rat embryos by adameged paternal genome. Toxicol. Sci. 2012;127:555–566. doi: 10.1093/toxsci/kfs120. PubMed DOI PMC
Wang Q.L., Sun S.C., Han J., Kwak Y.C., Kim N.H., Cui X.S. Doxorubicine induces early embryo apoptosis by inhibiting poly(ADP ribose) polymerase. In Vitro. 2012;26:827–834. PubMed
Kuo L.J., Yang L.X. Gamma-H2A.X–a novel biomarker for DNA double-strand breaks. In Vivo. 2008;22:305–309. PubMed
Stucki M., Clapperton J.A., Mohhamad D., Yaffe M.B., Smerdon S.J., Jackson S.P. MDC1 directly binds phosphorylated histone H2A.X to regulate cellular responses to DNA double-strand breaks. Cell. 2005;123:1213–1226. doi: 10.1016/j.cell.2005.09.038. PubMed DOI
Strauss C., Goldberg M. Recruitment of protein DNA double-strand breaks. Cell Cycle. 2011;10:2850–2857. doi: 10.4161/cc.10.17.17341. PubMed DOI
Ziegler-Birling C., Helmrich A., Tora L., Torres-Padilla M.E. Distribution of p53 binding protein 1 (53BP1) and phosphorylated H2A.X during mouse preimplantation development in the absence of DNA damage. Int. J. Dev. Biol. 2009;53:1003–1011. doi: 10.1387/ijdb.082707cz. PubMed DOI
Chen Z.X., Riggs A.D. DNA methylation and demethylation in mammals. J. Biol. Chem. 2011;286:18347–18353. doi: 10.1074/jbc.R110.205286. PubMed DOI PMC
Schuermann D., Weber A.R., Schär P. Active DNA demethylation by DNA repair: Fact and uncertainties. DNA Repair. 2016;44:92–102. doi: 10.1016/j.dnarep.2016.05.013. PubMed DOI
Kermi C., Aze A., Maiorano D. Preserving genome integrity during the early embryonic DNA replication cycle. Genes. 2019;10:398. doi: 10.3390/genes10050398. PubMed DOI PMC
Jacobs K., deVelde H., Paepe C.D., Serson K., Spits C. Mitotic spindle disruption in human preimplantation embryos activates the spindle assembly checkpoint but not apoptosis until day 5 of development. Molec. Human Reprod. 2017;23:321–329. doi: 10.1093/molehr/gax007. PubMed DOI
Lewis C.W., Golsteyn R.M. Cancer cells that survive checkpoint contain micronuclei that harbor damaged DNA. Cell Cycle. 2016;15:3131–3145. doi: 10.1080/15384101.2016.1231287. PubMed DOI PMC
Kalsbeek D., Goldteyn R.M. G2/M-phase checkpoint adaptation and micronuclei formation as mechanisms that contribute to genomic instability in human cells. Int. J. Mol. Sci. 2017;18:2344. doi: 10.3390/ijms18112344. PubMed DOI PMC
Vázquez-Diez C., Yamagata K., Trivedi S., Haverfield J., FitzHarris G. Micronucleus formation causes perpetual unilateral chromosome inheritance in mouse embyos. Proc. Natl. Acad. Sci. USA. 2016;113:626–631. doi: 10.1073/pnas.1517628112. PubMed DOI PMC
Crasta K., Ganem N.J., Dagher R., Lentermenn A.B., Ivanova E.V., Pan Y., Nezi L., Protopopov A., Chowdhury D., Pellman D. DNA breaks and chromosome pulverization from errors in mitosis. Nature. 2012;482:53–60. doi: 10.1038/nature10802. PubMed DOI PMC
Fu X., Cui K., Yi Q., Yu L., Xu Y. DNA repair mechanisms in embryonic stem cells. Cell Mol. Life Sci. 2017;74:487–493. doi: 10.1007/s00018-016-2358-z. PubMed DOI PMC
Tian Y., Yamauchi T. Micronucleus formation in 3-day mouse embryos associated with maternal exposure to chlorpyrifos during the early preimplantation period. Reprod. Toxicol. 2003;17:401–405. doi: 10.1016/s0890-6238(03)00039-x. PubMed DOI
Khokhlova V., Fesenko Z.S., Sopova J.V., Leonova E.I. Features of DNA repair in thre early stages of mammalian embryonic development. Genes. 2020;11:1138. doi: 10.3390/genes11101138. PubMed DOI PMC
Uehara R., Cerritelli S.M., Hasin N., Sakhuja K., London M., Iranzo J., Chon H., Grinberg A., Crouch R.J. Two RNase H2 mutants with differential RNMP processing activity reveal a threshold of ribonucleotide tolerance for embryonic development. Cell Rep. 2018;25:1135–1145.e5. doi: 10.1016/j.celrep.2018.10.019. PubMed DOI PMC
Bolton H., Graham S.J.L., Van der Aa N., Kumar P., Theunis K., Fernandez Gallaro E., Voet T., Zernicka-Goetz M. Mouse of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential. Nat. Commun. 2016;7:11165. doi: 10.1038/ncomms11165. PubMed DOI PMC
Pisko J., Spirkova A., Cikos S., Olexikova L., Kovarikova V., Sefcikova Z., Fabian D. Apoptotic cells in mouse blastocysts are eliminated by neighbouringblastomeres. Sci. Rep. 2021;11:9228. doi: 10.1038/s41598-021-88752-0. PubMed DOI PMC
Mashiko D., Ikeda Z., Yao T., Tokoro M., Fukunaga N., Asada Y., Yamagata K. Chromosome segregation error during early cleavage in mouse pre-implantation embryo does not necessarily cause developmental failure after blastocyst stage. Sci. Rep. 2020;10:854. doi: 10.1038/s41598-020-57817-x. PubMed DOI PMC
Ramos-Ibeas P., Gimeno I., Cañón-Beltrán K., Gutiérrez-Adán A., Rizos D., Gómez E. Senescence and apoptosis during in vitro embryo develpmen in abovine model. Front. Cell Dev. Biol. 2020;8:619902. doi: 10.3389/fcell.2020.619902. PubMed DOI PMC
Yu B., van Tol H.T.A., Stout T.A.E., Roelen B.A.J. Cellular Fragments in the Perivitelline Space Are Not a Predictor of Expanded Blastocyst Quality. Front. Cell Dev. Biol. 2021;8:616801. doi: 10.3389/fcell.2020.616801. PubMed DOI PMC
Smith B.L., Bauer G.B., Povirk L.F. DNA damage induced by bleomycin, neocarzinostatin, and melphalan in a precisely positioned nucleosome. Asymmetry in protection at the periphery of nucleosome-bound DNA. J. Biol. Chem. 1994;269:30587–30594. doi: 10.1016/S0021-9258(18)43854-9. PubMed DOI
Neef A.B., Luedtke N.W. Dynamic metabolic labeling of DNA in vivo with arabinosyl nucleosides. Proc. Natl. Acad. Sci. USA. 2011;108:20404–20409. doi: 10.1073/pnas.1101126108. PubMed DOI PMC
Herbert M., Levasseur M., Homer H., Yallop K., Murdoch A., McDougall A. Homologue disjunction in mouse oocytes requires proteolysis of securin an cyclin B1. Nat. Cell Biol. 2003;5:1023–1025. doi: 10.1038/ncb1062. PubMed DOI
Hadjantonakis A.K., Pappaioannou V. Dynamic in vivo imaging and cell tracking sing a histone fluorescent protein fusion in mice. BMC Biotechnol. 2004;4:33. doi: 10.1186/1472-6750-4-33. PubMed DOI PMC
Kudo N.R., Anger M., Peters A.H., Stemmann O., Theussl H.C., Helmhart W., Kudo H., Heyting C., Nasmyth K. Role of cleavage by separase of the Rec8 kleisin subunit of cohesion during mammalian meiosis I. J. Cell Sci. 2009;122:2686–2698. doi: 10.1242/jcs.035287. PubMed DOI PMC
Solc P., Kitajima T.S., Yoshida S., Brzakova A., Kaido M., Baran V., Mayer A., Samalova P., Motlik J., Ellenberger J. Multiple requirements of PLK1 during mouse oocyte maturation. PLoS ONE. 2015;10:e0116783. doi: 10.1371/journal.pone.0116783. PubMed DOI PMC
Baran V., Brzakova A., Rehak P., Kovarikova V., Solc P. PLK1 regulates spindle formation kinetics and APC/C activation in mouse zygote. Zygote. 2015;24:338–345. doi: 10.1017/S0967199415000246. PubMed DOI
Schindelin J., Arganda-Carreras I., Friese E., Kayning V., Longair M., Pietzsch T., Preibisch S., Ruaden C., Saafeld S., Schmid B., et al. FiJi: An open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–678. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Luisier F., Vonesch C., Blue T., Unser M. Fast interscale wavelet denoising of Poisoon-corrupted images. Signal. Proc. 2010;90:415–427. doi: 10.1016/j.sigpro.2009.07.009. DOI
Checkpoint Kinase 1 Is a Key Signal Transducer of DNA Damage in the Early Mammalian Cleavage Embryo