Genomics of Trypanosomatidae: Where We Stand and What Needs to Be Done?
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
CZ.02.1.01/16_019/0000759
European Regional Development Fund
20-07186S
Grantová Agentura České Republiky
PubMed
34578156
PubMed Central
PMC8472099
DOI
10.3390/pathogens10091124
PII: pathogens10091124
Knihovny.cz E-zdroje
- Klíčová slova
- genomics, next-generation sequencing, trypanosomatids,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Trypanosomatids are easy to cultivate and they are (in many cases) amenable to genetic manipulation. Genome sequencing has become a standard tool routinely used in the study of these flagellates. In this review, we summarize the current state of the field and our vision of what needs to be done in order to achieve a more comprehensive picture of trypanosomatid evolution. This will also help to illuminate the lineage-specific proteins and pathways, which can be used as potential targets in treating diseases caused by these parasites.
Life Science Research Centre Faculty of Science University of Ostrava 710 00 Ostrava Czech Republic
Zoological Institute of the Russian Academy of Sciences 190121 St Petersburg Russia
Zobrazit více v PubMed
Kostygov A.Y., Karnkowska A., Votýpka J., Tashyreva D., Maciszewski K., Yurchenko V., Lukeš J. Euglenozoa: Taxonomy, diversity and ecology, symbioses and viruses. Open Biol. 2021;11:200407. doi: 10.1098/rsob.200407. PubMed DOI PMC
Ivens A.C., Peacock C.S., Worthey E.A., Murphy L., Aggarwal G., Berriman M., Sisk E., Rajandream M.A., Adlem E., Aert R., et al. The genome of the kinetoplastid parasite, Leishmania major. Science. 2005;309:436–442. doi: 10.1126/science.1112680. PubMed DOI PMC
Berriman M., Ghedin E., Hertz-Fowler C., Blandin G., Renauld H., Bartholomeu D.C., Lennard N.J., Caler E., Hamlin N.E., Haas B., et al. The genome of the African trypanosome Trypanosoma brucei. Science. 2005;309:416–422. doi: 10.1126/science.1112642. PubMed DOI
El-Sayed N.M., Myler P.J., Bartholomeu D.C., Nilsson D., Aggarwal G., Tran A.N., Ghedin E., Worthey E.A., Delcher A.L., Blandin G., et al. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science. 2005;309:409–415. doi: 10.1126/science.1112631. PubMed DOI
El-Sayed N.M., Myler P.J., Blandin G., Berriman M., Crabtree J., Aggarwal G., Caler E., Renauld H., Worthey E.A., Hertz-Fowler C., et al. Comparative genomics of trypanosomatid parasitic protozoa. Science. 2005;309:404–409. doi: 10.1126/science.1112181. PubMed DOI
Lukeš J., Butenko A., Hashimi H., Maslov D.A., Votýpka J., Yurchenko V. Trypanosomatids are much more than just trypanosomes: Clues from the expanded family tree. Trends Parasitol. 2018;34:466–480. doi: 10.1016/j.pt.2018.03.002. PubMed DOI
Záhonová K., Kostygov A., Ševčíková T., Yurchenko V., Eliáš M. An unprecedented non-canonical nuclear genetic code with all three termination codons reassigned as sense codons. Curr. Biol. 2016;26:2364–2369. doi: 10.1016/j.cub.2016.06.064. PubMed DOI
Votýpka J., Kostygov A.Y., Kraeva N., Grybchuk-Ieremenko A., Tesařová M., Grybchuk D., Lukeš J., Yurchenko V. Kentomonas gen. n.; a new genus of endosymbiont-containing trypanosomatids of Strigomonadinae subfam. n. Protist. 2014;165:825–838. doi: 10.1016/j.protis.2014.09.002. PubMed DOI
Kostygov A., Dobáková E., Grybchuk-Ieremenko A., Váhala D., Maslov D.A., Votýpka J., Lukeš J., Yurchenko V. Novel trypanosomatid—Bacterium association: Evolution of endosymbiosis in action. mBio. 2016;7:e01985-15. doi: 10.1128/mBio.01985-15. PubMed DOI PMC
Teixeira M.M., Borghesan T.C., Ferreira R.C., Santos M.A., Takata C.S., Campaner M., Nunes V.L., Milder R.V., de Souza W., Camargo E.P. Phylogenetic validation of the genera Angomonas and Strigomonas of trypanosomatids harboring bacterial endosymbionts with the description of new species of trypanosomatids and of proteobacterial symbionts. Protist. 2011;162:503–524. doi: 10.1016/j.protis.2011.01.001. PubMed DOI
Silva F.M., Kostygov A.Y., Spodareva V.V., Butenko A., Tossou R., Lukes J., Yurchenko V., Alves J.M.P. The reduced genome of Candidatus Kinetoplastibacterium sorsogonicusi, the endosymbiont of Kentomonas sorsogonicus (Trypanosomatidae): Loss of the haem-synthesis pathway. Parasitology. 2018;145:1287–1293. doi: 10.1017/S003118201800046X. PubMed DOI
Kostygov A.Y., Butenko A., Nenarokova A., Tashyreva D., Flegontov P., Lukeš J., Yurchenko V. Genome of Ca. Pandoraea novymonadis, an endosymbiotic bacterium of the trypanosomatid Novymonas esmeraldas. Front. Microbiol. 2017;8:1940. doi: 10.3389/fmicb.2017.01940. PubMed DOI PMC
Alves J.M., Serrano M.G., Maia da Silva F., Voegtly L.J., Matveyev A.V., Teixeira M.M., Camargo E.P., Buck G.A. Genome evolution and phylogenomic analysis of Candidatus Kinetoplastibacterium, the beta-proteobacterial endosymbionts of Strigomonas and Angomonas. Genome Biol. Evol. 2013;5:338–350. doi: 10.1093/gbe/evt012. PubMed DOI PMC
Alves J.M., Klein C.C., da Silva F.M., Costa-Martins A.G., Serrano M.G., Buck G.A., Vasconcelos A.T., Sagot M.F., Teixeira M.M., Motta M.C., et al. Endosymbiosis in trypanosomatids: The genomic cooperation between bacterium and host in the synthesis of essential amino acids is heavily influenced by multiple horizontal gene transfers. BMC Evol. Biol. 2013;13:190. doi: 10.1186/1471-2148-13-190. PubMed DOI PMC
Kostygov A., Frolov A.O., Malysheva M.N., Ganyukova A.I., Chistyakova L.V., Tashyreva D., Tesařová M., Spodareva V.V., Režnarová J., Macedo D.H., et al. Vickermania gen. nov.; trypanosomatids that use two joined flagella to resist midgut peristaltic flow within the fly host. BMC Biol. 2020;18:187. doi: 10.1186/s12915-020-00916-y. PubMed DOI PMC
Ishemgulova A., Butenko A., Kortišová L., Boucinha C., Grybchuk-Ieremenko A., Morelli K.A., Tesařová M., Kraeva N., Grybchuk D., Pánek T., et al. Molecular mechanisms of thermal resistance of the insect trypanosomatid Crithidia thermophila. PLoS ONE. 2017;12:e0174165. doi: 10.1371/journal.pone.0174165. PubMed DOI PMC
Kraeva N., Butenko A., Hlaváčová J., Kostygov A., Myškova J., Grybchuk D., Leštinová T., Votýpka J., Volf P., Opperdoes F., et al. Leptomonas seymouri: Adaptations to the dixenous life cycle analyzed by genome sequencing, transcriptome profiling and co-infection with Leishmania donovani. PLoS Pathog. 2015;11:e1005127. doi: 10.1371/journal.ppat.1005127. PubMed DOI PMC
Maruyama S.R., de Santana A.K.M., Takamiya N.T., Takahashi T.Y., Rogerio L.A., Oliveira C.A.B., Milanezi C.M., Trombela V.A., Cruz A.K., Jesus A.R., et al. Non-Leishmania parasite in fatal visceral leishmaniasis–like disease, Brazil. Emerg. Infect. Dis. 2019;25:2088–2092. doi: 10.3201/eid2511.181548. PubMed DOI PMC
Brems S., Guilbride D.L., Gundlesdodjir-Planck D., Busold C., Luu V.D., Schanne M., Hoheisel J., Clayton C. The transcriptomes of Trypanosoma brucei Lister 427 and TREU927 bloodstream and procyclic trypomastigotes. Mol. Biochem. Parasitol. 2005;139:163–172. doi: 10.1016/j.molbiopara.2004.11.004. PubMed DOI
Jackson A.P., Sanders M., Berry A., McQuillan J., Aslett M.A., Quail M.A., Chukualim B., Capewell P., MacLeod A., Melville S.E., et al. The genome sequence of Trypanosoma brucei gambiense, causative agent of chronic human african trypanosomiasis. PLoS Negl. Trop. Dis. 2010;4:e658. doi: 10.1371/journal.pntd.0000658. PubMed DOI PMC
Sistrom M., Evans B., Benoit J., Balmer O., Aksoy S., Caccone A. De novo genome assembly shows genome wide similarity between Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense. PLoS ONE. 2016;11:e0147660. PubMed PMC
Carnes J., Anupama A., Balmer O., Jackson A., Lewis M., Brown R., Cestari I., Desquesnes M., Gendrin C., Hertz-Fowler C., et al. Genome and phylogenetic analyses of Trypanosoma evansi reveal extensive similarity to T. brucei and multiple independent origins for dyskinetoplasty. PLoS Negl. Trop. Dis. 2015;9:e3404. doi: 10.1371/journal.pntd.0003404. PubMed DOI PMC
Zheng L., Jiang N., Sang X., Zhang N., Zhang K., Chen H., Yang N., Feng Y., Chen R., Suo X., et al. In-depth analysis of the genome of Trypanosoma evansi, an etiologic agent of surra. Sci. China Life Sci. 2019;62:406–419. doi: 10.1007/s11427-018-9473-8. PubMed DOI
Davaasuren B., Yamagishi J., Mizushima D., Narantsatsral S., Otgonsuren D., Myagmarsuren P., Battsetseg B., Battur B., Inoue N., Suganuma K. Draft genome sequence of Trypanosoma equiperdum strain IVM-t1. Microbiol. Resour. Announc. 2019;8:e01119-18. doi: 10.1128/MRA.01119-18. PubMed DOI PMC
Hébert L., Moumen B., Madeline A., Steinbiss S., Lakhdar L., Van Reet N., Buscher P., Laugier C., Cauchard J., Petry S. First draft genome sequence of the dourine causative agent: Trypanosoma Equiperdum strain OVI. J. Genom. 2017;5:1–3. doi: 10.7150/jgen.17904. PubMed DOI PMC
Jackson A.P., Berry A., Aslett M., Allison H.C., Burton P., Vavrova-Anderson J., Brown R., Browne H., Corton N., Hauser H., et al. Antigenic diversity is generated by distinct evolutionary mechanisms in African trypanosome species. Proc. Natl. Acad. Sci. USA. 2012;109:3416–3421. doi: 10.1073/pnas.1117313109. PubMed DOI PMC
Abbas A.H., Silva Pereira S., D’Archivio S., Wickstead B., Morrison L.J., Hall N., Hertz-Fowler C., Darby A.C., Jackson A.P. The structure of a conserved telomeric region associated with variant antigen loci in the blood parasite Trypanosoma congolense. Genome Biol. Evol. 2018;10:2458–2473. doi: 10.1093/gbe/evy186. PubMed DOI PMC
Silvester E., Ivens A., Matthews K.R. A gene expression comparison of Trypanosoma brucei and Trypanosoma congolense in the bloodstream of the mammalian host reveals species-specific adaptations to density-dependent development. PLoS Negl. Trop. Dis. 2018;12:e0006863. doi: 10.1371/journal.pntd.0006863. PubMed DOI PMC
Awuoche E.O., Weiss B.L., Mireji P.O., Vigneron A., Nyambega B., Murilla G., Aksoy S. Expression profiling of Trypanosoma congolense genes during development in the tsetse fly vector Glossina morsitans morsitans. Parasit. Vectors. 2018;11:380. doi: 10.1186/s13071-018-2964-8. PubMed DOI PMC
Greif G., Ponce de Leon M., Lamolle G., Rodriguez M., Pineyro D., Tavares-Marques L.M., Reyna-Bello A., Robello C., Alvarez-Valin F. Transcriptome analysis of the bloodstream stage from the parasite Trypanosoma vivax. BMC Genom. 2013;14:149. doi: 10.1186/1471-2164-14-149. PubMed DOI PMC
Callejas-Hernández F., Rastrojo A., Poveda C., Girones N., Fresno M. Genomic assemblies of newly sequenced Trypanosoma cruzi strains reveal new genomic expansion and greater complexity. Sci. Rep. 2018;8:14631. doi: 10.1038/s41598-018-32877-2. PubMed DOI PMC
Callejas-Hernández F., Gironès N., Fresno M. Genome sequence of Trypanosoma cruzi strain Bug2148. Genome Announc. 2018;6:e01497-17. doi: 10.1128/genomeA.01497-17. PubMed DOI PMC
Gómez I., Rastrojo A., Sanchez-Luque F.J., Lorenzo-Diaz F., Macias F., Valladares B., Aguado B., Requena J.M., Lopez M.C., Thomas M.C. Draft genome sequence of the Trypanosoma cruzi B. M. Lopez strain (TcIa), isolated from a Colombian patient. Microbiol. Resour. Announc. 2020;9:e00031-20. PubMed PMC
Gómez I., Rastrojo A., Lorenzo-Diaz F., Sanchez-Luque F.J., Macias F., Aguado B., Valladares B., Requena J.M., Lopez M.C., Thomas M.C. Trypanosoma cruzi Ikiakarora (TcIII) draft genome sequence. Microbiol. Resour. Announc. 2020;9:e00453-20. doi: 10.1128/MRA.00453-20. PubMed DOI PMC
Berná L., Rodriguez M., Chiribao M.L., Parodi-Talice A., Pita S., Rijo G., Alvarez-Valin F., Robello C. Expanding an expanded genome: Long-read sequencing of Trypanosoma cruzi. Microb. Genom. 2018;4:e000177. doi: 10.1099/mgen.0.000177. PubMed DOI PMC
DeCuir J., Tu W., Dumonteil E., Herrera C. Sequence of Trypanosoma cruzi reference strain SC43 nuclear genome and kinetoplast maxicircle confirms a strong genetic structure among closely related parasite discrete typing units. Genome. 2021;64:525–531. doi: 10.1139/gen-2020-0092. PubMed DOI PMC
Díaz-Viraqué F., Pita S., Greif G., de Souza R.C.M., Iraola G., Robello C. Nanopore sequencing significantly improves genome assembly of the protozoan parasite Trypanosoma cruzi. Genome Biol. Evol. 2019;11:1952–1957. doi: 10.1093/gbe/evz129. PubMed DOI PMC
Franzén O., Ochaya S., Sherwood E., Lewis M.D., Llewellyn M.S., Miles M.A., Andersson B. Shotgun sequencing analysis of Trypanosoma cruzi I Sylvio X10/1 and comparison with T. cruzi VI CL Brener. PLoS Negl. Trop. Dis. 2011;5:e984. doi: 10.1371/journal.pntd.0000984. PubMed DOI PMC
Grisard E.C., Teixeira S.M., de Almeida L.G., Stoco P.H., Gerber A.L., Talavera-Lopez C., Lima O.C., Andersson B., de Vasconcelos A.T. Trypanosoma cruzi clone Dm28c draft genome sequence. Genome Announc. 2014;2:e01114-13. doi: 10.1128/genomeA.01114-13. PubMed DOI PMC
Reis-Cunha J.L., Rodrigues-Luiz G.F., Valdivia H.O., Baptista R.P., Mendes T.A., de Morais G.L., Guedes R., Macedo A.M., Bern C., Gilman R.H., et al. Chromosomal copy number variation reveals differential levels of genomic plasticity in distinct Trypanosoma cruzi strains. BMC Genom. 2015;16:499. doi: 10.1186/s12864-015-1680-4. PubMed DOI PMC
Baptista R.P., Reis-Cunha J.L., DeBarry J.D., Chiari E., Kissinger J.C., Bartholomeu D.C., Macedo A.M. Assembly of highly repetitive genomes using short reads: The genome of discrete typing unit III Trypanosoma cruzi strain 231. Microb. Genom. 2018;4:e000156. doi: 10.1099/mgen.0.000156. PubMed DOI PMC
Wang W., Peng D., Baptista R.P., Li Y., Kissinger J.C., Tarleton R.L. Strain-specific genome evolution in Trypanosoma cruzi, the agent of Chagas disease. PLoS Pathog. 2021;17:e1009254. doi: 10.1371/journal.ppat.1009254. PubMed DOI PMC
Franzén O., Talavera-Lopez C., Ochaya S., Butler C.E., Messenger L.A., Lewis M.D., Llewellyn M.S., Marinkelle C.J., Tyler K.M., Miles M.A., et al. Comparative genomic analysis of human infective Trypanosoma cruzi lineages with the bat-restricted subspecies T. cruzi marinkellei. BMC Genom. 2012;13:531 PubMed PMC
Bradwell K.R., Koparde V.N., Matveyev A.V., Serrano M.G., Alves J.M.P., Parikh H., Huang B., Lee V., Espinosa-Alvarez O., Ortiz P.A., et al. Genomic comparison of Trypanosoma conorhini and Trypanosoma rangeli to Trypanosoma cruzi strains of high and low virulence. BMC Genom. 2018;19:770. doi: 10.1186/s12864-018-5112-0. PubMed DOI PMC
Stoco P.H., Wagner G., Talavera-Lopez C., Gerber A., Zaha A., Thompson C.E., Bartholomeu D.C., Luckemeyer D.D., Bahia D., Loreto E., et al. Genome of the avirulent human-infective trypanosome Trypanosoma rangeli. PLoS Negl. Trop. Dis. 2014;8:e3176. doi: 10.1371/journal.pntd.0003176. PubMed DOI PMC
Kelly S., Ivens A., Manna P.T., Gibson W., Field M.C. A draft genome for the African crocodilian trypanosome Trypanosoma grayi. Sci. Data. 2014;1:140024. doi: 10.1038/sdata.2014.24. PubMed DOI PMC
Kelly S., Ivens A., Mott G.A., O’Neill E., Emms D., Macleod O., Voorheis P., Tyler K., Clark M., Matthews J., et al. An alternative strategy for trypanosome survival in the mammalian bloodstream revealed through genome and transcriptome analysis of the ubiquitous bovine parasite Trypanosoma (Megatrypanum) theileri. Genome Biol. Evol. 2017;9:2093–2109. doi: 10.1093/gbe/evx152. PubMed DOI PMC
Hoare C.A. The Trypanosomes of Mammals. Blackwell Scientific Publications; Oxford, UK: 1972. p. 768.
Truc P., Buscher P., Cuny G., Gonzatti M.I., Jannin J., Joshi P., Juyal P., Lun Z.R., Mattioli R., Pays E., et al. Atypical human infections by animal trypanosomes. PLoS Negl. Trop. Dis. 2013;7:e2256. doi: 10.1371/journal.pntd.0002256. PubMed DOI PMC
Spodareva V.V., Grybchuk-Ieremenko A., Losev A., Votýpka J., Lukeš J., Yurchenko V., Kostygov A.Y. Diversity and evolution of anuran trypanosomes: Insights from the study of European species. Parasit. Vectors. 2018;11:447. doi: 10.1186/s13071-018-3023-1. PubMed DOI PMC
Rogers M.B., Hilley J.D., Dickens N.J., Wilkes J., Bates P.A., Depledge D.P., Harris D., Her Y., Herzyk P., Imamura H., et al. Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. Genome Res. 2011;21:2129–2142. doi: 10.1101/gr.122945.111. PubMed DOI PMC
Peacock C.S., Seeger K., Harris D., Murphy L., Ruiz J.C., Quail M.A., Peters N., Adlem E., Tivey A., Aslett M., et al. Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat. Genet. 2007;39:839–847. doi: 10.1038/ng2053. PubMed DOI PMC
Real F., Vidal R.O., Carazzolle M.F., Mondego J.M., Costa G.G., Herai R.H., Wurtele M., de Carvalho L.M., Carmona e Ferreira R., Mortara R.A., et al. The genome sequence of Leishmania (Leishmania) amazonensis: Functional annotation and extended analysis of gene models. DNA Res. 2013;20:567–581. doi: 10.1093/dnares/dst031. PubMed DOI PMC
Tschoeke D.A., Nunes G.L., Jardim R., Lima J., Dumaresq A.S., Gomes M.R., de Mattos Pereira L., Loureiro D.R., Stoco P.H., de Matos Guedes H.L., et al. The comparative genomics and phylogenomics of Leishmania amazonensis parasite. Evol. Bioinform. Online. 2014;10:131–153. doi: 10.4137/EBO.S13759. PubMed DOI PMC
Valdivia H.O., Almeida L.V., Roatt B.M., Reis-Cunha J.L., Pereira A.A., Gontijo C., Fujiwara R.T., Reis A.B., Sanders M.J., Cotton J.A., et al. Comparative genomics of canine-isolated Leishmania (Leishmania) amazonensis from an endemic focus of visceral leishmaniasis in Governador Valadares, southeastern Brazil. Sci. Rep. 2017;7:40804. doi: 10.1038/srep40804. PubMed DOI PMC
Aoki J.I., Muxel S.M., Zampieri R.A., Laranjeira-Silva M.F., Muller K.E., Nerland A.H., Floeter-Winter L.M. RNA-seq transcriptional profiling of Leishmania amazonensis reveals an arginase-dependent gene expression regulation. PLoS Negl. Trop. Dis. 2017;11:e0006026. doi: 10.1371/journal.pntd.0006026. PubMed DOI PMC
Patino L.H., Muskus C., Ramirez J.D. Transcriptional responses of Leishmania (Leishmania) amazonensis in the presence of trivalent sodium stibogluconate. Parasit. Vectors. 2019;12:348. doi: 10.1186/s13071-019-3603-8. PubMed DOI PMC
Downing T., Imamura H., Decuypere S., Clark T.G., Coombs G.H., Cotton J.A., Hilley J.D., de Doncker S., Maes I., Mottram J.C., et al. Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Res. 2011;21:2143–2156. doi: 10.1101/gr.123430.111. PubMed DOI PMC
Singh N., Chikara S., Sundar S. SOLiD sequencing of genomes of clinical isolates of Leishmania donovani from India confirm Leptomonas co-infection and raise some key questions. PLoS ONE. 2013;8:e55738. doi: 10.1371/journal.pone.0055738. PubMed DOI PMC
Franssen S.U., Durrant C., Stark O., Moser B., Downing T., Imamura H., Dujardin J.C., Sanders M.J., Mauricio I., Miles M.A., et al. Global genome diversity of the Leishmania donovani complex. eLife. 2020;9:e51243. doi: 10.7554/eLife.51243. PubMed DOI PMC
González-de la Fuente S., Peiro-Pastor R., Rastrojo A., Moreno J., Carrasco-Ramiro F., Requena J.M., Aguado B. Resequencing of the Leishmania infantum (strain JPCM5) genome and de novo assembly into 36 contigs. Sci. Rep. 2017;7:18050. doi: 10.1038/s41598-017-18374-y. PubMed DOI PMC
Ishemgulova A., Hlaváčová J., Majerová K., Butenko A., Lukeš J., Votýpka J., Volf P., Yurchenko V. CRISPR/Cas9 in Leishmania mexicana: A case study of LmxBTN1. PLoS ONE. 2018;13:e0192723. doi: 10.1371/journal.pone.0192723. PubMed DOI PMC
Iantorno S.A., Durrant C., Khan A., Sanders M.J., Beverley S.M., Warren W.C., Berriman M., Sacks D.L., Cotton J.A., Grigg M.E. Gene expression in Leishmania is regulated predominantly by gene dosage. mBio. 2017;8:e01393-17. doi: 10.1128/mBio.01393-17. PubMed DOI PMC
Valdivia H.O., Reis-Cunha J.L., Rodrigues-Luiz G.F., Baptista R.P., Baldeviano G.C., Gerbasi R.V., Dobson D.E., Pratlong F., Bastien P., Lescano A.G., et al. Comparative genomic analysis of Leishmania (Viannia) peruviana and Leishmania (Viannia) braziliensis. BMC Genom. 2015;16:715. doi: 10.1186/s12864-015-1928-z. PubMed DOI PMC
González-de la Fuente S., Camacho E., Peiro-Pastor R., Rastrojo A., Carrasco-Ramiro F., Aguado B., Requena J.M. Complete and de novo assembly of the Leishmania braziliensis (M2904) genome. Mem. Inst. Oswaldo Cruz. 2018;114:e180438. doi: 10.1590/0074-02760180438. PubMed DOI PMC
Ruy P.C., Monteiro-Teles N.M., Miserani Magalhaes R.D., Freitas-Castro F., Dias L., Aquino Defina T.P., Rosas De Vasconcelos E.J., Myler P.J., Kaysel Cruz A. Comparative transcriptomics in Leishmania braziliensis: Disclosing differential gene expression of coding and putative noncoding RNAs across developmental stages. RNA Biol. 2019;16:639–660. doi: 10.1080/15476286.2019.1574161. PubMed DOI PMC
Llanes A., Restrepo C.M., Del Vecchio G., Anguizola F.J., Lleonart R. The genome of Leishmania panamensis: Insights into genomics of the L. (Viannia) subgenus. Sci. Rep. 2015;5:8550. doi: 10.1038/srep08550. PubMed DOI PMC
Coughlan S., Taylor A.S., Feane E., Sanders M., Schonian G., Cotton J.A., Downing T. Leishmania naiffi and Leishmania guyanensis reference genomes highlight genome structure and gene evolution in the Viannia subgenus. R. Soc. Open Sci. 2018;5:172212. doi: 10.1098/rsos.172212. PubMed DOI PMC
Batra D., Lin W., Rowe L.A., Sheth M., Zheng Y., Loparev V., de Almeida M. Draft genome sequence of French Guiana Leishmania (Viannia) guyanensis strain 204–365, assembled using long reads. Microbiol. Resour. Announc. 2018;7:e01421-18. doi: 10.1128/MRA.01421-18. PubMed DOI PMC
Raymond F., Boisvert S., Roy G., Ritt J.F., Legare D., Isnard A., Stanke M., Olivier M., Tremblay M.J., Papadopoulou B., et al. Genome sequencing of the lizard parasite Leishmania tarentolae reveals loss of genes associated to the intracellular stage of human pathogenic species. Nucleic Acids Res. 2012;40:1131–1147. doi: 10.1093/nar/gkr834. PubMed DOI PMC
Goto Y., Kuroki A., Suzuki K., Yamagishi J. Draft genome sequence of Leishmania tarentolae Parrot Tar II, obtained by single-molecule real-time sequencing. Microbiol. Resour. Announc. 2020;9:e00050-20. doi: 10.1128/MRA.00050-20. PubMed DOI PMC
Coughlan S., Mulhair P., Sanders M., Schonian G., Cotton J.A., Downing T. The genome of Leishmania adleri from a mammalian host highlights chromosome fission in Sauroleishmania. Sci. Rep. 2017;7:43747. doi: 10.1038/srep43747. PubMed DOI PMC
Harkins K.M., Schwartz R.S., Cartwright R.A., Stone A.C. Phylogenomic reconstruction supports supercontinent origins for Leishmania. Infect. Genet. Evol. 2016;38:101–109. doi: 10.1016/j.meegid.2015.11.030. PubMed DOI
Butenko A., Kostygov A.Y., Sádlová J., Kleschenko Y., Bečvář T., Podešvová L., Macedo D.H., Žihala D., Lukeš J., Bates P.A., et al. Comparative genomics of Leishmania (Mundinia) BMC Genom. 2019;20:726. doi: 10.1186/s12864-019-6126-y. PubMed DOI PMC
Paranaiba L.F., Pinheiro L.J., Torrecilhas A.C., Macedo D.H., Menezes-Neto A., Tafuri W.L., Soares R.P. Leishmania enriettii (Muniz & Medina, 1948): A highly diverse parasite is here to stay. PLoS Pathog. 2017;13:e1006303. PubMed PMC
Paranaiba L.F., de Assis R.R., Nogueira P.M., Torrecilhas A.C., Campos J.H., Silveira A.C., Martins-Filho O.A., Pessoa N.L., Campos M.A., Parreiras P.M., et al. Leishmania enriettii: Biochemical characterisation of lipophosphoglycans (LPGs) and glycoinositolphospholipids (GIPLs) and infectivity to Cavia porcellus. Parasit. Vectors. 2015;8:31. doi: 10.1186/s13071-015-0633-8. PubMed DOI PMC
De Assis R.R., Ibraim I.C., Nogueira P.M., Soares R.P., Turco S.J. Glycoconjugates in New World species of Leishmania: Polymorphisms in lipophosphoglycan and glycoinositolphospholipids and interaction with hosts. Biochim. Biophys. Acta. 2012;1820:1354–1365. doi: 10.1016/j.bbagen.2011.11.001. PubMed DOI
Albanaz A.T.S., Gerasimov E.S., Shaw J.J., Sádlová J., Lukeš J., Volf P., Opperdoes F.R., Kostygov A.Y., Butenko A., Yurchenko V. Genome analysis of Endotrypanum and Porcisia spp.; closest phylogenetic relatives of Leishmania, highlights the role of amastins in shaping pathogenicity. Genes. 2021;12:444. doi: 10.3390/genes12030444. PubMed DOI PMC
Imamura H., Monsieurs P., Jara M., Sanders M., Maes I., Vanaerschot M., Berriman M., Cotton J.A., Dujardin J.C., Domagalska M.A. Evaluation of whole genome amplification and bioinformatic methods for the characterization of Leishmania genomes at a single cell level. Sci. Rep. 2020;10:15043. doi: 10.1038/s41598-020-71882-2. PubMed DOI PMC
Dia A., Cheeseman I.H. Single-cell genome sequencing of protozoan parasites. Trends Parasitol. 2021 doi: 10.1016/j.pt.2021.05.013. in press. PubMed DOI PMC
Akhoundi M., Kuhls K., Cannet A., Votýpka J., Marty P., Delaunay P., Sereno D. A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLoS Negl. Trop. Dis. 2016;10:e0004349. doi: 10.1371/journal.pntd.0004349. PubMed DOI PMC
Klatt S., Simpson L., Maslov D.A., Konthur Z. Leishmania tarentolae: Taxonomic classification and its application as a promising biotechnological expression host. PLoS Negl. Trop. Dis. 2019;13:e0007424. doi: 10.1371/journal.pntd.0007424. PubMed DOI PMC
Telford S.R. Hemoparasites of the Reptilia: Color Atlas and Text. Volume xv. CRC Press; Boca Raton, FL, USA: 2009. 376p
Espinosa O.A., Serrano M.G., Camargo E.P., Teixeira M.M., Shaw J.J. An appraisal of the taxonomy and nomenclature of trypanosomatids presently classified as Leishmania and Endotrypanum. Parasitology. 2018;145:430–442. doi: 10.1017/S0031182016002092. PubMed DOI
Warren W.C., Akopyants N.S., Dobson D.E., Hertz-Fowler C., Lye L.F., Myler P.J., Ramasamy G., Shanmugasundram A., Silva-Franco F., Steinbiss S., et al. Genome assemblies across the diverse evolutionary spectrum of Leishmania protozoan parasites. bioRxiv. 2021 doi: 10.1101/2021.05.29.446295. PubMed DOI PMC
Batra D., Lin W., Narayanan V., Rowe L.A., Sheth M., Zheng Y., Loparev V., de Almeida M. Draft genome sequences of Leishmania (Leishmania) amazonensis, Leishmania (Leishmania) mexicana, and Leishmania (Leishmania) aethiopica, potential etiological agents of diffuse cutaneous leishmaniasis. Microbiol. Resour. Announc. 2019;8:e00269-19. doi: 10.1128/MRA.00269-19. PubMed DOI PMC
Almutairi H., Urbaniak M.D., Bates M.D., Jariyapan N., Al-Salem W.S., Dillon R.J., Bates P.A., Gatherer D. Chromosome-scale assembly of the complete genome sequence of Leishmania (Mundinia) martiniquensis, isolate LSCM1, strain LV760. Microbiol. Resour. Announc. 2021;10:e0005821. doi: 10.1128/MRA.00058-21. PubMed DOI PMC
Lin W., Batra D., Narayanan V., Rowe L.A., Sheth M., Zheng Y., Juieng P., Loparev V., de Almeida M. First draft genome sequence of Leishmania (Viannia) lainsoni strain 216–34, isolated from a Peruvian clinical case. Microbiol. Resour. Announc. 2019;8:e01524-18. doi: 10.1128/MRA.01524-18. PubMed DOI PMC
Runckel C., DeRisi J., Flenniken M.L. A draft genome of the honey bee trypanosomatid parasite Crithidia mellificae. PLoS ONE. 2014;9:e95057. doi: 10.1371/journal.pone.0095057. PubMed DOI PMC
Schmid-Hempel P., Aebi M., Barribeau S., Kitajima T., du Plessis L., Schmid-Hempel R., Zoller S. The genomes of Crithidia bombi and C. expoeki, common parasites of bumblebees. PLoS ONE. 2018;13:e0189738. doi: 10.1371/journal.pone.0189738. PubMed DOI PMC
Gerasimov E., Zemp N., Schmid-Hempel R., Schmid-Hempel P., Yurchenko V. Genomic variation among strains of Crithidia bombi and C. expoeki. mSphere. 2019;4:e00482-19. doi: 10.1128/mSphere.00482-19. PubMed DOI PMC
Ghosh S., Banerjee P., Sarkar A., Datta S., Chatterjee M. Coinfection of Leptomonas seymouri and Leishmania donovani in Indian leishmaniasis. J. Clin. Microbiol. 2012;50:2774–2778. doi: 10.1128/JCM.00966-12. PubMed DOI PMC
Flegontov P., Butenko A., Firsov S., Kraeva N., Eliáš M., Field M.C., Filatov D., Flegontova O., Gerasimov E.S., Hlaváčová J., et al. Genome of Leptomonas pyrrhocoris: A high-quality reference for monoxenous trypanosomatids and new insights into evolution of Leishmania. Sci. Rep. 2016;6:23704. doi: 10.1038/srep23704. PubMed DOI PMC
Filosa J.N., Berry C.T., Ruthel G., Beverley S.M., Warren W.C., Tomlinson C., Myler P.J., Dudkin E.A., Povelones M.L., Povelones M. Dramatic changes in gene expression in different forms of Crithidia fasciculata reveal potential mechanisms for insect-specific adhesion in kinetoplastid parasites. PLoS Negl. Trop. Dis. 2019;13:e0007570. doi: 10.1371/journal.pntd.0007570. PubMed DOI PMC
Ghobakhloo N., Motazedian M.H., Naderi S., Sepideh E. Isolation of Crithidia spp. from lesions of immunocompetent patients with suspected cutaneous leishmaniasis in Iran. Trop. Med. Int. Health. 2018;24:116–126. doi: 10.1111/tmi.13042. PubMed DOI
Zakharova A., Saura A., Butenko A., Podešvová L., Warmusová S., Kostygov A.Y., Nenarokova A., Lukeš J., Opperdoes F.R., Yurchenko V. A new model trypanosomatid Novymonas esmeraldas: Genomic perception of its "Candidatus Pandoraea novymonadis" endosymbiont. mBio. 2021;12:e01606-21. doi: 10.1128/mBio.01606-21. PubMed DOI PMC
Votýpka J., Klepetková H., Yurchenko V.Y., Horák A., Lukeš J., Maslov D.A. Cosmopolitan distribution of a trypanosomatid Leptomonas pyrrhocoris. Protist. 2012;163:616–631. doi: 10.1016/j.protis.2011.12.004. PubMed DOI
Kostygov A.Y., Grybchuk-Ieremenko A., Malysheva M.N., Frolov A.O., Yurchenko V. Molecular revision of the genus Wallaceina. Protist. 2014;165:594–604. doi: 10.1016/j.protis.2014.07.001. PubMed DOI
Ganyukova A.I., Zolotarev A.V., Frolov A.O. Geographical distribution and host range of monoxenous trypanosomatid Crithidia brevicula (Frolov et Malysheva, 1989) in the northern regions of Eurasia. Protistology. 2020;14:70–78. doi: 10.21685/1680-0826-2020-14-2-3. DOI
Kostygov A.Y., Yurchenko V. Revised classification of the subfamily Leishmaniinae (Trypanosomatidae) Folia Parasitol. 2017;64:020. doi: 10.14411/fp.2017.020. PubMed DOI
Marin C., Fabre S., Sanchez-Moreno M., Dollet M. Herpetomonas spp. isolated from tomato fruits (Lycopersicon esculentum) in southern Spain. Exp. Parasitol. 2007;116:88–90. doi: 10.1016/j.exppara.2006.11.003. PubMed DOI
Fiorini J.E., Takata C.S., Teofilo V.M., Nascimento L.C., Faria-e-Silva P.M., Soares M.J., Teixeira M.M., De Souza W. Morphological, biochemical and molecular characterization of Herpetomonas samuelpessoai camargoi n. subsp.; a trypanosomatid isolated from the flower of the squash Cucurbita moschata. J. Eukaryot. Microbiol. 2001;48:62–69. doi: 10.1111/j.1550-7408.2001.tb00416.x. PubMed DOI
Morio F., Reynes J., Dollet M., Pratlong F., Dedet J.P., Ravel C. Isolation of a protozoan parasite genetically related to the insect trypanosomatid Herpetomonas samuelpessoai from a human immunodeficiency virus-positive patient. J. Clin. Microbiol. 2008;46:3845–3847. doi: 10.1128/JCM.01098-08. PubMed DOI PMC
Porcel B.M., Denoeud F., Opperdoes F.R., Noel B., Madoui M.-A., Hammarton T.C., Field M.C., Da Silva C., Couloux A., Poulain J., et al. The streamlined genome of Phytomonas spp. relative to human pathogenic kinetoplastids reveals a parasite tailored for plants. PLoS Genet. 2014;10:e1004007. doi: 10.1371/journal.pgen.1004007. PubMed DOI PMC
Kořený L., Sobotka R., Kovářová J., Gnipová A., Flegontov P., Horváth A., Oborník M., Ayala F.J., Lukeš J. Aerobic kinetoplastid flagellate Phytomonas does not require heme for viability. Proc. Natl. Acad. Sci. USA. 2012;109:3808–3813. doi: 10.1073/pnas.1201089109. PubMed DOI PMC
Butler C.E., Jaskowska E., Kelly S. Genome sequence of Phytomonas françai, a cassava (Manihot esculenta) latex parasite. Genome Announc. 2017;5:e01266-16. doi: 10.1128/genomeA.01266-16. PubMed DOI PMC
Sloan M.A., Brooks K., Otto T.D., Sanders M.J., Cotton J.A., Ligoxygakis P. Transcriptional and genomic parallels between the monoxenous parasite Herpetomonas muscarum and Leishmania. PLoS Genet. 2019;15:e1008452. doi: 10.1371/journal.pgen.1008452. PubMed DOI PMC
Frolov A.O., Malysheva M.N., Ganyukova A.I., Spodareva V.V., Yurchenko V., Kostygov A.Y. Development of Phytomonas lipae sp. n. (Kinetoplastea: Trypanosomatidae) in the true bug Coreus marginatus (Heteroptera: Coreidae) and insights into the evolution of life cycles in the genus Phytomonas. PLoS ONE. 2019;14:e0214484. doi: 10.1371/journal.pone.0214484. PubMed DOI PMC
Seward E.A., Votýpka J., Kment P., Lukeš J., Kelly S. Description of Phytomonas oxycareni n. sp. from the salivary glands of Oxycarenus lavaterae. Protist. 2017;168:71–79. doi: 10.1016/j.protis.2016.11.002. PubMed DOI
Yurchenko V., Kostygov A., Havlová J., Grybchuk-Ieremenko A., Ševčíková T., Lukeš J., Ševčík J., Votýpka J. Diversity of trypanosomatids in cockroaches and the description of Herpetomonas tarakana sp. n. J. Eukaryot. Microbiol. 2016;63:198–209. doi: 10.1111/jeu.12268. PubMed DOI
Frolov A.O., Malysheva M.N., Yurchenko V., Kostygov A.Y. Back to monoxeny: Phytomonas nordicus descended from dixenous plant parasites. Eur. J. Protistol. 2016;52:1–10. doi: 10.1016/j.ejop.2015.08.002. PubMed DOI
Ganyukova A.I., Frolov A.O., Malysheva M.N., Spodareva V.V., Yurchenko V., Kostygov A.Y. A novel endosymbiont-containing trypanosomatid Phytomonas borealis sp. n. from the predatory bug Picromerus bidens (Heteroptera: Pentatomidae) Folia Parasitol. 2020;67:4. doi: 10.14411/fp.2020.004. PubMed DOI
Motta M.C., Martins A.C., de Souza S.S., Catta-Preta C.M., Silva R., Klein C.C., de Almeida L.G., de Lima Cunha O., Ciapina L.P., Brocchi M., et al. Predicting the proteins of Angomonas deanei, Strigomonas culicis and their respective endosymbionts reveals new aspects of the trypanosomatidae family. PLoS ONE. 2013;8:e60209. doi: 10.1371/journal.pone.0060209. PubMed DOI PMC
Morales J., Kokkori S., Weidauer D., Chapman J., Goltsman E., Rokhsar D., Grossman A.R., Nowack E.C. Development of a toolbox to dissect host-endosymbiont interactions and protein trafficking in the trypanosomatid Angomonas deanei. BMC Evol. Biol. 2016;16:247. doi: 10.1186/s12862-016-0820-z. PubMed DOI PMC
Skalický T., Alves J.M.P., Morais A.C., Režnarová J., Butenko A., Lukeš J., Serrano M.G., Buck G.A., Teixeira M.M.G., Camargo E.P., et al. Endosymbiont capture, a repeated process of endosymbiont transfer with replacement in trypanosomatids Angomonas spp. Pathogens. 2021;10:702. doi: 10.3390/pathogens10060702. PubMed DOI PMC
Skalický T., Dobáková E., Wheeler R.J., Tesařová M., Flegontov P., Jirsová D., Votýpka J., Yurchenko V., Ayala F.J., Lukeš J. Extensive flagellar remodeling during the complex life cycle of Paratrypanosoma, an early-branching trypanosomatid. Proc. Natl. Acad. Sci. USA. 2017;114:11757–11762. doi: 10.1073/pnas.1712311114. PubMed DOI PMC
Opperdoes F.R., Butenko A., Flegontov P., Yurchenko V., Lukeš J. Comparative metabolism of free-living Bodo saltans and parasitic trypanosomatids. J. Eukaryot. Microbiol. 2016;63:657–678. doi: 10.1111/jeu.12315. PubMed DOI
Opperdoes F.R., Butenko A., Zakharova A., Gerasimov E.S., Zimmer S.L., Lukeš J., Yurchenko V. The remarkable metabolism of Vickermania ingenoplastis: Genomic predictions. Pathogens. 2021;10:68. doi: 10.3390/pathogens10010068. PubMed DOI PMC
Frolov A.O., Kostygov A.Y., Yurchenko V. Development of monoxenous trypanosomatids and phytomonads in insects. Trends Parasitol. 2021;37:538–551. doi: 10.1016/j.pt.2021.02.004. PubMed DOI
Frolov A.O., Malysheva M.N., Ganyukova A.I., Spodareva V.V., Kralova J., Yurchenko V., Kostygov A.Y. If host is refractory, insistent parasite goes berserk: Trypanosomatid Blastocrithidia raabei in the dock bug Coreus marginatus. PLoS ONE. 2020;15:e0227832. doi: 10.1371/journal.pone.0227832. PubMed DOI PMC
Frolov A.O., Malysheva M.N., Ganyukova A.I., Yurchenko V., Kostygov A.Y. Obligate development of Blastocrithidia papi (Trypanosomatidae) in the Malpighian tubules of Pyrrhocoris apterus (Hemiptera) and coordination of host-parasite life cycles. PLoS ONE. 2018;13:e0204467. PubMed PMC
Hamilton P.T., Votýpka J., Dostalova A., Yurchenko V., Bird N.H., Lukeš J., Lemaitre B., Perlman S.J. Infection dynamics and immune response in a newly described Drosophila-trypanosomatid association. mBio. 2015;6:e01356-15. doi: 10.1128/mBio.01356-15. PubMed DOI PMC
Svobodová M., Zídková L., Čepička I., Oborník M., Lukeš J., Votýpka J. Sergeia podlipaevi gen. nov.; sp. nov. (Trypanosomatidae, Kinetoplastida), a parasite of biting midges (Ceratopogonidae, Diptera) Int. J. Syst. Evol. Microbiol. 2007;57(Pt 2):423–432. doi: 10.1099/ijs.0.64557-0. PubMed DOI
Dvorák V., Shaw J.J., Volf P. Parasite Biology: The Vectors. In: Bruschi F., Gradoni L., editors. The leishmaniases: Old Neglected Tropical Diseases. Springer; Cham, Switzerland: 2018. pp. 31–77.
Jackson A.P. The evolution of amastin surface glycoproteins in trypanosomatid parasites. Mol. Biol. Evol. 2010;27:33–45. doi: 10.1093/molbev/msp214. PubMed DOI PMC
Durante I.M., Butenko A., Rašková V., Charyyeva A., Svobodová M., Yurchenko V., Hashimi H., Lukeš J. Large-scale phylogenetic analysis of trypanosomatid adenylate cyclases reveals associations with extracellular lifestyle and host-pathogen interplay. Genome Biol. Evol. 2020;12:2403–2416. doi: 10.1093/gbe/evaa226. PubMed DOI PMC
De Souza D.A.S., Pavoni D.P., Krieger M.A., Ludwig A. Evolutionary analyses of myosin genes in trypanosomatids show a history of expansion, secondary losses and neofunctionalization. Sci. Rep. 2018;8:1376. doi: 10.1038/s41598-017-18865-y. PubMed DOI PMC
Bianchi C., Kostygov A.Y., Kraeva N., Záhonová K., Horáková E., Sobotka R., Lukeš J., Yurchenko V. An enigmatic catalase of Blastocrithidia. Mol. Biochem. Parasitol. 2019;232:111199. doi: 10.1016/j.molbiopara.2019.111199. PubMed DOI
Kraeva N., Horáková E., Kostygov A., Kořený L., Butenko A., Yurchenko V., Lukeš J. Catalase in Leishmaniinae: With me or against me? Infect. Genet. Evol. 2017;50:121–127. doi: 10.1016/j.meegid.2016.06.054. PubMed DOI
Jackson A.P., Vaughan S., Gull K. Evolution of tubulin gene arrays in trypanosomatid parasites: Genomic restructuring in Leishmania. BMC Genom. 2006;7:261. doi: 10.1186/1471-2164-7-261. PubMed DOI PMC
Silva Pereira S., Jackson A.P. UDP-glycosyltransferase genes in trypanosomatid genomes have diversified independently to meet the distinct developmental needs of parasite adaptations. BMC Evol. Biol. 2018;18:31. doi: 10.1186/s12862-018-1149-6. PubMed DOI PMC
Dobson D.E., Scholtes L.D., Valdez K.E., Sullivan D.R., Mengeling B.J., Cilmi S., Turco S.J., Beverley S.M. Functional identification of galactosyltransferases (SCGs) required for species-specific modifications of the lipophosphoglycan adhesin controlling Leishmania major-sand fly interactions. J. Biol. Chem. 2003;278:15523–15531. doi: 10.1074/jbc.M301568200. PubMed DOI
Beverley S.M., Turco S.J. Lipophosphoglycan (LPG) and the identification of virulence genes in the protozoan parasite Leishmania. Trends Microbiol. 1998;6:35–40. doi: 10.1016/S0966-842X(97)01180-3. PubMed DOI
Sacks D.L. Leishmania-sand fly interactions controlling species-specific vector competence. Cell Microbiol. 2001;3:189–196. doi: 10.1046/j.1462-5822.2001.00115.x. PubMed DOI
Soares R.P., Margonari C., Secundino N.C., Macedo M.E., da Costa S.M., Rangel E.F., Pimenta P.F., Turco S.J. Differential midgut attachment of Leishmania (Viannia) braziliensis in the sand flies Lutzomyia (Nyssomyia) whitmani and Lutzomyia (Nyssomyia) intermedia. J. Biomed. Biotechnol. 2010;2010:439174. doi: 10.1155/2010/439174. PubMed DOI PMC
Azevedo L.G., de Queiroz A.T.L., Barral A., Santos L.A., Ramos P.I.P. Proteins involved in the biosynthesis of lipophosphoglycan in Leishmania: A comparative genomic and evolutionary analysis. Parasit. Vectors. 2020;13:44. doi: 10.1186/s13071-020-3914-9. PubMed DOI PMC
Butenko A., Vieira T.D.S., Frolov A.O., Opperdoes F.R., Soares R.P., Kostygov A.Y., Lukeš J., Yurchenko V. Leptomonas pyrrhocoris: Genomic insight into parasite’s physiology. Curr. Genom. 2018;19:150–156. doi: 10.2174/1389202918666170815143331. PubMed DOI PMC
Díaz-Viraqué F., Greif G., Berna L., Robello C. Nanopore long read DNA sequencing of protozoan parasites: Hybrid genome assembly of Trypanosoma cruzi. In: de Pablos L.M., Sotillo J., editors. Parasite Genom. Humana; New York, NY, USA: 2021. pp. 3–13. PubMed
Müller L.S.M., Cosentino R.O., Förstner K.U., Guizetti J., Wedel C., Kaplan N., Janzen C.J., Arampatzi P., Vogel J., Steinbiss S., et al. Genome organization and DNA accessibility control antigenic variation in trypanosomes. Nature. 2018;563:121–125. doi: 10.1038/s41586-018-0619-8. PubMed DOI PMC
Davey J.W., Catta-Preta C.M.C., James S., Forrester S., Motta M.C.M., Ashton P.D., Mottram J.C. Chromosomal assembly of the nuclear genome of the endosymbiont-bearing trypanosomatid Angomonas deanei. G3 (Bethesda) 2021;11:jkaa018. doi: 10.1093/g3journal/jkaa018. PubMed DOI PMC
Grybchuk D., Akopyants N.S., Kostygov A.Y., Konovalovas A., Lye L.F., Dobson D.E., Zangger H., Fasel N., Butenko A., Frolov A.O., et al. Viral discovery and diversity in trypanosomatid protozoa with a focus on relatives of the human parasite Leishmania. Proc. Natl. Acad. Sci. USA. 2018;115:E506–E515. doi: 10.1073/pnas.1717806115. PubMed DOI PMC
Gerasimov E.S., Gasparyan A.A., Kaurov I., Tichý B., Logacheva M.D., Kolesnikov A.A., Lukeš J., Yurchenko V., Zimmer S.L., Flegontov P. Trypanosomatid mitochondrial RNA editing: Dramatically complex transcript repertoires revealed with a dedicated mapping tool. Nucleic Acids Res. 2018;46:765–781. doi: 10.1093/nar/gkx1202. PubMed DOI PMC
Cooper S., Wadsworth E.S., Ochsenreiter T., Ivens A., Savill N.J., Schnaufer A. Assembly and annotation of the mitochondrial minicircle genome of a differentiation-competent strain of Trypanosoma brucei. Nucleic Acids Res. 2019;47:11304–11325. doi: 10.1093/nar/gkz928. PubMed DOI PMC
Li S.J., Zhang X., Lukeš J., Li B.Q., Wang J.F., Qu L.H., Hide G., Lai D.H., Lun Z.R. Novel organization of mitochondrial minicircles and guide RNAs in the zoonotic pathogen Trypanosoma lewisi. Nucleic Acids Res. 2020;48:9747–9761. doi: 10.1093/nar/gkaa700. PubMed DOI PMC
Greif G., Rodriguez M., Reyna-Bello A., Robello C., Alvarez-Valin F. Kinetoplast adaptations in American strains from Trypanosoma vivax. Mutat. Res. 2015;773:69–82. doi: 10.1016/j.mrfmmm.2015.01.008. PubMed DOI
Callejas-Hernández F., Herreros-Cabello A., Del Moral-Salmoral J., Fresno M., Gironès N. The complete mitochondrial DNA of Trypanosoma cruzi: Maxicircles and minicircles. Front. Cell Infect. Microbiol. 2021;11:672448. doi: 10.3389/fcimb.2021.672448. PubMed DOI PMC
Camacho E., Rastrojo A., Sanchiz A., Gonzalez-de la Fuente S., Aguado B., Requena J.M. Leishmania mitochondrial genomes: Maxicircle structure and heterogeneity of minicircles. Genes. 2019;10:758. doi: 10.3390/genes10100758. PubMed DOI PMC
Gerasimov E.S., Gasparyan A.A., Afonin D.A., Zimmer S.L., Kraeva N., Lukeš J., Yurchenko V., Kolesnikov A. Complete minicircle genome of Leptomonas pyrrhocoris reveals sources of its non-canonical mitochondrial RNA editing events. Nucleic Acids Res. 2021;49:3354–3370. doi: 10.1093/nar/gkab114. PubMed DOI PMC
Rusman F., Floridia-Yapur N., Tomasini N., Diosque P. Guide RNA repertoires in the main lineages of Trypanosoma cruzi: High diversity and variable redundancy among strains. Front. Cell Infect. Microbiol. 2021;11:663416. doi: 10.3389/fcimb.2021.663416. PubMed DOI PMC
Gerasimov E.S., Kostygov A.Y., Yan S., Kolesnikov A.A. From cryptogene to gene? ND8 editing domain reduction in insect trypanosomatids. Eur. J. Protistol. 2012;48:185–193. doi: 10.1016/j.ejop.2011.09.002. PubMed DOI
Králová J., Grybchuk-Ieremenko A., Votýpka J., Novotný V., Kment P., Lukeš J., Yurchenko V., Kostygov A.Y. Insect trypanosomatids in Papua New Guinea: High endemism and diversity. Int. J. Parasitol. 2019;49:1075–1086. doi: 10.1016/j.ijpara.2019.09.004. PubMed DOI
Týč J., Votýpka J., Klepetková H., Šuláková H., Jirků M., Lukeš J. Growing diversity of trypanosomatid parasites of flies (Diptera: Brachycera): Frequent cosmopolitism and moderate host specificity. Mol. Phylogenet. Evol. 2013;69:255–264. doi: 10.1016/j.ympev.2013.05.024. PubMed DOI
Kinetoplast Genome of Leishmania spp. Is under Strong Purifying Selection
Comparative Analysis of Three Trypanosomatid Catalases of Different Origin