Leishmania guyanensis M4147 as a new LRV1-bearing model parasite: Phosphatidate phosphatase 2-like protein controls cell cycle progression and intracellular lipid content
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35749562
PubMed Central
PMC9232130
DOI
10.1371/journal.pntd.0010510
PII: PNTD-D-22-00362
Knihovny.cz E-zdroje
- MeSH
- buněčný cyklus MeSH
- fosfatidátfosfatasa genetika MeSH
- Leishmania guyanensis * MeSH
- Leishmaniavirus MeSH
- leishmanióza kožní * MeSH
- lipidy MeSH
- myši MeSH
- paraziti * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fosfatidátfosfatasa MeSH
- lipidy MeSH
Leishmaniasis is a parasitic vector-borne disease caused by the protistan flagellates of the genus Leishmania. Leishmania (Viannia) guyanensis is one of the most common causative agents of the American tegumentary leishmaniasis. It has previously been shown that L. guyanensis strains that carry the endosymbiotic Leishmania RNA virus 1 (LRV1) cause more severe form of the disease in a mouse model than those that do not. The presence of the virus was implicated into the parasite's replication and spreading. In this respect, studying the molecular mechanisms of cellular control of viral infection is of great medical importance. Here, we report ~30.5 Mb high-quality genome assembly of the LRV1-positive L. guyanensis M4147. This strain was turned into a model by establishing the CRISPR-Cas9 system and ablating the gene encoding phosphatidate phosphatase 2-like (PAP2L) protein. The orthologue of this gene is conspicuously absent from the genome of an unusual member of the family Trypanosomatidae, Vickermania ingenoplastis, a species with mostly bi-flagellated cells. Our analysis of the PAP2L-null L. guyanensis showed an increase in the number of cells strikingly resembling the bi-flagellated V. ingenoplastis, likely as a result of the disruption of the cell cycle, significant accumulation of phosphatidic acid, and increased virulence compared to the wild type cells.
De Duve Institute Université Catholique de Louvain Brussels Belgium
Department of Parasitology Faculty of Science Charles University Prague Czech Republic
Faculty of Natural Sciences Comenius University Bratislava Slovakia
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Life Science Research Centre Faculty of Science University of Ostrava Ostrava Czech Republic
Zobrazit více v PubMed
Maslov DA, Opperdoes FR, Kostygov AY, Hashimi H, Lukeš J, Yurchenko V Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology. 2019;146: 1–27. doi: 10.1017/S0031182018000951 PubMed DOI
Lukeš J, Butenko A, Hashimi H, Maslov DA, Votýpka J, Yurchenko V Trypanosomatids are much more than just trypanosomes: clues from the expanded family tree. Trends Parasitol. 2018;34: 466–480. doi: 10.1016/j.pt.2018.03.002 PubMed DOI
Butenko A, Hammond M, Field MC, Ginger ML, Yurchenko V, Lukeš J Reductionist pathways for parasitism in euglenozoans? Expanded datasets provide new insights. Trends Parasitol. 2021;37: 100–116. doi: 10.1016/j.pt.2020.10.001 PubMed DOI
Lukeš J, Skalický T, Týč J, Votýpka J, Yurchenko V Evolution of parasitism in kinetoplastid flagellates. Mol Biochem Parasitol. 2014;195: 115–122. doi: 10.1016/j.molbiopara.2014.05.007 PubMed DOI
Stuart K, Brun R, Croft S, Fairlamb A, Gurtler RE, McKerrow J, et al.. Kinetoplastids: related protozoan pathogens, different diseases. J Clin Invest. 2008;118: 1301–1310. doi: 10.1172/JCI33945 PubMed DOI PMC
Camargo EP Phytomonas and other trypanosomatid parasites of plants and fruit. Adv Parasitol. 1999;42: 29–112. doi: 10.1016/s0065-308x(08)60148-7 PubMed DOI
Kostygov AY, Karnkowska A, Votýpka J, Tashyreva D, Maciszewski K, Yurchenko V, et al.. Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biol. 2021;11: 200407. doi: 10.1098/rsob.200407 PubMed DOI PMC
Bruschi F, Gradoni L (2018) The leishmaniases: old neglected tropical diseases. Cham, Switzerland: Springer. 245 pp. p.
WHO (2020) Leishmaniasis. Available from: https://www.who.int/en/news-room/fact-sheets/detail/leishmaniasis.
Akhoundi M, Kuhls K, Cannet A, Votýpka J, Marty P, Delaunay P, et al.. A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLoS Negl Trop Dis. 2016;10: e0004349. doi: 10.1371/journal.pntd.0004349 PubMed DOI PMC
Bečvář T, Vojtková B, Siriyasatien P, Votýpka J, Modrý D, Jahn P, et al.. Experimental transmission of Leishmania (Mundinia) parasites by biting midges (Diptera: Ceratopogonidae). PLoS Pathog. 2021;17: e1009654. doi: 10.1371/journal.ppat.1009654 PubMed DOI PMC
Borges AF, Gomes RS, Ribeiro-Dias F Leishmania (Viannia) guyanensis in tegumentary leishmaniasis. Pathog Dis. 2018;76: fty025. doi: 10.1093/femspd/fty025 PubMed DOI
Floch H [Leishmania tropica guyanensis n.sp., pathogenic agent of Guyanese and Central American cutaneous laishmaniasis]. Bull Soc Pathol Exot Filiales. 1954;47: 784–787. PubMed
Lainson R, Shaw JJ, Ward RD, Ready PD, Naiff RD Leishmaniasis in Brazil: XIII. Isolation of Leishmania from armadillos (Dasypus novemcinctus), and observations on the epidemiology of cutaneous leishmaniasis in north Para State. Trans R Soc Trop Med Hyg. 1979;73: 239–242. doi: 10.1016/0035-9203(79)90225-6 PubMed DOI
Lainson R, Shaw JJ, Povoa M The importance of edentates (sloths and anteaters) as primary reservoirs of Leishmania braziliensis guyanensis, causative agent of "pianbois" in north Brazil. Trans R Soc Trop Med Hyg. 1981;75: 611–612. doi: 10.1016/0035-9203(81)90222-4 PubMed DOI
Quaresma PF, Rego FD, Botelho HA, da Silva SR, Moura Junior AJ, Teixeira Neto RG, et al.. Wild, synanthropic and domestic hosts of Leishmania in an endemic area of cutaneous leishmaniasis in Minas Gerais State, Brazil. Trans R Soc Trop Med Hyg. 2011;105: 579–585. doi: 10.1016/j.trstmh.2011.07.005 PubMed DOI
Widmer G, Comeau AM, Furlong DB, Wirth DF, Patterson JL Characterization of a RNA virus from the parasite Leishmania. Proc Natl Acad Sci U S A. 1989;86: 5979–5982. doi: 10.1073/pnas.86.15.5979 PubMed DOI PMC
Tarr PI, Aline RF Jr., Smiley BL, Scholler J, Keithly J, Stuart K LR1: a candidate RNA virus of Leishmania. Proc Natl Acad Sci U S A. 1988;85: 9572–9575. doi: 10.1073/pnas.85.24.9572 PubMed DOI PMC
Ives A, Ronet C, Prevel F, Ruzzante G, Fuertes-Marraco S, Schutz F, et al.. Leishmania RNA virus controls the severity of mucocutaneous leishmaniasis. Science. 2011;331: 775–778. doi: 10.1126/science.1199326 PubMed DOI PMC
Rossi M, Castiglioni P, Hartley MA, Eren RO, Prevel F, Desponds C, et al.. Type I interferons induced by endogenous or exogenous viral infections promote metastasis and relapse of leishmaniasis. Proc Natl Acad Sci U S A. 2017;114: 4987–4992. doi: 10.1073/pnas.1621447114 PubMed DOI PMC
Brettmann EA, Shaik JS, Zangger H, Lye LF, Kuhlmann FM, Akopyants NS, et al.. Tilting the balance between RNA interference and replication eradicates Leishmania RNA virus 1 and mitigates the inflammatory response. Proc Natl Acad Sci U S A. 2016;113: 11998–12005. doi: 10.1073/pnas.1615085113 PubMed DOI PMC
Zangger H, Hailu A, Desponds C, Lye LF, Akopyants NS, Dobson DE, et al.. Leishmania aethiopica field isolates bearing an endosymbiontic dsRNA virus induce pro-inflammatory cytokine response. PLOS Negl Trop Dis. 2014;8: e2836. doi: 10.1371/journal.pntd.0002836 PubMed DOI PMC
Bourreau E, Ginouves M, Prevot G, Hartley MA, Gangneux JP, Robert-Gangneux F, et al.. Presence of Leishmania RNA Virus 1 in Leishmania guyanensis increases the risk of first-line treatment failure and symptomatic relapse. J Infect Dis. 2016;213: 105–111. doi: 10.1093/infdis/jiv355 PubMed DOI
Adaui V, Lye LF, Akopyants NS, Zimic M, Llanos-Cuentas A, Garcia L, et al.. Association of the endobiont double-stranded RNA virus LRV1 with treatment failure for human leishmaniasis caused by Leishmania braziliensis in Peru and Bolivia. J Infect Dis. 2016;213: 112–121. doi: 10.1093/infdis/jiv354 PubMed DOI PMC
Coughlan S, Taylor AS, Feane E, Sanders M, Schonian G, Cotton JA, et al.. Leishmania naiffi and Leishmania guyanensis reference genomes highlight genome structure and gene evolution in the Viannia subgenus. R Soc Open Sci. 2018;5: 172212. doi: 10.1098/rsos.172212 PubMed DOI PMC
Batra D, Lin W, Rowe LA, Sheth M, Zheng Y, Loparev V, et al.. Draft genome sequence of French Guiana Leishmania (Viannia) guyanensis strain 204–365, assembled using long reads. Microbiol Resour Announc. 2018;7: e01421–01418. doi: 10.1128/MRA.01421-18 PubMed DOI PMC
Harkins KM, Schwartz RS, Cartwright RA, Stone AC Phylogenomic reconstruction supports supercontinent origins for Leishmania. Infect Genet Evol. 2016;38: 101–109. doi: 10.1016/j.meegid.2015.11.030 PubMed DOI
Yurchenko V, Butenko A, Kostygov AY Genomics of Trypanosomatidae: where we stand and what needs to be done? Pathogens. 2021;10: 1124. doi: 10.3390/pathogens10091124 PubMed DOI PMC
Beneke T, Gluenz E (2019) LeishGEdit: a method for rapid gene knockout and tagging using CRISPR-Cas9. In: Clos J, editor. Leishmania. New York, NY: Humana Press. pp. 189–210. PubMed
Yagoubat A, Corrales RM, Bastien P, Leveque MF, Sterkers Y Gene editing in trypanosomatids: tips and tricks in the CRISPR-Cas9 era. Trends Parasitol. 2020;36: 745–760. doi: 10.1016/j.pt.2020.06.005 PubMed DOI
Sollelis L, Ghorbal M, MacPherson CR, Martins RM, Kuk N, Crobu L, et al.. First efficient CRISPR-Cas9-mediated genome editing in Leishmania parasites. Cell Microbiol. 2015;17: 1405–1412. doi: 10.1111/cmi.12456 PubMed DOI
Ishemgulova A, Hlaváčová J, Majerová K, Butenko A, Lukeš J, Votýpka J, et al.. CRISPR/Cas9 in Leishmania mexicana: a case study of LmxBTN1. PLoS One. 2018;13: e0192723. doi: 10.1371/journal.pone.0192723 PubMed DOI PMC
Roberts SC The genetic toolbox for Leishmania parasites. Bioeng Bugs. 2011;2: 320–326. doi: 10.4161/bbug.2.6.18205 PubMed DOI PMC
Opperdoes FR, Butenko A, Zakharova A, Gerasimov ES, Zimmer SL, Lukeš J, et al.. The remarkable metabolism of Vickermania ingenoplastis: genomic predictions. Pathogens. 2021;10: 68. doi: 10.3390/pathogens10010068 PubMed DOI PMC
Kostygov A, Frolov AO, Malysheva MN, Ganyukova AI, Chistyakova LV, Tashyreva D, et al.. Vickermania gen. nov., trypanosomatids that use two joined flagella to resist midgut peristaltic flow within the fly host. BMC Biol. 2020;18: 187. doi: 10.1186/s12915-020-00916-y PubMed DOI PMC
Kok BP, Venkatraman G, Capatos D, Brindley DN Unlike two peas in a pod: lipid phosphate phosphatases and phosphatidate phosphatases. Chem Rev. 2012;112: 5121–5146. doi: 10.1021/cr200433m PubMed DOI
Chae M, Han GS, Carman GM The Saccharomyces cerevisiae actin patch protein App1p is a phosphatidate phosphatase enzyme. J Biol Chem. 2012;287: 40186–40196. doi: 10.1074/jbc.M112.421776 PubMed DOI PMC
Rush JS, Cho SK, Jiang S, Hofmann SL, Waechter CJ Identification and characterization of a cDNA encoding a dolichyl pyrophosphate phosphatase located in the endoplasmic reticulum of mammalian cells. J Biol Chem. 2002;277: 45226–45234. doi: 10.1074/jbc.M207076200 PubMed DOI
Comba S, Menendez-Bravo S, Arabolaza A, Gramajo H Identification and physiological characterization of phosphatidic acid phosphatase enzymes involved in triacylglycerol biosynthesis in Streptomyces coelicolor. Microb Cell Fact. 2013;12: 9. doi: 10.1186/1475-2859-12-9 PubMed DOI PMC
Oshiro J, Han GS, Carman GM Diacylglycerol pyrophosphate phosphatase in Saccharomyces cerevisiae. Biochim Biophys Acta. 2003;1635: 1–9. doi: 10.1016/j.bbalip.2003.10.002 PubMed DOI
Jasinska R, Zhang QX, Pilquil C, Singh I, Xu J, Dewald J, et al.. Lipid phosphate phosphohydrolase-1 degrades exogenous glycerolipid and sphingolipid phosphate esters. Biochem J. 1999;340: 677–686. PubMed PMC
Sigal YJ, McDermott MI, Morris AJ Integral membrane lipid phosphatases/phosphotransferases: common structure and diverse functions. Biochem J. 2005;387: 281–293. doi: 10.1042/BJ20041771 PubMed DOI PMC
Waggoner DW, Gomez-Munoz A, Dewald J, Brindley DN Phosphatidate phosphohydrolase catalyzes the hydrolysis of ceramide 1-phosphate, lysophosphatidate, and sphingosine 1-phosphate. J Biol Chem. 1996;271: 16506–16509. doi: 10.1074/jbc.271.28.16506 PubMed DOI
Faulkner A, Chen X, Rush J, Horazdovsky B, Waechter CJ, Carman GM, et al.. The LPP1 and DPP1 gene products account for most of the isoprenoid phosphate phosphatase activities in Saccharomyces cerevisiae. J Biol Chem. 1999;274: 14831–14837. doi: 10.1074/jbc.274.21.14831 PubMed DOI
Roberts R, Sciorra VA, Morris AJ Human type 2 phosphatidic acid phosphohydrolases. Substrate specificity of the type 2a, 2b, and 2c enzymes and cell surface activity of the 2a isoform. J Biol Chem. 1998;273: 22059–22067. doi: 10.1074/jbc.273.34.22059 PubMed DOI
Morris KE, Schang LM, Brindley DN Lipid phosphate phosphatase-2 activity regulates S-phase entry of the cell cycle in Rat2 fibroblasts. J Biol Chem. 2006;281: 9297–9306. doi: 10.1074/jbc.M511710200 PubMed DOI
Kumar Sah R, Garg S, Dangi P, Ponnusamy K, Singh S Phosphatidic acid homeostasis regulated by a type-2 phosphatidic acid phosphatase represents a novel druggable target in malaria intervention. Cell Death Discov. 2019;5: 107. doi: 10.1038/s41420-019-0187-1 PubMed DOI PMC
Gimenez AM, Santander VS, Villasuso AL, Pasquare SJ, Giusto NM, Machado EE Regulation of phosphatidic acid levels in Trypanosoma cruzi. Lipids. 2011;46: 969–979. doi: 10.1007/s11745-011-3577-6 PubMed DOI
Opperdoes FR, Butenko A, Flegontov P, Yurchenko V, Lukeš J Comparative metabolism of free-living Bodo saltans and parasitic trypanosomatids. J Eukaryot Microbiol. 2016;63: 657–678. doi: 10.1111/jeu.12315 PubMed DOI
Opperdoes FR, Borst P Localization of nine glycolytic enzymes in a microbody-like organelle in Trypanosoma brucei: the glycosome. FEBS Lett. 1977;80: 360–364. doi: 10.1016/0014-5793(77)80476-6 PubMed DOI
Michels PAM, Gualdrón-López M Biogenesis and metabolic homeostasis of trypanosomatid glycosomes: new insights and new questions. J Eukaryot Microbiol. 2022: e12897. doi: 10.1111/jeu.12897 PubMed DOI
Kraeva N, Horáková E, Kostygov A, Kořený L, Butenko A, Yurchenko V, et al.. Catalase in Leishmaniinae: with me or against me? Infect Genet Evol. 2017;50: 121–127. doi: 10.1016/j.meegid.2016.06.054 PubMed DOI
Kořený L, Oborník M, Horáková E, Waller RF, Lukeš J The convoluted history of haem biosynthesis. Biol Rev Camb Philos Soc. 2022;97: 141–162. doi: 10.1111/brv.12794 PubMed DOI
Opperdoes F, Michels PA (2008) The metabolic repertoire of Leishmania and implications for drug discovery. In: Myler P, Fasel N, editors. Leishmania: after the genome. Norfolk, UK: Caister Academic Press. pp. 123–158.
van Hellemond JJ, Opperdoes FR, Tielens AG Trypanosomatidae produce acetate via a mitochondrial acetate:succinate CoA transferase. Proc Natl Acad Sci U S A. 1998;95: 3036–3041. doi: 10.1073/pnas.95.6.3036 PubMed DOI PMC
Millerioux Y, Morand P, Biran M, Mazet M, Moreau P, Wargnies M, et al.. ATP synthesis-coupled and -uncoupled acetate production from acetyl-CoA by mitochondrial acetate:succinate CoA-transferase and acetyl-CoA thioesterase in Trypanosoma. J Biol Chem. 2012;287: 17186–17197. doi: 10.1074/jbc.M112.355404 PubMed DOI PMC
Martin WF, Tielens AGM, Mentel M (2021) Mitochondria and anaerobic energy metabolism in eukaryotes: biochemistry and evolution. Düsseldorf, Germany: De Gruyter. 252 p.
Duarte M, Ferreira C, Khandpur GK, Flohr T, Zimmermann J, Castro H, et al.. Leishmania type II dehydrogenase is essential for parasite viability irrespective of the presence of an active complex I. Proc Natl Acad Sci U S A. 2021;118: e2103803118. doi: 10.1073/pnas.2103803118 PubMed DOI PMC
Čermáková P, Maďarová A, Baráth P, Bellová J, Yurchenko V, Horváth A Differences in mitochondrial NADH dehydrogenase activities in trypanosomatids. Parasitology. 2021;148: 1161–1170. doi: 10.1017/S0031182020002425 PubMed DOI PMC
Rainey PM, MacKenzie NE A carbon-13 nuclear magnetic resonance analysis of the products of glucose metabolism in Leishmania pifanoi amastigotes and promastigotes. Mol Biochem Parasitol. 1991;45: 307–315. doi: 10.1016/0166-6851(91)90099-r PubMed DOI
Flegontov P, Butenko A, Firsov S, Kraeva N, Eliáš M, Field MC, et al.. Genome of Leptomonas pyrrhocoris: a high-quality reference for monoxenous trypanosomatids and new insights into evolution of Leishmania. Sci Rep. 2016;6: 23704. doi: 10.1038/srep23704 PubMed DOI PMC
Hammond DJ, Aman RA, Wang CC The role of compartmentation and glycerol kinase in the synthesis of ATP within the glycosome of Trypanosoma brucei. J Biol Chem. 1985;260: 15646–15654. PubMed
Lee SH, Stephens JL, Englund PT A fatty-acid synthesis mechanism specialized for parasitism. Nat Rev Microbiol. 2007;5: 287–297. doi: 10.1038/nrmicro1617 PubMed DOI
Urbina JA Ergosterol biosynthesis and drug development for Chagas disease. Mem Inst Oswaldo Cruz. 2009;104 311–318. doi: 10.1590/s0074-02762009000900041 PubMed DOI
Beneke T, Demay F, Hookway E, Ashman N, Jeffery H, Smith J, et al.. Genetic dissection of a Leishmania flagellar proteome demonstrates requirement for directional motility in sand fly infections. PLoS Pathog. 2019;15: e1007828. doi: 10.1371/journal.ppat.1007828 PubMed DOI PMC
Beneke T, Madden R, Makin L, Valli J, Sunter J, Gluenz E A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids. R Soc Open Sci. 2017;4: 170095. doi: 10.1098/rsos.170095 PubMed DOI PMC
d’Avila-Levy CM, Bearzatto B, Ambroise J, Helaers R, Butenko A, Yurchenko V, et al.. First draft genome of the trypanosomatid Herpetomonas muscarum ingenoplastis through MinION Oxford Nanopore technology and Illumina sequencing. Trop Med Infect Dis. 2020;5: 25. doi: 10.3390/tropicalmed5010025 PubMed DOI PMC
Tian X, Auger R, Manat G, Kerff F, Mengin-Lecreulx D, Touze T Insight into the dual function of lipid phosphate phosphatase PgpB involved in two essential cell-envelope metabolic pathways in Escherichia coli. Sci Rep. 2020;10: 13209. doi: 10.1038/s41598-020-70047-5 PubMed DOI PMC
Carman GM, Han GS Roles of phosphatidate phosphatase enzymes in lipid metabolism. Trends Biochem Sci. 2006;31: 694–699. doi: 10.1016/j.tibs.2006.10.003 PubMed DOI PMC
Kamhawi S Phlebotomine sand flies and Leishmania parasites: friends or foes? Trends Parasitol. 2006;22: 439–445. doi: 10.1016/j.pt.2006.06.012 PubMed DOI
Dostálová A, Volf P Leishmania development in sand flies: parasite-vector interactions overview. Parasit Vectors. 2012;5: 276. doi: 10.1186/1756-3305-5-276 PubMed DOI PMC
Jamal Z, Martin A, Gomez-Munoz A, Brindley DN Plasma membrane fractions from rat liver contain a phosphatidate phosphohydrolase distinct from that in the endoplasmic reticulum and cytosol. J Biol Chem. 1991;266: 2988–2996. PubMed
Wang X, Devaiah SP, Zhang W, Welti R Signaling functions of phosphatidic acid. Prog Lipid Res. 2006;45: 250–278. doi: 10.1016/j.plipres.2006.01.005 PubMed DOI
Bullen HE, Jia Y, Yamaryo-Botte Y, Bisio H, Zhang O, Jemelin NK, et al.. Phosphatidic acid-mediated signaling regulates microneme secretion in Toxoplasma. Cell Host Microbe. 2016;19: 349–360. doi: 10.1016/j.chom.2016.02.006 PubMed DOI
Matthews KR 25 years of African trypanosome research: From description to molecular dissection and new drug discovery. Mol Biochem Parasitol. 2015;200: 30–40. doi: 10.1016/j.molbiopara.2015.01.006 PubMed DOI PMC
de Carvalho RVH, Lima-Junior DS, da Silva MVG, Dilucca M, Rodrigues TS, Horta CV, et al.. Leishmania RNA virus exacerbates leishmaniasis by subverting innate immunity via TLR3-mediated NLRP3 inflammasome inhibition. Nat Commun. 2019;10: 5273. doi: 10.1038/s41467-019-13356-2 PubMed DOI PMC
Lye LF, Owens K, Shi H, Murta SM, Vieira AC, Turco SJ, et al.. Retention and loss of RNA interference pathways in trypanosomatid protozoans. PLoS Pathog. 2010;6: e1001161. doi: 10.1371/journal.ppat.1001161 PubMed DOI PMC
Kuhlmann FM, Robinson JI, Bluemling GR, Ronet C, Fasel N, Beverley SM Antiviral screening identifies adenosine analogs targeting the endogenous dsRNA Leishmania RNA virus 1 (LRV1) pathogenicity factor. Proc Natl Acad Sci U S A. 2017;114: E811–E819. doi: 10.1073/pnas.1619114114 PubMed DOI PMC
Grybchuk D, Macedo DH, Kleschenko Y, Kraeva N, Lukashev AN, Bates PA, et al.. The first non-LRV RNA virus in Leishmania. Viruses. 2020;12: 168. doi: 10.3390/v12020168 PubMed DOI PMC
Yurchenko V, Lukeš J, Xu X, Maslov DA An integrated morphological and molecular approach to a new species description in the Trypanosomatidae: the case of Leptomonas podlipaevi n. sp., a parasite of Boisea rubrolineata (Hemiptera: Rhopalidae). J Eukaryot Microbiol. 2006;53: 103–111. doi: 10.1111/j.1550-7408.2005.00078.x PubMed DOI
Zakharova A, Saura A, Butenko A, Podešvová L, Warmusová S, Kostygov AY, et al.. A new model trypanosomatid Novymonas esmeraldas: genomic perception of its "Candidatus Pandoraea novymonadis" endosymbiont. mBio. 2021;12: e01606–01621. doi: 10.1128/mBio.01606-21 PubMed DOI PMC
Chen S, Zhou Y, Chen Y, Gu J Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34: i884–i890. doi: 10.1093/bioinformatics/bty560 PubMed DOI PMC
Andrews S (2019) FastQC: a quality control tool for high throughput sequence data.
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al.. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19: 455–477. doi: 10.1089/cmb.2012.0021 PubMed DOI PMC
Laetsch DR, Blaxter ML BlobTools: Interrogation of genome assemblies. F1000Research. 2017;6: 1287.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ Basic local alignment search tool. J Mol Biol. 1990;215: 403–410. doi: 10.1016/S0022-2836(05)80360-2 PubMed DOI
Bosi E, Donati B, Galardini M, Brunetti S, Sagot MF, Lio P, et al.. MeDuSa: a multi-draft based scaffolder. Bioinformatics. 2015;31: 2443–2451. doi: 10.1093/bioinformatics/btv171 PubMed DOI
Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, Carrington M, et al.. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. 2010;38: D457–462. doi: 10.1093/nar/gkp851 PubMed DOI PMC
Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, et al.. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience. 2012;1: 18. doi: 10.1186/2047-217X-1-18 PubMed DOI PMC
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al.. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20: 1297–1303. doi: 10.1101/gr.107524.110 PubMed DOI PMC
Alonge M, Lebeigle L, Kirsche M, Aganezov S, Wang X, Lippman ZB, et al.. Automated assembly scaffolding elevates a new tomato system for high-throughput genome editing. BioRxiv. 2021: doi: 10.1101/2021.1111.1118.469135v469131 PubMed DOI PMC
Llanes A, Restrepo CM, Del Vecchio G, Anguizola FJ, Lleonart R The genome of Leishmania panamensis: insights into genomics of the L. (Viannia) subgenus. Sci Rep. 2015;5: 8550. doi: 10.1038/srep08550 PubMed DOI PMC
Seppey M, Manni M, Zdobnov EM (2019) BUSCO: assessing genome assembly and annotation completeness. In: Kollmar M, editor. Gene prediction: methods and protocols. 2019/04/26 ed. New York, NY: Humana. pp. 227–245. PubMed
Peacock CS, Seeger K, Harris D, Murphy L, Ruiz JC, Quail MA, et al.. Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet. 2007;39: 839–847. doi: 10.1038/ng2053 PubMed DOI PMC
Yang LA, Chang YJ, Chen SH, Lin CY, Ho JM SQUAT: a Sequencing Quality Assessment Tool for data quality assessments of genome assemblies. BMC Genomics. 2019;19: 238. doi: 10.1186/s12864-019-5445-3 PubMed DOI PMC
Mikheenko A, Prjibelski A, Saveliev V, Antipov D, Gurevich A Versatile genome assembly evaluation with QUAST-LG. Bioinformatics. 2018;34: i142–i150. doi: 10.1093/bioinformatics/bty266 PubMed DOI PMC
Smit AFA, Hubley R, Green P (2015) RepeatMasker open-4.0.
Steinbiss S, Silva-Franco F, Brunk B, Foth B, Hertz-Fowler C, Berriman M, et al.. Companion: a web server for annotation and analysis of parasite genomes. Nucleic Acids Res. 2016;44: W29–34. doi: 10.1093/nar/gkw292 PubMed DOI PMC
Langmead B, Salzberg SL Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9: 357–359. doi: 10.1038/nmeth.1923 PubMed DOI PMC
Bushnell B, Rood J, Singer E BBMerge—accurate paired shotgun read merging via overlap. PLoS One. 2017;12: e0185056. doi: 10.1371/journal.pone.0185056 PubMed DOI PMC
Rimmer A, Phan H, Mathieson I, Iqbal Z, Twigg SR, Wilkie AO, et al.. Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications. Nat Genet. 2014;46: 912–918. doi: 10.1038/ng.3036 PubMed DOI PMC
Soderlund C, Nelson W, Shoemaker A, Paterson A SyMAP: A system for discovering and viewing syntenic regions of FPC maps. Genome Res. 2006;16: 1159–1168. doi: 10.1101/gr.5396706 PubMed DOI PMC
Katoh K, Standley DM MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30: 772–780. doi: 10.1093/molbev/mst010 PubMed DOI PMC
Capella-Gutiérrez S, Silla-Martinez JM, Gabaldon T trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25: 1972–1973. doi: 10.1093/bioinformatics/btp348 PubMed DOI PMC
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32: 268–274. doi: 10.1093/molbev/msu300 PubMed DOI PMC
Quang le S, Gascuel O, Lartillot N Empirical profile mixture models for phylogenetic reconstruction. Bioinformatics. 2008;24: 2317–2323. doi: 10.1093/bioinformatics/btn445 PubMed DOI
Le SQ, Dang CC, Gascuel O Modeling protein evolution with several amino acid replacement matrices depending on site rates. Mol Biol Evol. 2012;29: 2921–2936. doi: 10.1093/molbev/mss112 PubMed DOI
Evans J, Sullivan J Approximating model probabilities in Bayesian information criterion and decision-theoretic approaches to model selection in phylogenetics. Mol Biol Evol. 2011;28: 343–349. doi: 10.1093/molbev/msq195 PubMed DOI PMC
Rambaut A (2018) FigTree v.1.4.4.
Krogh A, Larsson B, von Heijne G, Sonnhammer EL Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305: 567–580. doi: 10.1006/jmbi.2000.4315 PubMed DOI
Crooks GE, Hon G, Chandonia JM, Brenner SE WebLogo: a sequence logo generator. Genome Res. 2004;14: 1188–1190. doi: 10.1101/gr.849004 PubMed DOI PMC
Opperdoes FR, Szikora JP In silico prediction of the glycosomal enzymes of Leishmania major and trypanosomes. Mol Biochem Parasitol. 2006;147: 193–206. doi: 10.1016/j.molbiopara.2006.02.010 PubMed DOI
Thompson JD, Gibson TJ, Higgins DG Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics. 2002;Chapter 2: Unit 2 3. doi: 10.1002/0471250953.bi0203s00 PubMed DOI
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al.. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29: 644–652. doi: 10.1038/nbt.1883 PubMed DOI PMC
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al.. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8: 1494–1512. doi: 10.1038/nprot.2013.084 PubMed DOI PMC
Poláková E, Albanaz ATS, Zakharova A, Novozhilova TS, Gerasimov ES, Yurchenko V Ku80 is involved in telomere maintenance but dispensable for genomic stability in Leishmania mexicana. PLoS Negl Trop Dis. 2021;15: e0010041. doi: 10.1371/journal.pntd.0010041 PubMed DOI PMC
Kraeva N, Ishemgulova A, Lukeš J, Yurchenko V Tetracycline-inducible gene expression system in Leishmania mexicana. Mol Biochem Parasitol. 2014;198: 11–13. doi: 10.1016/j.molbiopara.2014.11.002 PubMed DOI
Ishemgulova A, Kraeva N, Hlaváčová J, Zimmer SL, Butenko A, Podešvová L, et al.. A putative ATP/GTP binding protein affects Leishmania mexicana growth in insect vectors and vertebrate hosts. PLoS Negl Trop Dis. 2017;11: e0005782. doi: 10.1371/journal.pntd.0005782 PubMed DOI PMC
Záhonová K, Hadariová L, Vacula R, Yurchenko V, Eliáš M, Krajčovič J, et al.. A small portion of plastid transcripts is polyadenylated in the flagellate Euglena gracilis. FEBS Lett. 2014;588: 783–788. doi: 10.1016/j.febslet.2014.01.034 PubMed DOI
Kraeva N, Butenko A, Hlaváčová J, Kostygov A, Myškova J, Grybchuk D, et al.. Leptomonas seymouri: adaptations to the dixenous life cycle analyzed by genome sequencing, transcriptome profiling and co-infection with Leishmania donovani PLoS Pathog. 2015; 11: e1005127. doi: 10.1371/journal.ppat.1005127 PubMed DOI PMC
Zangger H, Ronet C, Desponds C, Kuhlmann FM, Robinson J, Hartley MA, et al.. Detection of Leishmania RNA virus in Leishmania parasites. PLoS Negl Trop Dis. 2013;7: e2006. doi: 10.1371/journal.pntd.0002006 PubMed DOI PMC
Schneider CA, Rasband WS, Eliceiri KW NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9: 671–675. doi: 10.1038/nmeth.2089 PubMed DOI PMC
Yurchenko V, Kostygov A, Havlová J, Grybchuk-Ieremenko A, Ševčíková T, Lukeš J, et al.. Diversity of trypanosomatids in cockroaches and the description of Herpetomonas tarakana sp. n. J Eukaryot Microbiol. 2016;63 198–209. doi: 10.1111/jeu.12268 PubMed DOI
Hamilton PT, Votýpka J, Dostalova A, Yurchenko V, Bird NH, Lukeš J, et al.. Infection dynamics and immune response in a newly described Drosophila-trypanosomatid association. mBio. 2015;6: e01356–01315. doi: 10.1128/mBio.01356-15 PubMed DOI PMC
Wheeler RJ, Gluenz E, Gull K The cell cycle of Leishmania: morphogenetic events and their implications for parasite biology. Mol Microbiol. 2011;79: 647–662. doi: 10.1111/j.1365-2958.2010.07479.x PubMed DOI PMC
Ambit A, Woods KL, Cull B, Coombs GH, Mottram JC Morphological events during the cell cycle of Leishmania major. Eukaryot Cell. 2011;10: 1429–1438. doi: 10.1128/EC.05118-11 PubMed DOI PMC
da Silva MS, Monteiro JP, Nunes VS, Vasconcelos EJ, Perez AM, Freitas-Junior Lde H, et al.. Leishmania amazonensis promastigotes present two distinct modes of nucleus and kinetoplast segregation during cell cycle. PLoS One. 2013;8: e81397. doi: 10.1371/journal.pone.0081397 PubMed DOI PMC
Volf P, Volfová V Establishment and maintenance of sand fly colonies. J Vector Ecol. 2011;36 Suppl 1: S1–S9. doi: 10.1111/j.1948-7134.2011.00106.x PubMed DOI
Sádlová J, Podešvová L, Bečvář T, Bianchi C, Gerasimov ES, Saura A, et al.. Catalase impairs Leishmania mexicana development and virulence. Virulence. 2021;12: 852–867. doi: 10.1080/21505594.2021.1896830 PubMed DOI PMC
Folch J, Lees M, Sloane Stanley GH A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226: 497–509. PubMed
Batova M, Borecka-Melkusova S, Simockova M, Dzugasova V, Goffa E, Subik J Functional characterization of the CgPGS1 gene reveals a link between mitochondrial phospholipid homeostasis and drug resistance in Candida glabrata. Curr Genet. 2008;53: 313–322. doi: 10.1007/s00294-008-0187-9 PubMed DOI
A novel strain of Leishmania braziliensis harbors not a toti- but a bunyavirus
Evolution of RNA viruses in trypanosomatids: new insights from the analysis of Sauroleishmania
Revisiting epidemiology of leishmaniasis in central Asia: lessons learnt
Elimination of LRVs Elicits Different Responses in Leishmania spp