Genetic dissection of a Leishmania flagellar proteome demonstrates requirement for directional motility in sand fly infections
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
104627/Z/14/Z
Wellcome Trust - United Kingdom
13/14_MSD_OSS_363238
Medical Research Council - United Kingdom
MR/R000859/1
Medical Research Council - United Kingdom
211075/Z/18/Z
Wellcome Trust - United Kingdom
Wellcome Trust - United Kingdom
Department of Health - United Kingdom
Biotechnology and Biological Sciences Research Council - United Kingdom
103261/Z/13/Z
Wellcome Trust - United Kingdom
15/16_MSD_836338
Medical Research Council - United Kingdom
PubMed
31242261
PubMed Central
PMC6615630
DOI
10.1371/journal.ppat.1007828
PII: PPATHOGENS-D-18-02305
Knihovny.cz E-zdroje
- MeSH
- flagella genetika metabolismus MeSH
- Leishmania genetika metabolismus MeSH
- proteom genetika metabolismus MeSH
- protozoální proteiny genetika metabolismus MeSH
- Psychodidae parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteom MeSH
- protozoální proteiny MeSH
The protozoan parasite Leishmania possesses a single flagellum, which is remodelled during the parasite's life cycle from a long motile flagellum in promastigote forms in the sand fly to a short immotile flagellum in amastigotes residing in mammalian phagocytes. This study examined the protein composition and in vivo function of the promastigote flagellum. Protein mass spectrometry and label free protein enrichment testing of isolated flagella and deflagellated cell bodies defined a flagellar proteome for L. mexicana promastigote forms (available via ProteomeXchange with identifier PXD011057). This information was used to generate a CRISPR-Cas9 knockout library of 100 mutants to screen for flagellar defects. This first large-scale knockout screen in a Leishmania sp. identified 56 mutants with altered swimming speed (52 reduced and 4 increased) and defined distinct mutant categories (faster swimmers, slower swimmers, slow uncoordinated swimmers and paralysed cells, including aflagellate promastigotes and cells with curled flagella and disruptions of the paraflagellar rod). Each mutant was tagged with a unique 17-nt barcode, providing a simple barcode sequencing (bar-seq) method for measuring the relative fitness of L. mexicana mutants in vivo. In mixed infections of the permissive sand fly vector Lutzomyia longipalpis, paralysed promastigotes and uncoordinated swimmers were severely diminished in the fly after defecation of the bloodmeal. Subsequent examination of flies infected with a single paralysed mutant lacking the central pair protein PF16 or an uncoordinated swimmer lacking the axonemal protein MBO2 showed that these promastigotes did not reach anterior regions of the fly alimentary tract. These data show that L. mexicana need directional motility for successful colonisation of sand flies.
Department of Parasitology Faculty of Science Charles University Prague Czech Republic
Research Department of Pathology University College London London United Kingdom
Sir William Dunn School of Pathology University of Oxford Oxford United Kingdom
University of Lille 1 Cité Scientifique Villeneuve d'Ascq France
Zobrazit více v PubMed
Moran J, McKean PG, Ginger ML (2014) Eukaryotic Flagella: Variations in Form, Function, and Composition during Evolution. BioScience 64: 1103–1114.
Ginger ML, Portman N, McKean PG (2008) Swimming with protists: perception, motility and flagellum assembly. Nat Rev Microbiol 6: 838–850. 10.1038/nrmicro2009 PubMed DOI
Vincensini L, Blisnick T, Bastin P (2011) 1001 model organisms to study cilia and flagella. Biol Cell 103: 109–130. 10.1042/BC20100104 PubMed DOI
Badano JL, Mitsuma N, Beales PL, Katsanis N (2006) The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet 7: 125–148. 10.1146/annurev.genom.7.080505.115610 PubMed DOI
van Dam TJ, Wheway G, Slaats GG, Huynen MA, Giles RH (2013) The SYSCILIA gold standard (SCGSv1) of known ciliary components and its applications within a systems biology consortium. Cilia 2: 7 10.1186/2046-2530-2-7 PubMed DOI PMC
Broadhead R, Dawe HR, Farr H, Griffiths S, Hart SR, et al. (2006) Flagellar motility is required for the viability of the bloodstream trypanosome. Nature 440: 224–227. 10.1038/nature04541 PubMed DOI
Pazour GJ, Agrin N, Leszyk J, Witman GB (2005) Proteomic analysis of a eukaryotic cilium. J Cell Biol 170: 103–113. 10.1083/jcb.200504008 PubMed DOI PMC
Mayer U, Kuller A, Daiber PC, Neudorf I, Warnken U, et al. (2009) The proteome of rat olfactory sensory cilia. Proteomics 9: 322–334. 10.1002/pmic.200800149 PubMed DOI
Nakachi M, Nakajima A, Nomura M, Yonezawa K, Ueno K, et al. (2011) Proteomic profiling reveals compartment-specific, novel functions of ascidian sperm proteins. Mol Reprod Dev 78: 529–549. 10.1002/mrd.21341 PubMed DOI
Nevers Y, Prasad MK, Poidevin L, Chennen K, Allot A, et al. (2017) Insights into Ciliary Genes and Evolution from Multi-Level Phylogenetic Profiling. Mol Biol Evol 34: 2016–2034. 10.1093/molbev/msx146 PubMed DOI PMC
Kruger T, Engstler M (2015) Flagellar motility in eukaryotic human parasites. Semin Cell Dev Biol 46: 113–127. 10.1016/j.semcdb.2015.10.034 PubMed DOI
Hochstetter A, Pfohl T (2016) Motility, Force Generation, and Energy Consumption of Unicellular Parasites. Trends Parasitol 32: 531–541. 10.1016/j.pt.2016.04.006 PubMed DOI
Langousis G, Hill KL (2014) Motility and more: the flagellum of Trypanosoma brucei. Nat Rev Microbiol 12: 505–518. 10.1038/nrmicro3274 PubMed DOI PMC
Engstler M, Pfohl T, Herminghaus S, Boshart M, Wiegertjes G, et al. (2007) Hydrodynamic flow-mediated protein sorting on the cell surface of trypanosomes. Cell 131: 505–515. 10.1016/j.cell.2007.08.046 PubMed DOI
Vaughan S (2010) Assembly of the flagellum and its role in cell morphogenesis in Trypanosoma brucei. Curr Opin Microbiol 13: 453–458. 10.1016/j.mib.2010.05.006 PubMed DOI
Alsford S, Turner DJ, Obado SO, Sanchez-Flores A, Glover L, et al. (2011) High-throughput phenotyping using parallel sequencing of RNA interference targets in the African trypanosome. Genome Res 21: 915–924. 10.1101/gr.115089.110 PubMed DOI PMC
Wheeler RJ, Gluenz E, Gull K (2015) Routes to a 9+0 flagellum: Basal body multipotency and axonemal plasticity. Nature Communications 6: 8964. PubMed PMC
Gluenz E, Hoog JL, Smith AE, Dawe HR, Shaw MK, et al. (2010) Beyond 9+0: noncanonical axoneme structures characterize sensory cilia from protists to humans. FASEB J 24: 3117–3121. 10.1096/fj.09-151381 PubMed DOI PMC
Gadelha AP, Cunha-e-Silva NL, de Souza W (2013) Assembly of the Leishmania amazonensis flagellum during cell differentiation. J Struct Biol 184: 280–292. 10.1016/j.jsb.2013.09.006 PubMed DOI
Killick-Kendrick R, Molyneux DH, Ashford RW (1974) Leishmania in phlebotomid sandflies. I. Modifications of the flagellum associated with attachment to the mid-gut and oesophageal valve of the sandfly. Proc R Soc Lond B Biol Sci 187: 409–419. 10.1098/rspb.1974.0085 PubMed DOI
Lawyer PG, Ngumbi PM, Anjili CO, Odongo SO, Mebrahtu YB, et al. (1990) Development of Leishmania major in Phlebotomus duboscqi and Sergentomyia schwetzi (Diptera: Psychodidae). Am J Trop Med Hyg 43: 31–43. 10.4269/ajtmh.1990.43.31 PubMed DOI
Gossage SM, Rogers ME, Bates PA (2003) Two separate growth phases during the development of Leishmania in sand flies: implications for understanding the life cycle. Int J Parasitol 33: 1027–1034. PubMed PMC
Beneke T, Madden R, Makin L, Valli J, Sunter J, et al. (2017) A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids. R Soc Open Sci 4: 170095 10.1098/rsos.170095 PubMed DOI PMC
Tull D, Vince JE, Callaghan JM, Naderer T, Spurck T, et al. (2004) SMP-1, a member of a new family of small myristoylated proteins in kinetoplastid parasites, is targeted to the flagellum membrane in Leishmania. Mol Biol Cell 15: 4775–4786. 10.1091/mbc.E04-06-0457 PubMed DOI PMC
Trudgian DC, Ridlova G, Fischer R, Mackeen MM, Ternette N, et al. (2011) Comparative evaluation of label-free SINQ normalized spectral index quantitation in the central proteomics facilities pipeline. Proteomics 11: 2790–2797. 10.1002/pmic.201000800 PubMed DOI
Lubec G, Afjehi-Sadat L (2007) Limitations and pitfalls in protein identification by mass spectrometry. Chem Rev 107: 3568–3584. 10.1021/cr068213f PubMed DOI
Varga V, Moreira-Leite F, Portman N, Gull K (2017) Protein diversity in discrete structures at the distal tip of the trypanosome flagellum. Proc Natl Acad Sci U S A 114: E6546–E6555. 10.1073/pnas.1703553114 PubMed DOI PMC
Dean S, Moreira-Leite F, Varga V, Gull K (2016) Cilium transition zone proteome reveals compartmentalization and differential dynamics of ciliopathy complexes. Proc Natl Acad Sci U S A 113: E5135–5143. 10.1073/pnas.1604258113 PubMed DOI PMC
Fiebig M, Kelly S, Gluenz E (2015) Comparative lifecycle transcriptomics revises Leishmania mexicana genome annotation and links a chromosome duplication with parasitism of vertebrates. PLoS Pathog 11: e1005186 10.1371/journal.ppat.1005186 PubMed DOI PMC
Lahav T, Sivam D, Volpin H, Ronen M, Tsigankov P, et al. (2011) Multiple levels of gene regulation mediate differentiation of the intracellular pathogen Leishmania. FASEB J 25: 515–525. 10.1096/fj.10-157529 PubMed DOI PMC
Emms D, Kelly S (2015) OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthologous gene group inference accuracy. Genome Biol. 16:157. PubMed PMC
Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, et al. (2010) TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res 38: D457–462. 10.1093/nar/gkp851 PubMed DOI PMC
Wheeler RJ (2017) Use of chiral cell shape to ensure highly directional swimming in trypanosomes. PLoS Comput Biol 13: e1005353 10.1371/journal.pcbi.1005353 PubMed DOI PMC
Gadelha C, Wickstead B, Gull K (2007) Flagellar and ciliary beating in trypanosome motility. Cell Motil Cytoskeleton 64: 629–643. 10.1002/cm.20210 PubMed DOI
Edwards BFL, Wheeler RJ, Barker AR, Moreira-Leite FF, Gull K, et al. (2018) Direction of flagellum beat propagation is controlled by proximal/distal outer dynein arm asymmetry. Proc Natl Acad Sci U S A 115: E7341–E7350. 10.1073/pnas.1805827115 PubMed DOI PMC
Maga JA, Sherwin T, Francis S, Gull K, LeBowitz JH (1999) Genetic dissection of the Leishmania paraflagellar rod, a unique flagellar cytoskeleton structure. J Cell Sci 112 (Pt 16): 2753–2763. PubMed
Adhiambo C, Forney JD, Asai DJ, LeBowitz JH (2005) The two cytoplasmic dynein-2 isoforms in Leishmania mexicana perform separate functions. Molecular and Biochemical Parasitology 143: 216–225. 10.1016/j.molbiopara.2005.04.017 PubMed DOI
Zauli RC, Yokoyama-Yasunaka JK, Miguel DC, Moura AS, Pereira L, et al. (2012) A dysflagellar mutant of Leishmania (Viannia) braziliensis isolated from a cutaneous leishmaniasis patient. Parasit Vectors 5: 11 10.1186/1756-3305-5-11 PubMed DOI PMC
Fowlkes-Comninellis T, Beverley SM (2015) Leishmania IFT140 mutants show normal viability but lack external flagella: a tool for the study of flagellar function through the infectious cycle. Cilia 4 (Suppl 1): P49.
Sunter J, Gull K (2017) Shape, form, function and Leishmania pathogenicity: from textbook descriptions to biological understanding. Open Biol 7: 170165. PubMed PMC
Bates PA (2008) Leishmania sand fly interaction: progress and challenges. Curr Opin Microbiol 11: 340–344. 10.1016/j.mib.2008.06.003 PubMed DOI PMC
Leslie G, Barrett M, Burchmore R (2002) Leishmania mexicana: promastigotes migrate through osmotic gradients. Exp Parasitol 102: 117–120. PubMed
Smith AM, Heisler LE, Mellor J, Kaper F, Thompson MJ, et al. (2009) Quantitative phenotyping via deep barcode sequencing. Genome Res 19: 1836–1842. 10.1101/gr.093955.109 PubMed DOI PMC
Gomes AR, Bushell E, Schwach F, Girling G, Anar B, et al. (2015) A genome-scale vector resource enables high-throughput reverse genetic screening in a malaria parasite. Cell Host Microbe 17: 404–413. 10.1016/j.chom.2015.01.014 PubMed DOI PMC
Bushell E, Gomes AR, Sanderson T, Anar B, Girling G, et al. (2017) Functional Profiling of a Plasmodium Genome Reveals an Abundance of Essential Genes. Cell 170: 260–272 e268 10.1016/j.cell.2017.06.030 PubMed DOI PMC
Ryan KA, Garraway LA, Descoteaux A, Turco SJ, Beverley SM (1993) Isolation of virulence genes directing surface glycosyl-phosphatidylinositol synthesis by functional complementation of Leishmania. Proc Natl Acad Sci U S A 90: 8609–8613. 10.1073/pnas.90.18.8609 PubMed DOI PMC
Garami A, Ilg T (2001) The role of phosphomannose isomerase in Leishmania mexicana glycoconjugate synthesis and virulence. J Biol Chem 276: 6566–6575. 10.1074/jbc.M009226200 PubMed DOI
Garami A, Mehlert A, Ilg T (2001) Glycosylation defects and virulence phenotypes of Leishmania mexicana phosphomannomutase and dolicholphosphate-mannose synthase gene deletion mutants. Mol Cell Biol 21: 8168–8183. 10.1128/MCB.21.23.8168-8183.2001 PubMed DOI PMC
Garami A, Ilg T (2001) Disruption of mannose activation in Leishmania mexicana: GDP-mannose pyrophosphorylase is required for virulence, but not for viability. EMBO J 20: 3657–3666. 10.1093/emboj/20.14.3657 PubMed DOI PMC
Jecna L, Dostalova A, Wilson R, Seblova V, Chang KP, et al. (2013) The role of surface glycoconjugates in Leishmania midgut attachment examined by competitive binding assays and experimental development in sand flies. Parasitology 140: 1026–1032. 10.1017/S0031182013000358 PubMed DOI
Sacks DL, Modi G, Rowton E, Spath G, Epstein L, et al. (2000) The role of phosphoglycans in Leishmania-sand fly interactions. Proc Natl Acad Sci U S A 97: 406–411. 10.1073/pnas.97.1.406 PubMed DOI PMC
Tran KD, Rodriguez-Contreras D, Vieira DP, Yates PA, David L, et al. (2013) KHARON1 mediates flagellar targeting of a glucose transporter in Leishmania mexicana and is critical for viability of infectious intracellular amastigotes. J Biol Chem 288: 22721–22733. 10.1074/jbc.M113.483461 PubMed DOI PMC
Nachury MV, Loktev AV, Zhang Q, Westlake CJ, Peranen J, et al. (2007) A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 129: 1201–1213. 10.1016/j.cell.2007.03.053 PubMed DOI
Branche C, Kohl L, Toutirais G, Buisson J, Cosson J, et al. (2006) Conserved and specific functions of axoneme components in trypanosome motility. J Cell Sci 119: 3443–3455. 10.1242/jcs.03078 PubMed DOI
Ralston KS, Lerner AG, Diener DR, Hill KL (2006) Flagellar motility contributes to cytokinesis in Trypanosoma brucei and is modulated by an evolutionarily conserved dynein regulatory system. Eukaryot Cell 5: 696–711. 10.1128/EC.5.4.696-711.2006 PubMed DOI PMC
Dutcher SK, Huang B, Luck DJ (1984) Genetic dissection of the central pair microtubules of the flagella of Chlamydomonas reinhardtii. J Cell Biol 98: 229–236. 10.1083/jcb.98.1.229 PubMed DOI PMC
Tam LW, Lefebvre PA (2002) The Chlamydomonas MBO2 locus encodes a conserved coiled-coil protein important for flagellar waveform conversion. Cell Motil Cytoskeleton 51: 197–212. 10.1002/cm.10023 PubMed DOI
Segal RA, Huang B, Ramanis Z, Luck DJ (1984) Mutant strains of Chlamydomonas reinhardtii that move backwards only. J Cell Biol 98: 2026–2034. 10.1083/jcb.98.6.2026 PubMed DOI PMC
Rotureau B, Ooi CP, Huet D, Perrot S, Bastin P (2014) Forward motility is essential for trypanosome infection in the tsetse fly. Cell Microbiol 16: 425–433. 10.1111/cmi.12230 PubMed DOI
Cuvillier A, Miranda JC, Ambit A, Barral A, Merlin G (2003) Abortive infection of Lutzomyia longipalpis insect vectors by aflagellated LdARL-3A-Q70L overexpressing Leishmania amazonensis parasites. Cell Microbiol 5: 717–728. PubMed
Pimenta PF, Saraiva EM, Rowton E, Modi GB, Garraway LA, et al. (1994) Evidence that the vectorial competence of phlebotomine sand flies for different species of Leishmania is controlled by structural polymorphisms in the surface lipophosphoglycan. Proc Natl Acad Sci U S A 91: 9155–9159. 10.1073/pnas.91.19.9155 PubMed DOI PMC
Warburg A, Tesh RB, McMahon-Pratt D (1989) Studies on the attachment of Leishmania flagella to sand fly midgut epithelium. J Protozool 36: 613–617. PubMed
Sharma AI, Olson CL, Engman DM (2017) The Lipid Raft Proteome of African Trypanosomes Contains Many Flagellar Proteins. Pathogens 6. PubMed PMC
Rodriguez-Contreras D, Aslan H, Feng X, Tran K, Yates PA, et al. (2015) Regulation and biological function of a flagellar glucose transporter in Leishmania mexicana: a potential glucose sensor. FASEB J 29: 11–24. 10.1096/fj.14-251991 PubMed DOI PMC
Pozzo LY, Fontes A, de Thomaz AA, Santos BS, Farias PM, et al. (2009) Studying taxis in real time using optical tweezers: applications for Leishmania amazonensis parasites. Micron 40: 617–620. 10.1016/j.micron.2009.02.008 PubMed DOI
Porter ME, Sale WS (2000) The 9 + 2 axoneme anchors multiple inner arm dyneins and a network of kinases and phosphatases that control motility. J Cell Biol 151: F37–42. 10.1083/jcb.151.5.f37 PubMed DOI PMC
Mukhopadhyay AG, Dey CS (2016) Reactivation of flagellar motility in demembranated Leishmania reveals role of cAMP in flagellar wave reversal to ciliary waveform. Sci Rep 6: 37308 10.1038/srep37308 PubMed DOI PMC
Shaw S, DeMarco SF, Rehmann R, Wenzler T, Florini F, et al. (2019) Flagellar cAMP signaling controls trypanosome progression through host tissues. Nat Commun 10: 803 10.1038/s41467-019-08696-y PubMed DOI PMC
Hodges ME, Scheumann N, Wickstead B, Langdale JA, Gull K (2010) Reconstructing the evolutionary history of the centriole from protein components. J Cell Sci 123: 1407–1413. 10.1242/jcs.064873 PubMed DOI PMC
Jin H, White SR, Shida T, Schulz S, Aguiar M, et al. (2010) The conserved Bardet-Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia. Cell 141: 1208–1219. 10.1016/j.cell.2010.05.015 PubMed DOI PMC
Ismail SA, Chen YX, Miertzschke M, Vetter IR, Koerner C, et al. (2012) Structural basis for Arl3-specific release of myristoylated ciliary cargo from UNC119. EMBO J 31: 4085–4094. 10.1038/emboj.2012.257 PubMed DOI PMC
Kuhlmann K, Tschapek A, Wiese H, Eisenacher M, Meyer HE, et al. (2014) The membrane proteome of sensory cilia to the depth of olfactory receptors. Mol Cell Proteomics 13: 1828–1843. 10.1074/mcp.M113.035378 PubMed DOI PMC
Gadelha C, Zhang W, Chamberlain JW, Chait BT, Wickstead B, et al. (2015) Architecture of a Host-Parasite Interface: Complex Targeting Mechanisms Revealed Through Proteomics. Mol Cell Proteomics 14: 1911–1926. 10.1074/mcp.M114.047647 PubMed DOI PMC
Santrich C, Moore L, Sherwin T, Bastin P, Brokaw C, et al. (1997) A motility function for the paraflagellar rod of Leishmania parasites revealed by PFR-2 gene knockouts. Mol Biochem Parasitol 90: 95–109. PubMed
Bastin P, Sherwin T, Gull K (1998) Paraflagellar rod is vital for trypanosome motility. Nature 391: 548 10.1038/35300 PubMed DOI
Portman N, Lacomble S, Thomas B, McKean PG, Gull K (2009) Combining RNA interference mutants and comparative proteomics to identify protein components and dependences in a eukaryotic flagellum. J Biol Chem 284: 5610–5619. 10.1074/jbc.M808859200 PubMed DOI PMC
Portman N, Gull K (2010) The paraflagellar rod of kinetoplastid parasites: from structure to components and function. Int J Parasitol 40: 135–148. 10.1016/j.ijpara.2009.10.005 PubMed DOI PMC
Coutton C, Vargas AS, Amiri-Yekta A, Kherraf ZE, Ben Mustapha SF, et al. (2018) Mutations in CFAP43 and CFAP44 cause male infertility and flagellum defects in Trypanosoma and human. Nat Commun 9: 686 10.1038/s41467-017-02792-7 PubMed DOI PMC
Davy BE, Robinson ML (2003) Congenital hydrocephalus in hy3 mice is caused by a frameshift mutation in Hydin, a large novel gene. Hum Mol Genet 12: 1163–1170. 10.1093/hmg/ddg122 PubMed DOI
Lechtreck KF, Witman GB (2007) Chlamydomonas reinhardtii hydin is a central pair protein required for flagellar motility. J Cell Biol 176: 473–482. 10.1083/jcb.200611115 PubMed DOI PMC
Dawe HR, Shaw MK, Farr H, Gull K (2007) The hydrocephalus inducing gene product, Hydin, positions axonemal central pair microtubules. BMC Biol 5: 33 10.1186/1741-7007-5-33 PubMed DOI PMC
Lechtreck KF, Delmotte P, Robinson ML, Sanderson MJ, Witman GB (2008) Mutations in Hydin impair ciliary motility in mice. J Cell Biol 180: 633–643. 10.1083/jcb.200710162 PubMed DOI PMC
Lindemann CB, Lesich KA (2010) Flagellar and ciliary beating: the proven and the possible. J Cell Sci 123: 519–528. 10.1242/jcs.051326 PubMed DOI
Lin J, Nicastro D (2018) Asymmetric distribution and spatial switching of dynein activity generates ciliary motility. Science 360, eaar1968. PubMed PMC
Oberholzer M, Langousis G, Nguyen HT, Saada EA, Shimogawa MM, et al. (2011) Independent analysis of the flagellum surface and matrix proteomes provides insight into flagellum signaling in mammalian-infectious Trypanosoma brucei. Mol Cell Proteomics 10: M111 010538. PubMed PMC
Sagne C, Isambert MF, Henry JP, Gasnier B (1996) SDS-resistant aggregation of membrane proteins: application to the purification of the vesicular monoamine transporter. Biochem J 316 (Pt 3): 825–831. PubMed PMC
Gundry RL, White MY, Murray CI, Kane LA, Fu Q, et al. (2009) Preparation of proteins and peptides for mass spectrometry analysis in a bottom-up proteomics workflow. Curr Protoc Mol Biol Chapter 10: Unit10 25. PubMed PMC
Trudgian DC, Thomas B, McGowan SJ, Kessler BM, Salek M, et al. (2010) CPFP: a central proteomics facilities pipeline. Bioinformatics 26: 1131–1132. 10.1093/bioinformatics/btq081 PubMed DOI
Vizcaino JA, Csordas A, Del-Toro N, Dianes JA, Griss J, et al. (2016) 2016 update of the PRIDE database and its related tools. Nucleic Acids Res 44: 11033 10.1093/nar/gkw880 PubMed DOI PMC
Dean S, Sunter J, Wheeler RJ, Hodkinson I, Gluenz E, et al. (2015) A toolkit enabling efficient, scalable and reproducible gene tagging in trypanosomatids. Open Biol 5: 140197 10.1098/rsob.140197 PubMed DOI PMC
Peng D, Tarleton R (2015) EuPaGDT: a web tool tailored to design CRISPR guide RNAs for eukaryotic pathogens. Microb Genom 1: e000033 10.1099/mgen.0.000033 PubMed DOI PMC
Dyer P, Dean S, Sunter J (2016) High-throughput Gene Tagging in Trypanosoma brucei. J Vis Exp 114: 54342. PubMed PMC
Rotureau B, Gego A, Carme B (2005) Trypanosomatid protozoa: a simplified DNA isolation procedure. Exp Parasitol 111: 207–209. 10.1016/j.exppara.2005.07.003 PubMed DOI
Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, et al. (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40: e115 10.1093/nar/gks596 PubMed DOI PMC
Hoog JL, Gluenz E, Vaughan S, Gull K (2010) Ultrastructural investigation methods for Trypanosoma brucei. Methods Cell Biol 96: 175–196. 10.1016/S0091-679X(10)96008-1 PubMed DOI
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, et al. (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9: 676–682. 10.1038/nmeth.2019 PubMed DOI PMC
Volf P, Volfova V (2011) Establishment and maintenance of sand fly colonies. J Vector Ecol 36 Suppl 1: S1–9. PubMed
Myskova J, Votypka J, Volf P (2008) Leishmania in sand flies: comparison of quantitative polymerase chain reaction with other techniques to determine the intensity of infection. J Med Entomol 45: 133–138. PubMed
Schlein Y (1993) Leishmania and Sandflies: interactions in the life cycle and transmission. Parasitol Today 9: 255–258. PubMed
Dupe A, Dumas C, Papadopoulou B (2015) Differential Subcellular Localization of Leishmania Alba-Domain Proteins throughout the Parasite Development. PLoS One 10: e0137243 10.1371/journal.pone.0137243 PubMed DOI PMC
Subota I, Julkowska D, Vincensini L, Reeg N, Buisson J, et al. (2014) Proteomic analysis of intact flagella of procyclic Trypanosoma brucei cells identifies novel flagellar proteins with unique sub-localization and dynamics. Mol Cell Proteomics 13: 1769–1786. 10.1074/mcp.M113.033357 PubMed DOI PMC
Kozlowski LP (2016) IPC—Isoelectric Point Calculator. Biol Direct 11: 55 10.1186/s13062-016-0159-9 PubMed DOI PMC
Kohl L, Sherwin T, Gull K (1999) Assembly of the paraflagellar rod and the flagellum attachment zone complex during the Trypanosoma brucei cell cycle. J Eukaryot Microbiol 46: 105–109. PubMed
Ismach R, Cianci CM, Caulfield JP, Langer PJ, Hein A, et al. (1989) Flagellar membrane and paraxial rod proteins of Leishmania: characterization employing monoclonal antibodies. J Protozool 36: 617–624. PubMed
Kraeva N, Ishemgulova A, Lukes J, Yurchenko V (2014) Tetracycline-inducible gene expression system in Leishmania mexicana. Mol Biochem Parasitol 198: 11–13. 10.1016/j.molbiopara.2014.11.002 PubMed DOI
ULK4 and Fused/STK36 interact to mediate assembly of a motile flagellum
The Remarkable Metabolism of Vickermania ingenoplastis: Genomic Predictions
Role for the flagellum attachment zone in Leishmania anterior cell tip morphogenesis