Genetic dissection of a Leishmania flagellar proteome demonstrates requirement for directional motility in sand fly infections

. 2019 Jun ; 15 (6) : e1007828. [epub] 20190626

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31242261

Grantová podpora
104627/Z/14/Z Wellcome Trust - United Kingdom
13/14_MSD_OSS_363238 Medical Research Council - United Kingdom
MR/R000859/1 Medical Research Council - United Kingdom
211075/Z/18/Z Wellcome Trust - United Kingdom
Wellcome Trust - United Kingdom
Department of Health - United Kingdom
Biotechnology and Biological Sciences Research Council - United Kingdom
103261/Z/13/Z Wellcome Trust - United Kingdom
15/16_MSD_836338 Medical Research Council - United Kingdom

Odkazy

PubMed 31242261
PubMed Central PMC6615630
DOI 10.1371/journal.ppat.1007828
PII: PPATHOGENS-D-18-02305
Knihovny.cz E-zdroje

The protozoan parasite Leishmania possesses a single flagellum, which is remodelled during the parasite's life cycle from a long motile flagellum in promastigote forms in the sand fly to a short immotile flagellum in amastigotes residing in mammalian phagocytes. This study examined the protein composition and in vivo function of the promastigote flagellum. Protein mass spectrometry and label free protein enrichment testing of isolated flagella and deflagellated cell bodies defined a flagellar proteome for L. mexicana promastigote forms (available via ProteomeXchange with identifier PXD011057). This information was used to generate a CRISPR-Cas9 knockout library of 100 mutants to screen for flagellar defects. This first large-scale knockout screen in a Leishmania sp. identified 56 mutants with altered swimming speed (52 reduced and 4 increased) and defined distinct mutant categories (faster swimmers, slower swimmers, slow uncoordinated swimmers and paralysed cells, including aflagellate promastigotes and cells with curled flagella and disruptions of the paraflagellar rod). Each mutant was tagged with a unique 17-nt barcode, providing a simple barcode sequencing (bar-seq) method for measuring the relative fitness of L. mexicana mutants in vivo. In mixed infections of the permissive sand fly vector Lutzomyia longipalpis, paralysed promastigotes and uncoordinated swimmers were severely diminished in the fly after defecation of the bloodmeal. Subsequent examination of flies infected with a single paralysed mutant lacking the central pair protein PF16 or an uncoordinated swimmer lacking the axonemal protein MBO2 showed that these promastigotes did not reach anterior regions of the fly alimentary tract. These data show that L. mexicana need directional motility for successful colonisation of sand flies.

Zobrazit více v PubMed

Moran J, McKean PG, Ginger ML (2014) Eukaryotic Flagella: Variations in Form, Function, and Composition during Evolution. BioScience 64: 1103–1114.

Ginger ML, Portman N, McKean PG (2008) Swimming with protists: perception, motility and flagellum assembly. Nat Rev Microbiol 6: 838–850. 10.1038/nrmicro2009 PubMed DOI

Vincensini L, Blisnick T, Bastin P (2011) 1001 model organisms to study cilia and flagella. Biol Cell 103: 109–130. 10.1042/BC20100104 PubMed DOI

Badano JL, Mitsuma N, Beales PL, Katsanis N (2006) The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet 7: 125–148. 10.1146/annurev.genom.7.080505.115610 PubMed DOI

van Dam TJ, Wheway G, Slaats GG, Huynen MA, Giles RH (2013) The SYSCILIA gold standard (SCGSv1) of known ciliary components and its applications within a systems biology consortium. Cilia 2: 7 10.1186/2046-2530-2-7 PubMed DOI PMC

Broadhead R, Dawe HR, Farr H, Griffiths S, Hart SR, et al. (2006) Flagellar motility is required for the viability of the bloodstream trypanosome. Nature 440: 224–227. 10.1038/nature04541 PubMed DOI

Pazour GJ, Agrin N, Leszyk J, Witman GB (2005) Proteomic analysis of a eukaryotic cilium. J Cell Biol 170: 103–113. 10.1083/jcb.200504008 PubMed DOI PMC

Mayer U, Kuller A, Daiber PC, Neudorf I, Warnken U, et al. (2009) The proteome of rat olfactory sensory cilia. Proteomics 9: 322–334. 10.1002/pmic.200800149 PubMed DOI

Nakachi M, Nakajima A, Nomura M, Yonezawa K, Ueno K, et al. (2011) Proteomic profiling reveals compartment-specific, novel functions of ascidian sperm proteins. Mol Reprod Dev 78: 529–549. 10.1002/mrd.21341 PubMed DOI

Nevers Y, Prasad MK, Poidevin L, Chennen K, Allot A, et al. (2017) Insights into Ciliary Genes and Evolution from Multi-Level Phylogenetic Profiling. Mol Biol Evol 34: 2016–2034. 10.1093/molbev/msx146 PubMed DOI PMC

Kruger T, Engstler M (2015) Flagellar motility in eukaryotic human parasites. Semin Cell Dev Biol 46: 113–127. 10.1016/j.semcdb.2015.10.034 PubMed DOI

Hochstetter A, Pfohl T (2016) Motility, Force Generation, and Energy Consumption of Unicellular Parasites. Trends Parasitol 32: 531–541. 10.1016/j.pt.2016.04.006 PubMed DOI

Langousis G, Hill KL (2014) Motility and more: the flagellum of Trypanosoma brucei. Nat Rev Microbiol 12: 505–518. 10.1038/nrmicro3274 PubMed DOI PMC

Engstler M, Pfohl T, Herminghaus S, Boshart M, Wiegertjes G, et al. (2007) Hydrodynamic flow-mediated protein sorting on the cell surface of trypanosomes. Cell 131: 505–515. 10.1016/j.cell.2007.08.046 PubMed DOI

Vaughan S (2010) Assembly of the flagellum and its role in cell morphogenesis in Trypanosoma brucei. Curr Opin Microbiol 13: 453–458. 10.1016/j.mib.2010.05.006 PubMed DOI

Alsford S, Turner DJ, Obado SO, Sanchez-Flores A, Glover L, et al. (2011) High-throughput phenotyping using parallel sequencing of RNA interference targets in the African trypanosome. Genome Res 21: 915–924. 10.1101/gr.115089.110 PubMed DOI PMC

Wheeler RJ, Gluenz E, Gull K (2015) Routes to a 9+0 flagellum: Basal body multipotency and axonemal plasticity. Nature Communications 6: 8964. PubMed PMC

Gluenz E, Hoog JL, Smith AE, Dawe HR, Shaw MK, et al. (2010) Beyond 9+0: noncanonical axoneme structures characterize sensory cilia from protists to humans. FASEB J 24: 3117–3121. 10.1096/fj.09-151381 PubMed DOI PMC

Gadelha AP, Cunha-e-Silva NL, de Souza W (2013) Assembly of the Leishmania amazonensis flagellum during cell differentiation. J Struct Biol 184: 280–292. 10.1016/j.jsb.2013.09.006 PubMed DOI

Killick-Kendrick R, Molyneux DH, Ashford RW (1974) Leishmania in phlebotomid sandflies. I. Modifications of the flagellum associated with attachment to the mid-gut and oesophageal valve of the sandfly. Proc R Soc Lond B Biol Sci 187: 409–419. 10.1098/rspb.1974.0085 PubMed DOI

Lawyer PG, Ngumbi PM, Anjili CO, Odongo SO, Mebrahtu YB, et al. (1990) Development of Leishmania major in Phlebotomus duboscqi and Sergentomyia schwetzi (Diptera: Psychodidae). Am J Trop Med Hyg 43: 31–43. 10.4269/ajtmh.1990.43.31 PubMed DOI

Gossage SM, Rogers ME, Bates PA (2003) Two separate growth phases during the development of Leishmania in sand flies: implications for understanding the life cycle. Int J Parasitol 33: 1027–1034. PubMed PMC

Beneke T, Madden R, Makin L, Valli J, Sunter J, et al. (2017) A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids. R Soc Open Sci 4: 170095 10.1098/rsos.170095 PubMed DOI PMC

Tull D, Vince JE, Callaghan JM, Naderer T, Spurck T, et al. (2004) SMP-1, a member of a new family of small myristoylated proteins in kinetoplastid parasites, is targeted to the flagellum membrane in Leishmania. Mol Biol Cell 15: 4775–4786. 10.1091/mbc.E04-06-0457 PubMed DOI PMC

Trudgian DC, Ridlova G, Fischer R, Mackeen MM, Ternette N, et al. (2011) Comparative evaluation of label-free SINQ normalized spectral index quantitation in the central proteomics facilities pipeline. Proteomics 11: 2790–2797. 10.1002/pmic.201000800 PubMed DOI

Lubec G, Afjehi-Sadat L (2007) Limitations and pitfalls in protein identification by mass spectrometry. Chem Rev 107: 3568–3584. 10.1021/cr068213f PubMed DOI

Varga V, Moreira-Leite F, Portman N, Gull K (2017) Protein diversity in discrete structures at the distal tip of the trypanosome flagellum. Proc Natl Acad Sci U S A 114: E6546–E6555. 10.1073/pnas.1703553114 PubMed DOI PMC

Dean S, Moreira-Leite F, Varga V, Gull K (2016) Cilium transition zone proteome reveals compartmentalization and differential dynamics of ciliopathy complexes. Proc Natl Acad Sci U S A 113: E5135–5143. 10.1073/pnas.1604258113 PubMed DOI PMC

Fiebig M, Kelly S, Gluenz E (2015) Comparative lifecycle transcriptomics revises Leishmania mexicana genome annotation and links a chromosome duplication with parasitism of vertebrates. PLoS Pathog 11: e1005186 10.1371/journal.ppat.1005186 PubMed DOI PMC

Lahav T, Sivam D, Volpin H, Ronen M, Tsigankov P, et al. (2011) Multiple levels of gene regulation mediate differentiation of the intracellular pathogen Leishmania. FASEB J 25: 515–525. 10.1096/fj.10-157529 PubMed DOI PMC

Emms D, Kelly S (2015) OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthologous gene group inference accuracy. Genome Biol. 16:157. PubMed PMC

Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, et al. (2010) TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res 38: D457–462. 10.1093/nar/gkp851 PubMed DOI PMC

Wheeler RJ (2017) Use of chiral cell shape to ensure highly directional swimming in trypanosomes. PLoS Comput Biol 13: e1005353 10.1371/journal.pcbi.1005353 PubMed DOI PMC

Gadelha C, Wickstead B, Gull K (2007) Flagellar and ciliary beating in trypanosome motility. Cell Motil Cytoskeleton 64: 629–643. 10.1002/cm.20210 PubMed DOI

Edwards BFL, Wheeler RJ, Barker AR, Moreira-Leite FF, Gull K, et al. (2018) Direction of flagellum beat propagation is controlled by proximal/distal outer dynein arm asymmetry. Proc Natl Acad Sci U S A 115: E7341–E7350. 10.1073/pnas.1805827115 PubMed DOI PMC

Maga JA, Sherwin T, Francis S, Gull K, LeBowitz JH (1999) Genetic dissection of the Leishmania paraflagellar rod, a unique flagellar cytoskeleton structure. J Cell Sci 112 (Pt 16): 2753–2763. PubMed

Adhiambo C, Forney JD, Asai DJ, LeBowitz JH (2005) The two cytoplasmic dynein-2 isoforms in Leishmania mexicana perform separate functions. Molecular and Biochemical Parasitology 143: 216–225. 10.1016/j.molbiopara.2005.04.017 PubMed DOI

Zauli RC, Yokoyama-Yasunaka JK, Miguel DC, Moura AS, Pereira L, et al. (2012) A dysflagellar mutant of Leishmania (Viannia) braziliensis isolated from a cutaneous leishmaniasis patient. Parasit Vectors 5: 11 10.1186/1756-3305-5-11 PubMed DOI PMC

Fowlkes-Comninellis T, Beverley SM (2015) Leishmania IFT140 mutants show normal viability but lack external flagella: a tool for the study of flagellar function through the infectious cycle. Cilia 4 (Suppl 1): P49.

Sunter J, Gull K (2017) Shape, form, function and Leishmania pathogenicity: from textbook descriptions to biological understanding. Open Biol 7: 170165. PubMed PMC

Bates PA (2008) Leishmania sand fly interaction: progress and challenges. Curr Opin Microbiol 11: 340–344. 10.1016/j.mib.2008.06.003 PubMed DOI PMC

Leslie G, Barrett M, Burchmore R (2002) Leishmania mexicana: promastigotes migrate through osmotic gradients. Exp Parasitol 102: 117–120. PubMed

Smith AM, Heisler LE, Mellor J, Kaper F, Thompson MJ, et al. (2009) Quantitative phenotyping via deep barcode sequencing. Genome Res 19: 1836–1842. 10.1101/gr.093955.109 PubMed DOI PMC

Gomes AR, Bushell E, Schwach F, Girling G, Anar B, et al. (2015) A genome-scale vector resource enables high-throughput reverse genetic screening in a malaria parasite. Cell Host Microbe 17: 404–413. 10.1016/j.chom.2015.01.014 PubMed DOI PMC

Bushell E, Gomes AR, Sanderson T, Anar B, Girling G, et al. (2017) Functional Profiling of a Plasmodium Genome Reveals an Abundance of Essential Genes. Cell 170: 260–272 e268 10.1016/j.cell.2017.06.030 PubMed DOI PMC

Ryan KA, Garraway LA, Descoteaux A, Turco SJ, Beverley SM (1993) Isolation of virulence genes directing surface glycosyl-phosphatidylinositol synthesis by functional complementation of Leishmania. Proc Natl Acad Sci U S A 90: 8609–8613. 10.1073/pnas.90.18.8609 PubMed DOI PMC

Garami A, Ilg T (2001) The role of phosphomannose isomerase in Leishmania mexicana glycoconjugate synthesis and virulence. J Biol Chem 276: 6566–6575. 10.1074/jbc.M009226200 PubMed DOI

Garami A, Mehlert A, Ilg T (2001) Glycosylation defects and virulence phenotypes of Leishmania mexicana phosphomannomutase and dolicholphosphate-mannose synthase gene deletion mutants. Mol Cell Biol 21: 8168–8183. 10.1128/MCB.21.23.8168-8183.2001 PubMed DOI PMC

Garami A, Ilg T (2001) Disruption of mannose activation in Leishmania mexicana: GDP-mannose pyrophosphorylase is required for virulence, but not for viability. EMBO J 20: 3657–3666. 10.1093/emboj/20.14.3657 PubMed DOI PMC

Jecna L, Dostalova A, Wilson R, Seblova V, Chang KP, et al. (2013) The role of surface glycoconjugates in Leishmania midgut attachment examined by competitive binding assays and experimental development in sand flies. Parasitology 140: 1026–1032. 10.1017/S0031182013000358 PubMed DOI

Sacks DL, Modi G, Rowton E, Spath G, Epstein L, et al. (2000) The role of phosphoglycans in Leishmania-sand fly interactions. Proc Natl Acad Sci U S A 97: 406–411. 10.1073/pnas.97.1.406 PubMed DOI PMC

Tran KD, Rodriguez-Contreras D, Vieira DP, Yates PA, David L, et al. (2013) KHARON1 mediates flagellar targeting of a glucose transporter in Leishmania mexicana and is critical for viability of infectious intracellular amastigotes. J Biol Chem 288: 22721–22733. 10.1074/jbc.M113.483461 PubMed DOI PMC

Nachury MV, Loktev AV, Zhang Q, Westlake CJ, Peranen J, et al. (2007) A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 129: 1201–1213. 10.1016/j.cell.2007.03.053 PubMed DOI

Branche C, Kohl L, Toutirais G, Buisson J, Cosson J, et al. (2006) Conserved and specific functions of axoneme components in trypanosome motility. J Cell Sci 119: 3443–3455. 10.1242/jcs.03078 PubMed DOI

Ralston KS, Lerner AG, Diener DR, Hill KL (2006) Flagellar motility contributes to cytokinesis in Trypanosoma brucei and is modulated by an evolutionarily conserved dynein regulatory system. Eukaryot Cell 5: 696–711. 10.1128/EC.5.4.696-711.2006 PubMed DOI PMC

Dutcher SK, Huang B, Luck DJ (1984) Genetic dissection of the central pair microtubules of the flagella of Chlamydomonas reinhardtii. J Cell Biol 98: 229–236. 10.1083/jcb.98.1.229 PubMed DOI PMC

Tam LW, Lefebvre PA (2002) The Chlamydomonas MBO2 locus encodes a conserved coiled-coil protein important for flagellar waveform conversion. Cell Motil Cytoskeleton 51: 197–212. 10.1002/cm.10023 PubMed DOI

Segal RA, Huang B, Ramanis Z, Luck DJ (1984) Mutant strains of Chlamydomonas reinhardtii that move backwards only. J Cell Biol 98: 2026–2034. 10.1083/jcb.98.6.2026 PubMed DOI PMC

Rotureau B, Ooi CP, Huet D, Perrot S, Bastin P (2014) Forward motility is essential for trypanosome infection in the tsetse fly. Cell Microbiol 16: 425–433. 10.1111/cmi.12230 PubMed DOI

Cuvillier A, Miranda JC, Ambit A, Barral A, Merlin G (2003) Abortive infection of Lutzomyia longipalpis insect vectors by aflagellated LdARL-3A-Q70L overexpressing Leishmania amazonensis parasites. Cell Microbiol 5: 717–728. PubMed

Pimenta PF, Saraiva EM, Rowton E, Modi GB, Garraway LA, et al. (1994) Evidence that the vectorial competence of phlebotomine sand flies for different species of Leishmania is controlled by structural polymorphisms in the surface lipophosphoglycan. Proc Natl Acad Sci U S A 91: 9155–9159. 10.1073/pnas.91.19.9155 PubMed DOI PMC

Warburg A, Tesh RB, McMahon-Pratt D (1989) Studies on the attachment of Leishmania flagella to sand fly midgut epithelium. J Protozool 36: 613–617. PubMed

Sharma AI, Olson CL, Engman DM (2017) The Lipid Raft Proteome of African Trypanosomes Contains Many Flagellar Proteins. Pathogens 6. PubMed PMC

Rodriguez-Contreras D, Aslan H, Feng X, Tran K, Yates PA, et al. (2015) Regulation and biological function of a flagellar glucose transporter in Leishmania mexicana: a potential glucose sensor. FASEB J 29: 11–24. 10.1096/fj.14-251991 PubMed DOI PMC

Pozzo LY, Fontes A, de Thomaz AA, Santos BS, Farias PM, et al. (2009) Studying taxis in real time using optical tweezers: applications for Leishmania amazonensis parasites. Micron 40: 617–620. 10.1016/j.micron.2009.02.008 PubMed DOI

Porter ME, Sale WS (2000) The 9 + 2 axoneme anchors multiple inner arm dyneins and a network of kinases and phosphatases that control motility. J Cell Biol 151: F37–42. 10.1083/jcb.151.5.f37 PubMed DOI PMC

Mukhopadhyay AG, Dey CS (2016) Reactivation of flagellar motility in demembranated Leishmania reveals role of cAMP in flagellar wave reversal to ciliary waveform. Sci Rep 6: 37308 10.1038/srep37308 PubMed DOI PMC

Shaw S, DeMarco SF, Rehmann R, Wenzler T, Florini F, et al. (2019) Flagellar cAMP signaling controls trypanosome progression through host tissues. Nat Commun 10: 803 10.1038/s41467-019-08696-y PubMed DOI PMC

Hodges ME, Scheumann N, Wickstead B, Langdale JA, Gull K (2010) Reconstructing the evolutionary history of the centriole from protein components. J Cell Sci 123: 1407–1413. 10.1242/jcs.064873 PubMed DOI PMC

Jin H, White SR, Shida T, Schulz S, Aguiar M, et al. (2010) The conserved Bardet-Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia. Cell 141: 1208–1219. 10.1016/j.cell.2010.05.015 PubMed DOI PMC

Ismail SA, Chen YX, Miertzschke M, Vetter IR, Koerner C, et al. (2012) Structural basis for Arl3-specific release of myristoylated ciliary cargo from UNC119. EMBO J 31: 4085–4094. 10.1038/emboj.2012.257 PubMed DOI PMC

Kuhlmann K, Tschapek A, Wiese H, Eisenacher M, Meyer HE, et al. (2014) The membrane proteome of sensory cilia to the depth of olfactory receptors. Mol Cell Proteomics 13: 1828–1843. 10.1074/mcp.M113.035378 PubMed DOI PMC

Gadelha C, Zhang W, Chamberlain JW, Chait BT, Wickstead B, et al. (2015) Architecture of a Host-Parasite Interface: Complex Targeting Mechanisms Revealed Through Proteomics. Mol Cell Proteomics 14: 1911–1926. 10.1074/mcp.M114.047647 PubMed DOI PMC

Santrich C, Moore L, Sherwin T, Bastin P, Brokaw C, et al. (1997) A motility function for the paraflagellar rod of Leishmania parasites revealed by PFR-2 gene knockouts. Mol Biochem Parasitol 90: 95–109. PubMed

Bastin P, Sherwin T, Gull K (1998) Paraflagellar rod is vital for trypanosome motility. Nature 391: 548 10.1038/35300 PubMed DOI

Portman N, Lacomble S, Thomas B, McKean PG, Gull K (2009) Combining RNA interference mutants and comparative proteomics to identify protein components and dependences in a eukaryotic flagellum. J Biol Chem 284: 5610–5619. 10.1074/jbc.M808859200 PubMed DOI PMC

Portman N, Gull K (2010) The paraflagellar rod of kinetoplastid parasites: from structure to components and function. Int J Parasitol 40: 135–148. 10.1016/j.ijpara.2009.10.005 PubMed DOI PMC

Coutton C, Vargas AS, Amiri-Yekta A, Kherraf ZE, Ben Mustapha SF, et al. (2018) Mutations in CFAP43 and CFAP44 cause male infertility and flagellum defects in Trypanosoma and human. Nat Commun 9: 686 10.1038/s41467-017-02792-7 PubMed DOI PMC

Davy BE, Robinson ML (2003) Congenital hydrocephalus in hy3 mice is caused by a frameshift mutation in Hydin, a large novel gene. Hum Mol Genet 12: 1163–1170. 10.1093/hmg/ddg122 PubMed DOI

Lechtreck KF, Witman GB (2007) Chlamydomonas reinhardtii hydin is a central pair protein required for flagellar motility. J Cell Biol 176: 473–482. 10.1083/jcb.200611115 PubMed DOI PMC

Dawe HR, Shaw MK, Farr H, Gull K (2007) The hydrocephalus inducing gene product, Hydin, positions axonemal central pair microtubules. BMC Biol 5: 33 10.1186/1741-7007-5-33 PubMed DOI PMC

Lechtreck KF, Delmotte P, Robinson ML, Sanderson MJ, Witman GB (2008) Mutations in Hydin impair ciliary motility in mice. J Cell Biol 180: 633–643. 10.1083/jcb.200710162 PubMed DOI PMC

Lindemann CB, Lesich KA (2010) Flagellar and ciliary beating: the proven and the possible. J Cell Sci 123: 519–528. 10.1242/jcs.051326 PubMed DOI

Lin J, Nicastro D (2018) Asymmetric distribution and spatial switching of dynein activity generates ciliary motility. Science 360, eaar1968. PubMed PMC

Oberholzer M, Langousis G, Nguyen HT, Saada EA, Shimogawa MM, et al. (2011) Independent analysis of the flagellum surface and matrix proteomes provides insight into flagellum signaling in mammalian-infectious Trypanosoma brucei. Mol Cell Proteomics 10: M111 010538. PubMed PMC

Sagne C, Isambert MF, Henry JP, Gasnier B (1996) SDS-resistant aggregation of membrane proteins: application to the purification of the vesicular monoamine transporter. Biochem J 316 (Pt 3): 825–831. PubMed PMC

Gundry RL, White MY, Murray CI, Kane LA, Fu Q, et al. (2009) Preparation of proteins and peptides for mass spectrometry analysis in a bottom-up proteomics workflow. Curr Protoc Mol Biol Chapter 10: Unit10 25. PubMed PMC

Trudgian DC, Thomas B, McGowan SJ, Kessler BM, Salek M, et al. (2010) CPFP: a central proteomics facilities pipeline. Bioinformatics 26: 1131–1132. 10.1093/bioinformatics/btq081 PubMed DOI

Vizcaino JA, Csordas A, Del-Toro N, Dianes JA, Griss J, et al. (2016) 2016 update of the PRIDE database and its related tools. Nucleic Acids Res 44: 11033 10.1093/nar/gkw880 PubMed DOI PMC

Dean S, Sunter J, Wheeler RJ, Hodkinson I, Gluenz E, et al. (2015) A toolkit enabling efficient, scalable and reproducible gene tagging in trypanosomatids. Open Biol 5: 140197 10.1098/rsob.140197 PubMed DOI PMC

Peng D, Tarleton R (2015) EuPaGDT: a web tool tailored to design CRISPR guide RNAs for eukaryotic pathogens. Microb Genom 1: e000033 10.1099/mgen.0.000033 PubMed DOI PMC

Dyer P, Dean S, Sunter J (2016) High-throughput Gene Tagging in Trypanosoma brucei. J Vis Exp 114: 54342. PubMed PMC

Rotureau B, Gego A, Carme B (2005) Trypanosomatid protozoa: a simplified DNA isolation procedure. Exp Parasitol 111: 207–209. 10.1016/j.exppara.2005.07.003 PubMed DOI

Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, et al. (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40: e115 10.1093/nar/gks596 PubMed DOI PMC

Hoog JL, Gluenz E, Vaughan S, Gull K (2010) Ultrastructural investigation methods for Trypanosoma brucei. Methods Cell Biol 96: 175–196. 10.1016/S0091-679X(10)96008-1 PubMed DOI

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, et al. (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9: 676–682. 10.1038/nmeth.2019 PubMed DOI PMC

Volf P, Volfova V (2011) Establishment and maintenance of sand fly colonies. J Vector Ecol 36 Suppl 1: S1–9. PubMed

Myskova J, Votypka J, Volf P (2008) Leishmania in sand flies: comparison of quantitative polymerase chain reaction with other techniques to determine the intensity of infection. J Med Entomol 45: 133–138. PubMed

Schlein Y (1993) Leishmania and Sandflies: interactions in the life cycle and transmission. Parasitol Today 9: 255–258. PubMed

Dupe A, Dumas C, Papadopoulou B (2015) Differential Subcellular Localization of Leishmania Alba-Domain Proteins throughout the Parasite Development. PLoS One 10: e0137243 10.1371/journal.pone.0137243 PubMed DOI PMC

Subota I, Julkowska D, Vincensini L, Reeg N, Buisson J, et al. (2014) Proteomic analysis of intact flagella of procyclic Trypanosoma brucei cells identifies novel flagellar proteins with unique sub-localization and dynamics. Mol Cell Proteomics 13: 1769–1786. 10.1074/mcp.M113.033357 PubMed DOI PMC

Kozlowski LP (2016) IPC—Isoelectric Point Calculator. Biol Direct 11: 55 10.1186/s13062-016-0159-9 PubMed DOI PMC

Kohl L, Sherwin T, Gull K (1999) Assembly of the paraflagellar rod and the flagellum attachment zone complex during the Trypanosoma brucei cell cycle. J Eukaryot Microbiol 46: 105–109. PubMed

Ismach R, Cianci CM, Caulfield JP, Langer PJ, Hein A, et al. (1989) Flagellar membrane and paraxial rod proteins of Leishmania: characterization employing monoclonal antibodies. J Protozool 36: 617–624. PubMed

Kraeva N, Ishemgulova A, Lukes J, Yurchenko V (2014) Tetracycline-inducible gene expression system in Leishmania mexicana. Mol Biochem Parasitol 198: 11–13. 10.1016/j.molbiopara.2014.11.002 PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Discovery of essential kinetoplastid-insect adhesion proteins and their function in Leishmania-sand fly interactions

. 2024 Aug 13 ; 15 (1) : 6960. [epub] 20240813

ULK4 and Fused/STK36 interact to mediate assembly of a motile flagellum

. 2023 Jun 01 ; 34 (7) : ar66. [epub] 20230329

Leishmania guyanensis M4147 as a new LRV1-bearing model parasite: Phosphatidate phosphatase 2-like protein controls cell cycle progression and intracellular lipid content

. 2022 Jun ; 16 (6) : e0010510. [epub] 20220624

The kinesin of the flagellum attachment zone in Leishmania is required for cell morphogenesis, cell division and virulence in the mammalian host

. 2021 Jun ; 17 (6) : e1009666. [epub] 20210618

Temperate Zone Plant Natural Products-A Novel Resource for Activity against Tropical Parasitic Diseases

. 2021 Mar 07 ; 14 (3) : . [epub] 20210307

Systematic functional analysis of Leishmania protein kinases identifies regulators of differentiation or survival

. 2021 Feb 23 ; 12 (1) : 1244. [epub] 20210223

The Remarkable Metabolism of Vickermania ingenoplastis: Genomic Predictions

. 2021 Jan 14 ; 10 (1) : . [epub] 20210114

Role for the flagellum attachment zone in Leishmania anterior cell tip morphogenesis

. 2020 Oct ; 16 (10) : e1008494. [epub] 20201022

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...