Role for the flagellum attachment zone in Leishmania anterior cell tip morphogenesis
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
200807/Z/16/Z
Wellcome Trust - United Kingdom
104627/Z/14/Z
Wellcome Trust - United Kingdom
PubMed
33091070
PubMed Central
PMC7608989
DOI
10.1371/journal.ppat.1008494
PII: PPATHOGENS-D-20-00556
Knihovny.cz E-zdroje
- MeSH
- buněčná membrána MeSH
- cytokineze MeSH
- cytoskelet metabolismus MeSH
- flagella fyziologie ultrastruktura MeSH
- interakce hostitele a parazita * MeSH
- Leishmania růst a vývoj ultrastruktura MeSH
- leishmanióza parazitologie MeSH
- morfogeneze * MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- protozoální proteiny genetika metabolismus MeSH
- Psychodidae parazitologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- protozoální proteiny MeSH
The shape and form of the flagellated eukaryotic parasite Leishmania is sculpted to its ecological niches and needs to be transmitted to each generation with great fidelity. The shape of the Leishmania cell is defined by the sub-pellicular microtubule array and the positioning of the nucleus, kinetoplast and the flagellum within this array. The flagellum emerges from the anterior end of the cell body through an invagination of the cell body membrane called the flagellar pocket. Within the flagellar pocket the flagellum is laterally attached to the side of the flagellar pocket by a cytoskeletal structure called the flagellum attachment zone (FAZ). During the cell cycle single copy organelles duplicate with a new flagellum assembling alongside the old flagellum. These are then segregated between the two daughter cells by cytokinesis, which initiates at the anterior cell tip. Here, we have investigated the role of the FAZ in the morphogenesis of the anterior cell tip. We have deleted the FAZ filament protein, FAZ2 and investigated its function using light and electron microscopy and infection studies. The loss of FAZ2 caused a disruption to the membrane organisation at the anterior cell tip, resulting in cells that were connected to each other by a membranous bridge structure between their flagella. Moreover, the FAZ2 null mutant was unable to develop and proliferate in sand flies and had a reduced parasite burden in mice. Our study provides a deeper understanding of membrane-cytoskeletal interactions that define the shape and form of an individual cell and the remodelling of that form during cell division.
Department of Biological and Medical Sciences Oxford Brookes University Oxford United Kingdom
Department of Parasitology Charles University Prague Czech Republic
Shimoda Marine Research Center University of Tsukuba Shizuoka Japan
York Biomedical Research Institute and Department of Biology University of York York United Kingdom
Zobrazit více v PubMed
Hoare CA, Wallace FG. Developmental Stages of Trypanosomatid Flagellates: a New Terminology. Nature. 1966. December 17;212(5068):1385–6.
Field MC, Carrington M. The trypanosome flagellar pocket. Nat Rev Microbiol. 2009. November;7(11):775–86. 10.1038/nrmicro2221 PubMed DOI
Wheeler RJ, Sunter JD, Gull K. Flagellar pocket restructuring through the Leishmania life cycle involves a discrete flagellum attachment zone. J Cell Sci. 2016. February 15;129(4):854–67. 10.1242/jcs.183152 PubMed DOI PMC
Vickerman K. On the surface coat and flagellar adhesion in trypanosomes. J Cell Sci. 1969. July;5(1):163–93. PubMed
Sunter JD, Gull K. The Flagellum Attachment Zone: “The Cellular Ruler” of Trypanosome Morphology. Trends Parasitol. 2016. April;32(4):309–24. 10.1016/j.pt.2015.12.010 PubMed DOI PMC
Sherwin T, Gull K. The cell division cycle of Trypanosoma brucei brucei: timing of event markers and cytoskeletal modulations. Philos Trans R Soc Lond B Biol Sci. 1989. June 12;323(1218):573–88. 10.1098/rstb.1989.0037 PubMed DOI
Portman N, Gull K. The paraflagellar rod of kinetoplastid parasites: from structure to components and function. Int J Parasitol. 2010. February;40(2):135–48. 10.1016/j.ijpara.2009.10.005 PubMed DOI PMC
Nozaki T, Haynes PA, Cross GA. Characterization of the Trypanosoma brucei homologue of a Trypanosoma cruzi flagellum-adhesion glycoprotein. Mol Biochem Parasitol. 1996. November 25;82(2):245–55. 10.1016/0166-6851(96)02741-7 PubMed DOI
LaCount DJ, Barrett B, Donelson JE. Trypanosoma brucei FLA1 is required for flagellum attachment and cytokinesis. J Biol Chem. 2002. May 17;277(20):17580–8. 10.1074/jbc.M200873200 PubMed DOI
Vaughan S, Kohl L, Ngai I, Wheeler RJ, Gull K. A repetitive protein essential for the flagellum attachment zone filament structure and function in Trypanosoma brucei. Protist. 2008. January;159(1):127–36. 10.1016/j.protis.2007.08.005 PubMed DOI
Zhou Q, Liu B, Sun Y, He CY. A coiled-coil- and C2-domain-containing protein is required for FAZ assembly and cell morphology in Trypanosoma brucei. J Cell Sci. 2011. November 15;124(Pt 22):3848–58. 10.1242/jcs.087676 PubMed DOI
Sunter JD, Varga V, Dean S, Gull K. A dynamic coordination of flagellum and cytoplasmic cytoskeleton assembly specifies cell morphogenesis in trypanosomes. J Cell Sci. 2015. March 3; 10.1242/jcs.166447 PubMed DOI PMC
Zhou Q, Hu H, He CY, Li Z. Assembly and maintenance of the flagellum attachment zone filament in Trypanosoma brucei. J Cell Sci. 2015. May 13; 10.1242/jcs.168377 PubMed DOI PMC
Morriswood B, Havlicek K, Demmel L, Yavuz S, Sealey-Cardona M, Vidilaseris K, et al. Novel bilobe components in Trypanosoma brucei identified using proximity-dependent biotinylation. Eukaryot Cell. 2013. February;12(2):356–67. 10.1128/EC.00326-12 PubMed DOI PMC
Moreira BP, Fonseca CK, Hammarton TC, Baqui MMA. Giant FAZ10 is required for flagellum attachment zone stabilization and furrow positioning in Trypanosoma brucei. J Cell Sci. 2017. 15;130(6):1179–93. 10.1242/jcs.194308 PubMed DOI PMC
Robinson DR, Sherwin T, Ploubidou A, Byard EH, Gull K. Microtubule polarity and dynamics in the control of organelle positioning, segregation, and cytokinesis in the trypanosome cell cycle. J Cell Biol. 1995. March;128(6):1163–72. 10.1083/jcb.128.6.1163 PubMed DOI PMC
Wheeler RJ, Gull K, Sunter JD. Coordination of the Cell Cycle in Trypanosomes. Annu Rev Microbiol. 2019. September 8;73:133–54. 10.1146/annurev-micro-020518-115617 PubMed DOI
Wheeler RJ, Scheumann N, Wickstead B, Gull K, Vaughan S. Cytokinesis in Trypanosoma brucei differs between bloodstream and tsetse trypomastigote forms: implications for microtubule-based morphogenesis and mutant analysis. Mol Microbiol. 2013. December;90(6):1339–55. 10.1111/mmi.12436 PubMed DOI PMC
McAllaster MR, Ikeda KN, Lozano-Núñez A, Anrather D, Unterwurzacher V, Gossenreiter T, et al. Proteomic identification of novel cytoskeletal proteins associated with TbPLK, an essential regulator of cell morphogenesis in T. brucei. Mol Biol Cell. 2015. July 1; PubMed PMC
Zhou Q, Gu J, Lun Z-R, Ayala FJ, Li Z. Two distinct cytokinesis pathways drive trypanosome cell division initiation from opposite cell ends. Proc Natl Acad Sci U S A. 2016. March 22;113(12):3287–92. 10.1073/pnas.1601596113 PubMed DOI PMC
Zhou Q, Hu H, Li Z. An EF-hand-containing Protein in Trypanosoma brucei Regulates Cytokinesis Initiation by Maintaining the Stability of the Cytokinesis Initiation Factor CIF1. J Biol Chem. 2016. July 8;291(28):14395–409. 10.1074/jbc.M116.726133 PubMed DOI PMC
Kurasawa Y, Hu H, Zhou Q, Li Z. The trypanosome-specific protein CIF3 cooperates with the CIF1 protein to promote cytokinesis in Trypanosoma brucei. J Biol Chem. 2018. 29;293(26):10275–86. 10.1074/jbc.RA118.003113 PubMed DOI PMC
Zhou Q, An T, Pham KTM, Hu H, Li Z. The CIF1 protein is a master orchestrator of trypanosome cytokinesis that recruits several cytokinesis regulators to the cytokinesis initiation site. J Biol Chem. 2018. 19;293(42):16177–92. 10.1074/jbc.RA118.004888 PubMed DOI PMC
Hu H, An T, Kurasawa Y, Zhou Q, Li Z. The trypanosome-specific proteins FPRC and CIF4 regulate cytokinesis initiation by recruiting CIF1 to the cytokinesis initiation site. J Biol Chem. 2019. November 8;294(45):16672–83. 10.1074/jbc.RA119.010538 PubMed DOI PMC
Hayes P, Varga V, Olego-Fernandez S, Sunter J, Ginger ML, Gull K. Modulation of a cytoskeletal calpain-like protein induces major transitions in trypanosome morphology. J Cell Biol. 2014. August 4;206(3):377–84. PubMed PMC
Sunter JD, Benz C, Andre J, Whipple S, McKean PG, Gull K, et al. Flagellum attachment zone protein modulation and regulation of cell shape in Trypanosoma brucei life cycle transitions. J Cell Sci. 2015. July 6; PubMed PMC
Sunter JD, Yanase R, Wang Z, Catta-Preta CMC, Moreira-Leite F, Myskova J, et al. Leishmania flagellum attachment zone is critical for flagellar pocket shape, development in the sand fly, and pathogenicity in the host. Proc Natl Acad Sci U S A. 2019. 26;116(13):6351–60. 10.1073/pnas.1812462116 PubMed DOI PMC
Beneke T, Madden R, Makin L, Valli J, Sunter J, Gluenz E. A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids. R Soc Open Sci. 2017. May;4(5):170095 10.1098/rsos.170095 PubMed DOI PMC
Gluenz E, Höög JL, Smith AE, Dawe HR, Shaw MK, Gull K. Beyond 9+0: noncanonical axoneme structures characterize sensory cilia from protists to humans. FASEB J Off Publ Fed Am Soc Exp Biol. 2010. September;24(9):3117–21. 10.1096/fj.09-151381 PubMed DOI PMC
Bates PA. Complete developmental cycle of Leishmania mexicana in axenic culture. Parasitology. 1994. January;108 (Pt 1):1–9. PubMed
Wheeler RJ, Gluenz E, Gull K. The cell cycle of Leishmania: morphogenetic events and their implications for parasite biology. Mol Microbiol. 2011. February;79(3):647–62. 10.1111/j.1365-2958.2010.07479.x PubMed DOI PMC
Ambit A, Woods KL, Cull B, Coombs GH, Mottram JC. Morphological events during the cell cycle of Leishmania major. Eukaryot Cell. 2011. November;10(11):1429–38. 10.1128/EC.05118-11 PubMed DOI PMC
Santrich C, Moore L, Sherwin T, Bastin P, Brokaw C, Gull K, et al. A motility function for the paraflagellar rod of Leishmania parasites revealed by PFR-2 gene knockouts. Mol Biochem Parasitol. 1997. December 1;90(1):95–109. 10.1016/s0166-6851(97)00149-7 PubMed DOI
Gadelha C, Rothery S, Morphew M, McIntosh JR, Severs NJ, Gull K. Membrane domains and flagellar pocket boundaries are influenced by the cytoskeleton in African trypanosomes. Proc Natl Acad Sci U S A. 2009. October 13;106(41):17425–30. 10.1073/pnas.0909289106 PubMed DOI PMC
Imhof S, Fragoso C, Hemphill A, von Schubert C, Li D, Legant W, et al. Flagellar membrane fusion and protein exchange in trypanosomes; a new form of cell-cell communication? F1000Research. 2016;5:682 10.12688/f1000research.8249.1 PubMed DOI PMC
Dostálová A, Volf P. Leishmania development in sand flies: parasite-vector interactions overview. Parasit Vectors. 2012. December 3;5:276 10.1186/1756-3305-5-276 PubMed DOI PMC
Pruzinova K, Sadlova J, Seblova V, Homola M, Votypka J, Volf P. Comparison of Bloodmeal Digestion and the Peritrophic Matrix in Four Sand Fly Species Differing in Susceptibility to Leishmania donovani. PloS One. 2015;10(6):e0128203 10.1371/journal.pone.0128203 PubMed DOI PMC
Beneke T, Demay F, Hookway E, Ashman N, Jeffery H, Smith J, et al. Genetic dissection of a Leishmania flagellar proteome demonstrates requirement for directional motility in sand fly infections. PLOS Pathog. 2019. June 26;15(6):e1007828 10.1371/journal.ppat.1007828 PubMed DOI PMC
Dean S, Sunter J, Wheeler RJ, Hodkinson I, Gluenz E, Gull K. A toolkit enabling efficient, scalable and reproducible gene tagging in trypanosomatids. Open Biol. 2015. January;5(1). 10.1098/rsob.140197 PubMed DOI PMC
Wheeler RJ. Use of chiral cell shape to ensure highly directional swimming in trypanosomes. PLoS Comput Biol. 2017. January;13(1):e1005353 10.1371/journal.pcbi.1005353 PubMed DOI PMC
Volf P, Volfova V. Establishment and maintenance of sand fly colonies. J Vector Ecol J Soc Vector Ecol. 2011. March;36 Suppl 1:S1–9. 10.1111/j.1948-7134.2011.00106.x PubMed DOI
Myskova J, Votypka J, Volf P. Leishmania in sand flies: comparison of quantitative polymerase chain reaction with other techniques to determine the intensity of infection. J Med Entomol. 2008. January;45(1):133–8. 10.1603/0022-2585(2008)45[133:lisfco]2.0.co;2 PubMed DOI
Castanys-Muñoz E, Brown E, Coombs GH, Mottram JC. Leishmania mexicana metacaspase is a negative regulator of amastigote proliferation in mammalian cells. Cell Death Dis. 2012. September;3(9):e385 10.1038/cddis.2012.113 PubMed DOI PMC