Modulation of flagellum attachment zone protein FLAM3 and regulation of the cell shape in Trypanosoma brucei life cycle transitions

. 2015 Aug 15 ; 128 (16) : 3117-30. [epub] 20150706

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26148511

Grantová podpora
BB/G021058/1 Biotechnology and Biological Sciences Research Council - United Kingdom
BBF0109311 Biotechnology and Biological Sciences Research Council - United Kingdom
BBG0210581 Biotechnology and Biological Sciences Research Council - United Kingdom
104627 Wellcome Trust - United Kingdom
BB/F010931/1 Biotechnology and Biological Sciences Research Council - United Kingdom

The cell shape of Trypanosoma brucei is influenced by flagellum-to-cell-body attachment through a specialised structure - the flagellum attachment zone (FAZ). T. brucei exhibits numerous morphological forms during its life cycle and, at each stage, the FAZ length varies. We have analysed FLAM3, a large protein that localises to the FAZ region within the old and new flagellum. Ablation of FLAM3 expression causes a reduction in FAZ length; however, this has remarkably different consequences in the tsetse procyclic form versus the mammalian bloodstream form. In procyclic form cells FLAM3 RNAi results in the transition to an epimastigote-like shape, whereas in bloodstream form cells a severe cytokinesis defect associated with flagellum detachment is observed. Moreover, we demonstrate that the amount of FLAM3 and its localisation is dependent on ClpGM6 expression and vice versa. This evidence demonstrates that FAZ is a key regulator of trypanosome shape, with experimental perturbations being life cycle form dependent. An evolutionary cell biology explanation suggests that these differences are a reflection of the division process, the cytoskeleton and intrinsic structural plasticity of particular life cycle forms.

Zobrazit více v PubMed

Briggs L. J., McKean P. G., Baines A., Moreira-Leite F., Davidge J., Vaughan S. and Gull K. (2004). The flagella connector of Trypanosoma brucei: an unusual mobile transmembrane junction. J. Cell Sci. 117, 1641-1651. 10.1242/jcs.00995 PubMed DOI

Changmai P., Horáková E., Long S., Černotíková-Stříbrná E., McDonald L. M., Bontempi E. J. and Lukeš J. (2013). Both human ferredoxins equally efficiently rescue ferredoxin deficiency in Trypanosoma brucei. Mol. Microbiol. 89, 135-151. 10.1111/mmi.12264 PubMed DOI

Davidge J. A., Chambers E., Dickinson H. A., Towers K., Ginger M. L., McKean P. G. and Gull K. (2006). Trypanosome IFT mutants provide insight into the motor location for mobility of the flagella connector and flagellar membrane formation. J. Cell Sci. 119, 3935-3943. 10.1242/jcs.03203 PubMed DOI

Fields S. D., Conrad M. N. and Clarke M. (1998). The S. cerevisiae CLU1 and D. discoideum cluA genes are functional homologues that influence mitochondrial morphology and distribution. J. Cell Sci. 111, 1717-1727. PubMed

Gao J., Schatton D., Martinelli P., Hansen H., Pla-Martin D., Barth E., Becker C., Altmueller J., Frommolt P., Sardiello M. et al. (2014). CLUH regulates mitochondrial biogenesis by binding mRNAs of nuclear-encoded mitochondrial proteins. J. Cell Biol. 207, 213-223. 10.1083/jcb.201403129 PubMed DOI PMC

García-Salcedo J. A., Pérez-Morga D., Gijón P., Dilbeck V., Pays E. and Nolan D. P. (2004). A differential role for actin during the life cycle of Trypanosoma brucei. EMBO J. 23, 780-789. 10.1038/sj.emboj.7600094 PubMed DOI PMC

Gluenz E., Povelones M. L., Englund P. T. and Gull K. (2011). The kinetoplast duplication cycle in Trypanosoma brucei is orchestrated by cytoskeleton-mediated cell morphogenesis. Mol. Cell. Biol. 31, 1012-1021. 10.1128/MCB.01176-10 PubMed DOI PMC

Hayes P., Varga V., Olego-Fernandez S., Sunter J., Ginger M. L. and Gull K. (2014). Modulation of a cytoskeletal calpain-like protein induces major transitions in trypanosome morphology. J. Cell Biol. 206, 377-384. 10.1083/jcb.201312067 PubMed DOI PMC

Hoare C. A. and Wallace F. G. (1966). Developmental stages of trypanosomatid flagellates: a new terminology. Nature 212, 1385-1386. 10.1038/2121385a0 DOI

Kelly S., Reed J., Kramer S., Ellis L., Webb H., Sunter J., Salje J., Marinsek N., Gull K., Wickstead B. et al. (2007). Functional genomics in Trypanosoma brucei: a collection of vectors for the expression of tagged proteins from endogenous and ectopic gene loci. Mol. Biochem. Parasitol. 154, 103-109. 10.1016/j.molbiopara.2007.03.012 PubMed DOI PMC

Kohl L., Sherwin T. and Gull K. (1999). Assembly of the paraflagellar rod and the flagellum attachment zone complex during the Trypanosoma brucei cell cycle. J. Eukaryot. Microbiol. 46, 105-109. 10.1111/j.1550-7408.1999.tb04592.x PubMed DOI

Kohl L., Robinson D. and Bastin P. (2003). Novel roles for the flagellum in cell morphogenesis and cytokinesis of trypanosomes. EMBO J. 22, 5336-5346. 10.1093/emboj/cdg518 PubMed DOI PMC

LaCount D. J., Barrett B. and Donelson J. E. (2002). Trypanosoma brucei FLA1 is required for flagellum attachment and cytokinesis. J. Biol. Chem. 277, 17580-17588. 10.1074/jbc.M200873200 PubMed DOI

Logan D. C., Scott I. and Tobin A. K. (2003). The genetic control of plant mitochondrial morphology and dynamics. Plant J. 36, 500-509. 10.1046/j.1365-313X.2003.01894.x PubMed DOI

Matthews K. R. (2011). Controlling and coordinating development in vector-transmitted parasites. Science 331, 1149-1153. 10.1126/science.1198077 PubMed DOI PMC

McCulloch R., Vassella E., Burton P., Boshart M. and Barry J. D. (2004). Transformation of monomorphic and pleomorphic Trypanosoma brucei. Methods Mol. Biol. 262, 53-86. 10.1385/1-59259-761-0:053 PubMed DOI

Morriswood B., Havlicek K., Demmel L., Yavuz S., Sealey-Cardona M., Vidilaseris K., Anrather D., Kostan J., Djinovic-Carugo K., Roux K. J. et al. (2013). Novel bilobe components in Trypanosoma brucei identified using proximity-dependent biotinylation. Eukaryot. Cell 12, 356-367. 10.1128/EC.00326-12 PubMed DOI PMC

Nozaki T., Haynes P. A. and Cross G. A. M. (1996). Characterization of the Trypanosoma brucei homologue of a Trypanosoma cruzi flagellum-adhesion glycoprotein. Mol. Biochem. Parasitol. 82, 245-255. 10.1016/0166-6851(96)02741-7 PubMed DOI

Ogbadoyi E. O., Robinson D. R. and Gull K. (2003). A high-order trans-membrane structural linkage is responsible for mitochondrial genome positioning and segregation by flagellar basal bodies in trypanosomes. Mol. Biol. Cell 14, 1769-1779. 10.1091/mbc.E02-08-0525 PubMed DOI PMC

Ooi C.-P. and Bastin P. (2013). More than meets the eye: understanding Trypanosoma brucei morphology in the tsetse. Front. Cell. Infect. Microbiol. 3, 71 10.3389/fcimb.2013.00071 PubMed DOI PMC

Poon S. K., Peacock L., Gibson W., Gull K. and Kelly S. (2012). A modular and optimized single marker system for generating Trypanosoma brucei cell lines expressing T7 RNA polymerase and the tetracycline repressor. Open Biol. 2, 110037 10.1098/rsob.110037 PubMed DOI PMC

Price H. P., Hodgkinson M. R., Curwen R. S., MacLean L. M., Brannigan J. A., Carrington M., Smith B. A., Ashford D. A., Stark M. and Smith D. F. (2012). The orthologue of Sjögren's syndrome nuclear autoantigen 1 (SSNA1) in Trypanosoma brucei is an immunogenic self-assembling molecule. PLoS ONE 7, e31842 10.1371/journal.pone.0031842 PubMed DOI PMC

Reynolds E. S. (1963). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208-212. 10.1083/jcb.17.1.208 PubMed DOI PMC

Robinson D. R. and Gull K. (1991). Basal body movements as a mechanism for mitochondrial genome segregation in the trypanosome cell cycle. Nature 352, 731-733. 10.1038/352731a0 PubMed DOI

Robinson D. R., Sherwin T., Ploubidou A., Byard E. H. and Gull K. (1995). Microtubule polarity and dynamics in the control of organelle positioning, segregation, and cytokinesis in the trypanosome cell cycle. J. Cell Biol. 128, 1163-1172. 10.1083/jcb.128.6.1163 PubMed DOI PMC

Rotureau B., Blisnick T., Subota I., Julkowska D., Cayet N., Perrot S. and Bastin P. (2014). Flagellar adhesion in Trypanosoma brucei relies on interactions between different skeletal structures in the flagellum and cell body. J. Cell Sci. 127, 204-215. 10.1242/jcs.136424 PubMed DOI

Schimanski B., Nguyen T. N. and Günzl A. (2005). Highly efficient tandem affinity purification of trypanosome protein complexes based on a novel epitope combination. Eukaryot. Cell 4, 1942-1950. 10.1128/EC.4.11.1942-1950.2005 PubMed DOI PMC

Schneider C. A., Rasband W. S. and Eliceiri K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671-675. 10.1038/nmeth.2089 PubMed DOI PMC

Sen A., Damm V. T. and Cox R. T. (2013). Drosophila clueless is highly expressed in larval neuroblasts, affects mitochondrial localization and suppresses mitochondrial oxidative damage. PLoS ONE 8, e54283 10.1371/journal.pone.0054283 PubMed DOI PMC

Sharma R., Gluenz E., Peacock L., Gibson W., Gull K. and Carrington M. (2009). The heart of darkness: growth and form of Trypanosoma brucei in the tsetse fly. Trends Parasitol. 25, 517-524. 10.1016/j.pt.2009.08.001 PubMed DOI PMC

Sherwin T. and Gull K. (1989). The cell division cycle of Trypanosoma brucei brucei: timing of event markers and cytoskeletal modulations. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 323, 573-588. 10.1098/rstb.1989.0037 PubMed DOI

Sun S. Y., Wang C., Yuan Y. A. and He C. Y. (2013). An intracellular membrane junction consisting of flagellum adhesion glycoproteins links flagellum biogenesis to cell morphogenesis in Trypanosoma brucei. J. Cell Sci. 126, 520-531. 10.1242/jcs.113621 PubMed DOI

Sunter J. D., Varga V., Dean S. and Gull K. (2015). A dynamic coordination of flagellum and cytoplasmic cytoskeleton assembly specifies cell morphogenesis in trypanosomes. J. Cell Sci. 128, 1580-1594. 10.1242/jcs.166447 PubMed DOI PMC

Urwyler S., Studer E., Renggli C. K. and Roditi I. (2007). A family of stage-specific alanine-rich proteins on the surface of epimastigote forms of Trypanosoma brucei. Mol. Microbiol. 63, 218-228. 10.1111/j.1365-2958.2006.05492.x PubMed DOI

Vaughan S., Kohl L., Ngai I., Wheeler R. J. and Gull K. (2008). A repetitive protein essential for the flagellum attachment zone filament structure and function in Trypanosoma brucei. Protist 159, 127-136. 10.1016/j.protis.2007.08.005 PubMed DOI

Verner Z., Basu S., Benz C., Dixit S., Dobáková E., Faktorová D., Hashimi H., Horáková E., Huang Z., Paris Z. et al. (2015). Malleable mitochondrion of Trypanosoma brucei. Int. Rev. Cell. Mol. Biol. 315, 73-151. 10.1016/bs.ircmb.2014.11.001 PubMed DOI

Wheeler R. J., Scheumann N., Wickstead B., Gull K. and Vaughan S. (2013). Cytokinesis in Trypanosoma brucei differs between bloodstream and tsetse trypomastigote forms: implications for microtubule-based morphogenesis and mutant analysis. Mol. Microbiol. 90, 1339-1355. 10.1111/mmi.12436 PubMed DOI PMC

Wickstead B., Ersfeld K. and Gull K. (2002). Targeting of a tetracycline-inducible expression system to the transcriptionally silent minichromosomes of Trypanosoma brucei. Mol. Biochem. Parasitol. 125, 211-216. 10.1016/S0166-6851(02)00238-4 PubMed DOI

Zhou Q., Liu B., Sun Y. and He C. Y. (2011). A coiled-coil- and C2-domain-containing protein is required for FAZ assembly and cell morphology in Trypanosoma brucei. J. Cell Sci. 124, 3848-3858. 10.1242/jcs.087676 PubMed DOI

Zhou Q., Hu H., He C. Y. and Li Z. (2015). Assembly and maintenance of the flagellum attachment zone filament in Trypanosoma brucei. J. Cell Sci. 128, 2361-2372. 10.1242/jcs.168377 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...