The Trypanosoma brucei TbHrg protein is a heme transporter involved in the regulation of stage-specific morphological transitions

. 2017 Apr 28 ; 292 (17) : 6998-7010. [epub] 20170223

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28232490
Odkazy

PubMed 28232490
PubMed Central PMC5409468
DOI 10.1074/jbc.m116.762997
PII: S0021-9258(20)42890-X
Knihovny.cz E-zdroje

The human parasite Trypanosoma brucei does not synthesize heme de novo and instead relies entirely on heme supplied by its vertebrate host or its insect vector, the tsetse fly. In the host bloodstream T. brucei scavenges heme via haptoglobin-hemoglobin (HpHb) receptor-mediated endocytosis occurring in the flagellar pocket. However, in the procyclic developmental stage, in which T. brucei is confined to the tsetse fly midgut, this receptor is apparently not expressed, suggesting that T. brucei takes up heme by a different, unknown route. To define this alternative route, we functionally characterized heme transporter TbHrg in the procyclic stage. RNAi-induced down-regulation of TbHrg in heme-limited culture conditions resulted in slower proliferation, decreased cellular heme, and marked changes in cellular morphology so that the cells resemble mesocyclic trypomastigotes. Nevertheless, the TbHrg KO developed normally in the tsetse flies at rates comparable with wild-type cells. T. brucei cells overexpressing TbHrg displayed up-regulation of the early procyclin GPEET and down-regulation of the late procyclin EP1, two proteins coating the T. brucei surface in the procyclic stage. Light microscopy of immunostained TbHrg indicated localization to the flagellar membrane, and scanning electron microscopy revealed more intense TbHrg accumulation toward the flagellar pocket. Based on these findings, we postulate that T. brucei senses heme levels via the flagellar TbHrg protein. Heme deprivation in the tsetse fly anterior midgut might represent an environmental stimulus involved in the transformation of this important human parasite, possibly through metabolic remodeling.

Zobrazit více v PubMed

Kořený L., Oborník M., and Lukeš J. (2013) Make it, take it, or leave it: heme metabolism of parasites. PLoS Pathog. 9, e1003088. PubMed PMC

Mense S. M., and Zhang L. (2006) Heme: a versatile signaling molecule controlling the activities of diverse regulators ranging from transcription factors to MAP kinases. Cell Res. 16, 681–692 PubMed

Panek H., and O'Brian M. R. (2002) A whole genome view of prokaryotic haem biosynthesis. Microbiology 148, 2273–2282 PubMed

Oborník M., and Green B. R. (2005) Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes. Mol. Biol. Evol. 22, 2343–2353 PubMed

Kořený L., Lukeš J., and Oborník M. (2010) Evolution of the haem synthetic pathway in kinetoplastid flagellates: an essential pathway that is not essential after all? Int. J. Parasitol. 40, 149–156 PubMed

Tripodi K. E., Menendez Bravo S. M., and Cricco J. A. (2011) Role of heme and heme-proteins in trypanosomatid essential metabolic pathways. Enzyme Res. 2011, 873230. PubMed PMC

Ferguson M. A., and Homans S. W. (1988) Parasite glycoconjugates: towards the exploitation of their structure. Parasite Immunol. 10, 465–479 PubMed

Wassell J. (2000) Haptoglobin: function and polymorphism. Clin. Lab. 46, 547–552 PubMed

Vanhollebeke B., De Muylder G., Nielsen M. J., Pays A., Tebabi P., Dieu M., Raes M., Moestrup S. K., and Pays E. (2008) A haptoglobin-hemoglobin receptor conveys innate immunity to Trypanosoma brucei in humans. Science 320, 677–681 PubMed

Roditi I., Schwarz H., Pearson T. W., Beecroft R. P., Liu M. K., Richardson J. P., Bühring H. J., Pleiss J., Bülow R., and Williams R. O. (1989) Procyclin gene expression and loss of the variant surface glycoprotein during differentiation of Trypanosoma brucei. J. Cell Biol. 108, 737–746 PubMed PMC

Vanhollebeke B., Uzureau P., Monteyne D., Pérez-Morga D., and Pays E. (2010) Cellular and molecular remodeling of the endocytic pathway during differentiation of Trypanosoma brucei bloodstream forms. Eukaryot. Cell 9, 1272–1282 PubMed PMC

van Hellemond J. J., Opperdoes F. R., and Tielens A. G. (2005) The extraordinary mitochondrion and unusual citric acid cycle in Trypanosoma brucei. Biochem. Soc. Trans. 33, 967–971 PubMed

Verner Z., Basu S., Benz C., Dixit S., Dobáková E., Faktorová D., Hashimi H., Horáková E., Huang Z., Paris Z., Peña-Diaz P., Ridlon L., Týč J., Wildridge D., Zíková A., and Lukeš J. (2015) Malleable mitochondrion of Trypanosoma brucei. Int. Rev. Cell Mol. Biol. 315, 73–151 PubMed

Toh S. Q., Glanfield A., Gobert G. N., and Jones M. K. (2010) Heme and blood-feeding parasites: friends or foes? Parasit. Vectors. 3, 108. PubMed PMC

Ooi C. P., and Bastin P. (2013) More than meets the eye: understanding Trypanosoma brucei morphology in the tsetse. Front. Cell Infect. Microbiol. 3, 71. PubMed PMC

Van Den Abbeele J., Claes Y., van Bockstaele D., Le Ray D., and Coosemans M. (1999) Trypanosoma brucei spp. development in the tsetse fly: characterization of the post-mesocyclic stages in the foregut and proboscis. Parasitology 118, 469–478 PubMed

Tracz M. J., Alam J., and Nath K. A. (2007) Physiology and pathophysiology of heme: implications for kidney disease. J. Am. Soc. Nephrol. 18, 414–420 PubMed

Rajagopal A., Rao A. U., Amigo J., Tian M., Upadhyay S. K., Hall C., Uhm S., Mathew M. K., Fleming M. D., Paw B. H., Krause M., and Hamza I. (2008) Haem homeostasis is regulated by the conserved and concerted functions of HRG-1 proteins. Nature 453, 1127–1231 PubMed PMC

Severance S., Rajagopal A., Rao A. U., Cerqueira G. C., Mitreva M., El-Sayed N. M., Krause M., and Hamza I. (2010) Genome-wide analysis reveals novel genes essential for heme homeostasis in Caenorhabditis elegans. PLoS Genet. 6, e1001044. PubMed PMC

White C., Yuan X., Schmidt P. J., Bresciani E., Samuel T. K., Campagna D., Hall C., Bishop K., Calicchio M. L., Lapierre A., Ward D. M., Liu P., Fleming M. D., and Hamza I. (2013) HRG1 is essential for heme transport from the phagolysosome of macrophages during erythrophagocytosis. Cell Metab. 17, 261–270 PubMed PMC

Chen C., Samuel T. K., Krause M., Dailey H. A., and Hamza I. (2012) Heme utilization in the Caenorhabditis elegans hypodermal cells is facilitated by heme-responsive gene-2. J. Biol. Chem. 287, 9601–9612 PubMed PMC

Huynh C., Yuan X., Miguel D. C., Renberg R. L., Protchenko O., Philpott C. C., Hamza I., and Andrews N. W. (2012) Heme uptake by Leishmania amazonensis is mediated by the transmembrane protein LHR1. PLoS Pathog. 8, e1002795. PubMed PMC

Merli M. L., Pagura L., Hernández J., Barisón M. J., Pral E. M., Silber A. M., and Cricco J. A. (2016) The Trypanosoma cruzi protein TcHTE is critical for heme uptake. PLoS Negl. Trop. Dis. 10, e0004359. PubMed PMC

Renberg R. L., Yuan X., Samuel T. K., Miguel D. C., Hamza I., Andrews N. W., and Flannery A. R. (2015) The heme transport capacity of LHR1 determines the extent of virulence in Leishmania amazonensis. PLoS Negl. Trop. Dis. 9, e0003804. PubMed PMC

Cabello-Donayre M., Malagarie-Cazenave S., Campos-Salinas J., Gálvez F. J., Rodríguez-Martínez A., Pineda-Molina E., Orrego L. M., Martínez-García M., Sánchez-Cañete M. P., Estévez A. M., and Pérez-Victoria J. M. (2016) Trypanosomatid parasites rescue heme from endocytosed hemoglobin through lysosomal HRG transporters. Mol. Microbiol. 101, 895–908 PubMed

Yuan X., Protchenko O., Philpott C. C., and Hamza I. (2012) Topologically conserved residues direct heme transport in HRG-1-related proteins. J. Biol. Chem. 287, 4914–4924 PubMed PMC

Urbaniak M. D., Martin D. M., and Ferguson M. A. (2013) Global quantitative SILAC phosphoproteomics reveals differential phosphorylation is widespread between the procyclic and bloodstream form lifecycle stages of Trypanosoma brucei. J. Proteome Res. 12, 2233–2244 PubMed PMC

Siegel T. N., Hekstra D. R., Wang X., Dewell S., and Cross G. A. (2010) Genome-wide analysis of mRNA abundance in two life-cycle stages of Trypanosoma brucei and identification of splicing and polyadenylation sites. Nucleic Acids Res. 38, 4946–4957 PubMed PMC

Jensen B. C., Ramasamy G., Vasconcelos E. J., Ingolia N. T., Myler P. J., and Parsons M. (2014) Extensive stage-regulation of translation revealed by ribosome profiling of Trypanosoma brucei. BMC Genomics 15, 911. PubMed PMC

Fadda A., Ryten M., Droll D., Rojas F., Färber V., Haanstra J. R., Merce C., Bakker B. M., Matthews K., and Clayton C. (2014) Transcriptome-wide analysis of trypanosome mRNA decay reveals complex degradation kinetics and suggests a role for co-transcriptional degradation in determining mRNA levels. Mol. Microbiol. 94, 307–326 PubMed PMC

Telleria E. L., Benoit J. B., Zhao X., Savage A. F., Regmi S., Alves e Silva T. L., O'Neill M., and Aksoy S. (2014) Insights into the trypanosome-host interactions revealed through transcriptomic analysis of parasitized tsetse fly salivary glands. PLoS Negl. Trop. Dis. 8, e2649. PubMed PMC

Alsford S., Turner D. J., Obado S. O., Sanchez-Flores A., Glover L., Berriman M., Hertz-Fowler C., and Horn D. (2011) High-throughput phenotyping using parallel sequencing of RNA interference targets in the African trypanosome. Genome Res. 21, 915–924 PubMed PMC

Changmai P., Horáková E., Long S., Černotíková-Stíbrná E., McDonald L. M., Bontempi E. J., and Lukeš J. (2013) Both human ferredoxins equally efficiently rescue ferredoxin deficiency in Trypanosoma brucei. Mol. Microbiol. 89, 135–151 PubMed

Dyer N. A., Rose C., Ejeh N. O., and Acosta-Serrano A. (2013) Flying tryps: survival and maturation of trypanosomes in tsetse flies. Trends Parasitol. 29, 188–196 PubMed

Houseman J. G. (1980) Anterior midgut proteinase inhibitor from Glossina morsitans morsitans Westwood (Diptera: Glossinidae) and its effect upon tsetse digestive enzymes. Can. J. Zool. 58, 79–87

Lehane M. J. (2005) The biology of blood-sucking insects, 2nd Ed., pp. 82–91, Cambridge University Press, Cambridge, UK

Lara F. A., Sant'anna C., Lemos D., Laranja G. A., Coelho M. G., Reis Salles I., Michel A., Oliveira P. L., Cunha-E-Silva N., Salmon D., and Paes M. C. (2007) Heme requirement and intracellular trafficking in Trypanosoma cruzi epimastigotes. Biochem. Biophys. Res. Commun. 355, 16–22 PubMed

Chang K. P., Chang C. S., and Sassa S. (1975) Heme biosynthesis in bacterium-protozoon symbioses: enzymic defects in host hemoflagellates and complemental role of their intracellular symbiotes. Proc. Natl. Acad. Sci. U.S.A. 72, 2979–2983 PubMed PMC

Kořený L., Sobotka R., Kovářová J., Gnipová A., Flegontov P., Horváth A., Oborník M., Ayala F. J., and Lukeš J. (2012) Aerobic kinetoplastid flagellate Phytomonas does not require heme for viability. Proc. Natl. Acad. Sci. U.S.A. 109, 3808–3813 PubMed PMC

Campos-Salinas J., Cabello-Donayre M., García-Hernández R., Pérez-Victoria I., Castanys S., Gamarro F., and Pérez-Victoria J. M. (2011) A new ATP-binding cassette protein is involved in intracellular haem trafficking in Leishmania. Mol. Microbiol. 79, 1430–1444 PubMed

Halliwell B., and Gutteridge J. M. (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 186, 1–85 PubMed

Khan A. A., and Quigley J. G. (2011) Control of intracellular heme levels: heme transporters and heme oxygenases. Biochim. Biophys. Acta 1813, 668–682 PubMed PMC

Natesan S. K., Peacock L., Matthews K., Gibson W., and Field M. C. (2007) Activation of endocytosis as an adaptation to the mammalian host by trypanosomes. Eukaryot. Cell 6, 2029–2037 PubMed PMC

Pal J. K., and Joshi-Purandare M. (2001) Dose-dependent differential effect of hemin on protein synthesis and cell proliferation in Leishmania donovani promastigotes cultured in vitro. J. Biosci. 26, 225–231 PubMed

Ciccarelli A., Araujo L., Batlle A., and Lombardo E. (2007) Effect of haemin on growth, protein content, and the antioxidant defense system in Trypanosoma cruzi. Parasitology 134, 959–965 PubMed

da Silva Augusto L., Moretti N. S., Ramos T. C., de Jesus T. C., Zhang M., Castilho B. A., and Schenkman S. (2015) A membrane-bound eIF2α kinase located in endosomes is regulated by heme and controls differentiation and ROS levels in Trypanosoma cruzi. PLoS Pathog. 11, e1004618. PubMed PMC

Rotureau B., Subota I., and Bastin P. (2011) Molecular bases of cytoskeleton plasticity during the Trypanosoma brucei parasite cycle. Cell. Microbiol. 13, 705–716 PubMed

Sunter J. D., Benz C., Andre J., Whipple S., McKean P. G., Gull K., Ginger M. L., and Lukeš J. (2015) Modulation of flagellum attachment zone protein FLAM3 and regulation of the cell shape in Trypanosoma brucei life cycle transitions. J. Cell Sci. 128, 3117–3130 PubMed PMC

Vassella E., Oberle M., Urwyler S., Renggli C. K., Studer E., Hemphill A., Fragoso C., Bütikofer P., Brun R., and Roditi I. (2009) Major surface glycoproteins of insect forms of Trypanosoma brucei are not essential for cyclical transmission by tsetse. PLoS ONE 4, e4493. PubMed PMC

Knüsel S., and Roditi I. (2013) Insights into the regulation of GPEET procyclin during differentiation from early to late procyclic forms of Trypanosoma brucei. Mol. Biochem. Parasitol. 191, 66–74 PubMed

Vassella E., Den Abbeele J. V., Bütikofer P., Renggli C. K., Furger A., Brun R., and Roditi I. (2000) A major surface glycoprotein of Trypanosoma brucei is expressed transiently during development and can be regulated post-transcriptionally by glycerol or hypoxia. Genes Dev. 14, 615–626 PubMed PMC

Maric D., Epting C. L., and Engman D. M. (2010) Composition and sensory function of the trypanosome flagellar membrane. Curr. Opin. Microbiol. 13, 466–472 PubMed PMC

Hashimi H., Zíková A., Panigrahi A. K., Stuart K. D., and Lukeš J. (2008) TbRGG1, an essential protein involved in kinetoplastid RNA metabolism that is associated with a novel multiprotein complex. RNA 14, 970–980 PubMed PMC

Brenndörfer M., and Boshart M. (2010) Selection of reference genes for mRNA quantification in Trypanosoma brucei. Mol. Biochem. Parasitol. 172, 52–55 PubMed

Pfaffl M. W. (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45. PubMed PMC

Vondrusková E., van den Burg J., Zíková A., Ernst N. L., Stuart K., Benne R., and Lukes J. (2005) RNA interference analyses suggest a transcript-specific regulatory role for mitochondrial RNA-binding proteins MRP1 and MRP2 in RNA editing and other RNA processing in Trypanosoma brucei. J. Biol. Chem. 280, 2429–2438 PubMed

Dean S., Sunter J., Wheeler R. J., Hodkinson I., Gluenz E., and Gull K. (2015) A toolkit enabling efficient, scalable and reproducible gene tagging in trypanosomatids. Open Biol. 5, 140197. PubMed PMC

Schiött T., Throne-Holst M., and Hederstedt L. (1997) Bacillus subtilis CcdA-defective mutants are blocked in a late step of cytochrome c biogenesis. J. Bacteriol. 179, 4523–4529 PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace