The Trypanosoma brucei TbHrg protein is a heme transporter involved in the regulation of stage-specific morphological transitions
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28232490
PubMed Central
PMC5409468
DOI
10.1074/jbc.m116.762997
PII: S0021-9258(20)42890-X
Knihovny.cz E-zdroje
- Klíčová slova
- differentiation, flagellum, heme, import, parasite, procyclin, transporter, trypanosome,
- MeSH
- biologický transport MeSH
- down regulace MeSH
- flagella metabolismus MeSH
- hem metabolismus MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- membránové transportní proteiny metabolismus MeSH
- mikroskopie elektronová rastrovací MeSH
- moucha tse-tse parazitologie MeSH
- proliferace buněk MeSH
- protozoální proteiny metabolismus MeSH
- receptory buněčného povrchu metabolismus MeSH
- RNA interference MeSH
- sekvence aminokyselin MeSH
- stadia vývoje MeSH
- transgeny MeSH
- Trypanosoma brucei brucei metabolismus MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hem MeSH
- hemoglobin-haptoglobin receptor MeSH Prohlížeč
- membránové transportní proteiny MeSH
- protozoální proteiny MeSH
- receptory buněčného povrchu MeSH
The human parasite Trypanosoma brucei does not synthesize heme de novo and instead relies entirely on heme supplied by its vertebrate host or its insect vector, the tsetse fly. In the host bloodstream T. brucei scavenges heme via haptoglobin-hemoglobin (HpHb) receptor-mediated endocytosis occurring in the flagellar pocket. However, in the procyclic developmental stage, in which T. brucei is confined to the tsetse fly midgut, this receptor is apparently not expressed, suggesting that T. brucei takes up heme by a different, unknown route. To define this alternative route, we functionally characterized heme transporter TbHrg in the procyclic stage. RNAi-induced down-regulation of TbHrg in heme-limited culture conditions resulted in slower proliferation, decreased cellular heme, and marked changes in cellular morphology so that the cells resemble mesocyclic trypomastigotes. Nevertheless, the TbHrg KO developed normally in the tsetse flies at rates comparable with wild-type cells. T. brucei cells overexpressing TbHrg displayed up-regulation of the early procyclin GPEET and down-regulation of the late procyclin EP1, two proteins coating the T. brucei surface in the procyclic stage. Light microscopy of immunostained TbHrg indicated localization to the flagellar membrane, and scanning electron microscopy revealed more intense TbHrg accumulation toward the flagellar pocket. Based on these findings, we postulate that T. brucei senses heme levels via the flagellar TbHrg protein. Heme deprivation in the tsetse fly anterior midgut might represent an environmental stimulus involved in the transformation of this important human parasite, possibly through metabolic remodeling.
Canadian Institute for Advanced Research Toronto Ontario M5G 1Z8 Canada
Faculty of Sciences University of South Bohemia 37005 České Budějovice Czech Republic
Institute of Microbiology Czech Academy of Sciences 37981 Třeboň Czech Republic
Zobrazit více v PubMed
Kořený L., Oborník M., and Lukeš J. (2013) Make it, take it, or leave it: heme metabolism of parasites. PLoS Pathog. 9, e1003088. PubMed PMC
Mense S. M., and Zhang L. (2006) Heme: a versatile signaling molecule controlling the activities of diverse regulators ranging from transcription factors to MAP kinases. Cell Res. 16, 681–692 PubMed
Panek H., and O'Brian M. R. (2002) A whole genome view of prokaryotic haem biosynthesis. Microbiology 148, 2273–2282 PubMed
Oborník M., and Green B. R. (2005) Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes. Mol. Biol. Evol. 22, 2343–2353 PubMed
Kořený L., Lukeš J., and Oborník M. (2010) Evolution of the haem synthetic pathway in kinetoplastid flagellates: an essential pathway that is not essential after all? Int. J. Parasitol. 40, 149–156 PubMed
Tripodi K. E., Menendez Bravo S. M., and Cricco J. A. (2011) Role of heme and heme-proteins in trypanosomatid essential metabolic pathways. Enzyme Res. 2011, 873230. PubMed PMC
Ferguson M. A., and Homans S. W. (1988) Parasite glycoconjugates: towards the exploitation of their structure. Parasite Immunol. 10, 465–479 PubMed
Wassell J. (2000) Haptoglobin: function and polymorphism. Clin. Lab. 46, 547–552 PubMed
Vanhollebeke B., De Muylder G., Nielsen M. J., Pays A., Tebabi P., Dieu M., Raes M., Moestrup S. K., and Pays E. (2008) A haptoglobin-hemoglobin receptor conveys innate immunity to Trypanosoma brucei in humans. Science 320, 677–681 PubMed
Roditi I., Schwarz H., Pearson T. W., Beecroft R. P., Liu M. K., Richardson J. P., Bühring H. J., Pleiss J., Bülow R., and Williams R. O. (1989) Procyclin gene expression and loss of the variant surface glycoprotein during differentiation of Trypanosoma brucei. J. Cell Biol. 108, 737–746 PubMed PMC
Vanhollebeke B., Uzureau P., Monteyne D., Pérez-Morga D., and Pays E. (2010) Cellular and molecular remodeling of the endocytic pathway during differentiation of Trypanosoma brucei bloodstream forms. Eukaryot. Cell 9, 1272–1282 PubMed PMC
van Hellemond J. J., Opperdoes F. R., and Tielens A. G. (2005) The extraordinary mitochondrion and unusual citric acid cycle in Trypanosoma brucei. Biochem. Soc. Trans. 33, 967–971 PubMed
Verner Z., Basu S., Benz C., Dixit S., Dobáková E., Faktorová D., Hashimi H., Horáková E., Huang Z., Paris Z., Peña-Diaz P., Ridlon L., Týč J., Wildridge D., Zíková A., and Lukeš J. (2015) Malleable mitochondrion of Trypanosoma brucei. Int. Rev. Cell Mol. Biol. 315, 73–151 PubMed
Toh S. Q., Glanfield A., Gobert G. N., and Jones M. K. (2010) Heme and blood-feeding parasites: friends or foes? Parasit. Vectors. 3, 108. PubMed PMC
Ooi C. P., and Bastin P. (2013) More than meets the eye: understanding Trypanosoma brucei morphology in the tsetse. Front. Cell Infect. Microbiol. 3, 71. PubMed PMC
Van Den Abbeele J., Claes Y., van Bockstaele D., Le Ray D., and Coosemans M. (1999) Trypanosoma brucei spp. development in the tsetse fly: characterization of the post-mesocyclic stages in the foregut and proboscis. Parasitology 118, 469–478 PubMed
Tracz M. J., Alam J., and Nath K. A. (2007) Physiology and pathophysiology of heme: implications for kidney disease. J. Am. Soc. Nephrol. 18, 414–420 PubMed
Rajagopal A., Rao A. U., Amigo J., Tian M., Upadhyay S. K., Hall C., Uhm S., Mathew M. K., Fleming M. D., Paw B. H., Krause M., and Hamza I. (2008) Haem homeostasis is regulated by the conserved and concerted functions of HRG-1 proteins. Nature 453, 1127–1231 PubMed PMC
Severance S., Rajagopal A., Rao A. U., Cerqueira G. C., Mitreva M., El-Sayed N. M., Krause M., and Hamza I. (2010) Genome-wide analysis reveals novel genes essential for heme homeostasis in Caenorhabditis elegans. PLoS Genet. 6, e1001044. PubMed PMC
White C., Yuan X., Schmidt P. J., Bresciani E., Samuel T. K., Campagna D., Hall C., Bishop K., Calicchio M. L., Lapierre A., Ward D. M., Liu P., Fleming M. D., and Hamza I. (2013) HRG1 is essential for heme transport from the phagolysosome of macrophages during erythrophagocytosis. Cell Metab. 17, 261–270 PubMed PMC
Chen C., Samuel T. K., Krause M., Dailey H. A., and Hamza I. (2012) Heme utilization in the Caenorhabditis elegans hypodermal cells is facilitated by heme-responsive gene-2. J. Biol. Chem. 287, 9601–9612 PubMed PMC
Huynh C., Yuan X., Miguel D. C., Renberg R. L., Protchenko O., Philpott C. C., Hamza I., and Andrews N. W. (2012) Heme uptake by Leishmania amazonensis is mediated by the transmembrane protein LHR1. PLoS Pathog. 8, e1002795. PubMed PMC
Merli M. L., Pagura L., Hernández J., Barisón M. J., Pral E. M., Silber A. M., and Cricco J. A. (2016) The Trypanosoma cruzi protein TcHTE is critical for heme uptake. PLoS Negl. Trop. Dis. 10, e0004359. PubMed PMC
Renberg R. L., Yuan X., Samuel T. K., Miguel D. C., Hamza I., Andrews N. W., and Flannery A. R. (2015) The heme transport capacity of LHR1 determines the extent of virulence in Leishmania amazonensis. PLoS Negl. Trop. Dis. 9, e0003804. PubMed PMC
Cabello-Donayre M., Malagarie-Cazenave S., Campos-Salinas J., Gálvez F. J., Rodríguez-Martínez A., Pineda-Molina E., Orrego L. M., Martínez-García M., Sánchez-Cañete M. P., Estévez A. M., and Pérez-Victoria J. M. (2016) Trypanosomatid parasites rescue heme from endocytosed hemoglobin through lysosomal HRG transporters. Mol. Microbiol. 101, 895–908 PubMed
Yuan X., Protchenko O., Philpott C. C., and Hamza I. (2012) Topologically conserved residues direct heme transport in HRG-1-related proteins. J. Biol. Chem. 287, 4914–4924 PubMed PMC
Urbaniak M. D., Martin D. M., and Ferguson M. A. (2013) Global quantitative SILAC phosphoproteomics reveals differential phosphorylation is widespread between the procyclic and bloodstream form lifecycle stages of Trypanosoma brucei. J. Proteome Res. 12, 2233–2244 PubMed PMC
Siegel T. N., Hekstra D. R., Wang X., Dewell S., and Cross G. A. (2010) Genome-wide analysis of mRNA abundance in two life-cycle stages of Trypanosoma brucei and identification of splicing and polyadenylation sites. Nucleic Acids Res. 38, 4946–4957 PubMed PMC
Jensen B. C., Ramasamy G., Vasconcelos E. J., Ingolia N. T., Myler P. J., and Parsons M. (2014) Extensive stage-regulation of translation revealed by ribosome profiling of Trypanosoma brucei. BMC Genomics 15, 911. PubMed PMC
Fadda A., Ryten M., Droll D., Rojas F., Färber V., Haanstra J. R., Merce C., Bakker B. M., Matthews K., and Clayton C. (2014) Transcriptome-wide analysis of trypanosome mRNA decay reveals complex degradation kinetics and suggests a role for co-transcriptional degradation in determining mRNA levels. Mol. Microbiol. 94, 307–326 PubMed PMC
Telleria E. L., Benoit J. B., Zhao X., Savage A. F., Regmi S., Alves e Silva T. L., O'Neill M., and Aksoy S. (2014) Insights into the trypanosome-host interactions revealed through transcriptomic analysis of parasitized tsetse fly salivary glands. PLoS Negl. Trop. Dis. 8, e2649. PubMed PMC
Alsford S., Turner D. J., Obado S. O., Sanchez-Flores A., Glover L., Berriman M., Hertz-Fowler C., and Horn D. (2011) High-throughput phenotyping using parallel sequencing of RNA interference targets in the African trypanosome. Genome Res. 21, 915–924 PubMed PMC
Changmai P., Horáková E., Long S., Černotíková-Stíbrná E., McDonald L. M., Bontempi E. J., and Lukeš J. (2013) Both human ferredoxins equally efficiently rescue ferredoxin deficiency in Trypanosoma brucei. Mol. Microbiol. 89, 135–151 PubMed
Dyer N. A., Rose C., Ejeh N. O., and Acosta-Serrano A. (2013) Flying tryps: survival and maturation of trypanosomes in tsetse flies. Trends Parasitol. 29, 188–196 PubMed
Houseman J. G. (1980) Anterior midgut proteinase inhibitor from Glossina morsitans morsitans Westwood (Diptera: Glossinidae) and its effect upon tsetse digestive enzymes. Can. J. Zool. 58, 79–87
Lehane M. J. (2005) The biology of blood-sucking insects, 2nd Ed., pp. 82–91, Cambridge University Press, Cambridge, UK
Lara F. A., Sant'anna C., Lemos D., Laranja G. A., Coelho M. G., Reis Salles I., Michel A., Oliveira P. L., Cunha-E-Silva N., Salmon D., and Paes M. C. (2007) Heme requirement and intracellular trafficking in Trypanosoma cruzi epimastigotes. Biochem. Biophys. Res. Commun. 355, 16–22 PubMed
Chang K. P., Chang C. S., and Sassa S. (1975) Heme biosynthesis in bacterium-protozoon symbioses: enzymic defects in host hemoflagellates and complemental role of their intracellular symbiotes. Proc. Natl. Acad. Sci. U.S.A. 72, 2979–2983 PubMed PMC
Kořený L., Sobotka R., Kovářová J., Gnipová A., Flegontov P., Horváth A., Oborník M., Ayala F. J., and Lukeš J. (2012) Aerobic kinetoplastid flagellate Phytomonas does not require heme for viability. Proc. Natl. Acad. Sci. U.S.A. 109, 3808–3813 PubMed PMC
Campos-Salinas J., Cabello-Donayre M., García-Hernández R., Pérez-Victoria I., Castanys S., Gamarro F., and Pérez-Victoria J. M. (2011) A new ATP-binding cassette protein is involved in intracellular haem trafficking in Leishmania. Mol. Microbiol. 79, 1430–1444 PubMed
Halliwell B., and Gutteridge J. M. (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 186, 1–85 PubMed
Khan A. A., and Quigley J. G. (2011) Control of intracellular heme levels: heme transporters and heme oxygenases. Biochim. Biophys. Acta 1813, 668–682 PubMed PMC
Natesan S. K., Peacock L., Matthews K., Gibson W., and Field M. C. (2007) Activation of endocytosis as an adaptation to the mammalian host by trypanosomes. Eukaryot. Cell 6, 2029–2037 PubMed PMC
Pal J. K., and Joshi-Purandare M. (2001) Dose-dependent differential effect of hemin on protein synthesis and cell proliferation in Leishmania donovani promastigotes cultured in vitro. J. Biosci. 26, 225–231 PubMed
Ciccarelli A., Araujo L., Batlle A., and Lombardo E. (2007) Effect of haemin on growth, protein content, and the antioxidant defense system in Trypanosoma cruzi. Parasitology 134, 959–965 PubMed
da Silva Augusto L., Moretti N. S., Ramos T. C., de Jesus T. C., Zhang M., Castilho B. A., and Schenkman S. (2015) A membrane-bound eIF2α kinase located in endosomes is regulated by heme and controls differentiation and ROS levels in Trypanosoma cruzi. PLoS Pathog. 11, e1004618. PubMed PMC
Rotureau B., Subota I., and Bastin P. (2011) Molecular bases of cytoskeleton plasticity during the Trypanosoma brucei parasite cycle. Cell. Microbiol. 13, 705–716 PubMed
Sunter J. D., Benz C., Andre J., Whipple S., McKean P. G., Gull K., Ginger M. L., and Lukeš J. (2015) Modulation of flagellum attachment zone protein FLAM3 and regulation of the cell shape in Trypanosoma brucei life cycle transitions. J. Cell Sci. 128, 3117–3130 PubMed PMC
Vassella E., Oberle M., Urwyler S., Renggli C. K., Studer E., Hemphill A., Fragoso C., Bütikofer P., Brun R., and Roditi I. (2009) Major surface glycoproteins of insect forms of Trypanosoma brucei are not essential for cyclical transmission by tsetse. PLoS ONE 4, e4493. PubMed PMC
Knüsel S., and Roditi I. (2013) Insights into the regulation of GPEET procyclin during differentiation from early to late procyclic forms of Trypanosoma brucei. Mol. Biochem. Parasitol. 191, 66–74 PubMed
Vassella E., Den Abbeele J. V., Bütikofer P., Renggli C. K., Furger A., Brun R., and Roditi I. (2000) A major surface glycoprotein of Trypanosoma brucei is expressed transiently during development and can be regulated post-transcriptionally by glycerol or hypoxia. Genes Dev. 14, 615–626 PubMed PMC
Maric D., Epting C. L., and Engman D. M. (2010) Composition and sensory function of the trypanosome flagellar membrane. Curr. Opin. Microbiol. 13, 466–472 PubMed PMC
Hashimi H., Zíková A., Panigrahi A. K., Stuart K. D., and Lukeš J. (2008) TbRGG1, an essential protein involved in kinetoplastid RNA metabolism that is associated with a novel multiprotein complex. RNA 14, 970–980 PubMed PMC
Brenndörfer M., and Boshart M. (2010) Selection of reference genes for mRNA quantification in Trypanosoma brucei. Mol. Biochem. Parasitol. 172, 52–55 PubMed
Pfaffl M. W. (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45. PubMed PMC
Vondrusková E., van den Burg J., Zíková A., Ernst N. L., Stuart K., Benne R., and Lukes J. (2005) RNA interference analyses suggest a transcript-specific regulatory role for mitochondrial RNA-binding proteins MRP1 and MRP2 in RNA editing and other RNA processing in Trypanosoma brucei. J. Biol. Chem. 280, 2429–2438 PubMed
Dean S., Sunter J., Wheeler R. J., Hodkinson I., Gluenz E., and Gull K. (2015) A toolkit enabling efficient, scalable and reproducible gene tagging in trypanosomatids. Open Biol. 5, 140197. PubMed PMC
Schiött T., Throne-Holst M., and Hederstedt L. (1997) Bacillus subtilis CcdA-defective mutants are blocked in a late step of cytochrome c biogenesis. J. Bacteriol. 179, 4523–4529 PubMed PMC