Haem-responsive gene transporter enables mobilization of host haem in ticks
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34465215
PubMed Central
PMC8437232
DOI
10.1098/rsob.210048
Knihovny.cz E-zdroje
- Klíčová slova
- HRG, auxotrophy, haem, ticks, transporter,
- MeSH
- fylogeneze MeSH
- hem metabolismus MeSH
- hemoglobiny metabolismus MeSH
- hemoproteiny genetika metabolismus MeSH
- infestace klíšťaty parazitologie MeSH
- klíště metabolismus MeSH
- proteiny členovců genetika metabolismus MeSH
- sekvence aminokyselin MeSH
- sekvenční homologie MeSH
- transkriptom MeSH
- trávicí systém metabolismus parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hem MeSH
- hemoglobiny MeSH
- hemoproteiny MeSH
- proteiny členovců MeSH
Ticks, notorious blood-feeders and disease-vectors, have lost a part of their genetic complement encoding haem biosynthetic enzymes and are, therefore, dependent on the acquisition and distribution of host haem. Solute carrier protein SLC48A1, aka haem-responsive gene 1 protein (HRG1), has been implicated in haem transport, regulating the availability of intracellular haem. HRG1 transporter has been identified in both free-living and parasitic organisms ranging from unicellular kinetoplastids, nematodes, up to vertebrates. However, an HRG1 homologue in the arthropod lineage has not yet been identified. We have identified a single HRG1 homologue in the midgut transcriptome of the tick Ixodes ricinus, denoted as IrHRG, and have elucidated its role as a haem transporter. Data from haem biosynthesis-deficient yeast growth assays, systemic RNA interference and the evaluation of gallium protoporphyrin IX-mediated toxicity through tick membrane feeding clearly show that IrHRG is the bona fide tetrapyrrole transporter. We argue that during evolution, ticks profited from retaining a functional hrg1 gene in the genome because its protein product facilitates host haem escort from intracellularly digested haemoglobin, rendering haem bioavailable for a haem-dependent network of enzymes.
Zobrazit více v PubMed
Perner J, Gasser RB, Oliveira PL, Kopacek P. 2019. Haem biology in metazoan parasites — ‘the bright side of haem’. Trends Parasitol. 35, 213-225. (10.1016/j.pt.2019.01.001) PubMed DOI
Gracasouza A, Mayamonteiro C, Paivasilva G, Braz G, Paes M, Sorgine M, Oliveira M, Oliveira P. 2006. Adaptations against heme toxicity in blood-feeding arthropods. Insect Biochem. Mol. Biol. 36, 322-335. (10.1016/j.ibmb.2006.01.009) PubMed DOI
Perner J, Sobotka R, Sima R, Konvickova J, Sojka D, Oliveira PL, Hajdusek O, Kopacek P. 2016. Acquisition of exogenous haem is essential for tick reproduction. eLife 5, e12318. (10.7554/eLife.12318) PubMed DOI PMC
Sojka D, et al. . 2013. New insights into the machinery of blood digestion by ticks. Trends Parasitol. 29, 276-285. (10.1016/j.pt.2013.04.002) PubMed DOI
Agbede RIS. 1986. Scanning electron microscopy of digest cells in the midgut epithelium of Boophilus microplus. Exp. Appl. Acarol. 2, 329-335. (10.1007/bf01193899) PubMed DOI
Tarnowski BI, Coons LB. 1989. Ultrastructure of the midgut and blood meal digestion in the adult tick Dermacentor variabilis. Exp. Appl. Acarol. 6, 263-289. (10.1007/bf01193300) PubMed DOI
Lara FA, et al. . 2003. A new intracellular pathway of haem detoxification in the midgut of the cattle tick Boophilus microplus: aggregation inside a specialized organelle, the hemosome. J. Exp. Biol. 206, 1707-1715. (10.1242/jeb.00334) PubMed DOI
Thöny-Meyer L. 2009. Heme transport and incorporation into proteins. In Tetrapyrroles. Molecular biology intelligence unit. New York, NY: Springer.
Chambers IG, Willoughby MM, Hamza I, Reddi AR. 2021. One ring to bring them all and in the darkness bind them: the trafficking of heme without deliverers. Biochim. et Biophys. Acta (BBA) 1868, 118881. (10.1016/j.bbamcr.2020.118881) PubMed DOI PMC
Reddi AR, Hamza I. 2016. Heme mobilization in animals: a metallolipid's journey. Accounts Chem. Res. 49, 1104-1110. (10.1021/acs.accounts.5b00553) PubMed DOI PMC
Huynh C, Yuan X, Miguel DC, Renberg RL, Protchenko O, Philpott CC, Hamza I, Andrews NW. 2012. Heme uptake by Leishmania amazonensis is mediated by the transmembrane protein LHR1. PLoS Pathogens 8, e1002795. (10.1371/journal.ppat.1002795) PubMed DOI PMC
Cabello-Donayre M, et al. . 2016. Trypanosomatid parasites rescue heme from endocytosed hemoglobin through lysosomal HRG transporters. Mol. Microbiol. 101, 895-908. (10.1111/mmi.13430) PubMed DOI
Horakova E, et al. . 2017. The Trypanosoma brucei TbHrg protein is a heme transporter involved in the regulation of stage-specific morphological transitions. J. Biol. Chem. 292, 6998-7010. (10.1074/jbc.M116.762997) PubMed DOI PMC
Luck AN, Yuan X, Voronin D, Slatko BE, Hamza I, Foster JM. 2016. Heme acquisition in the parasitic filarial nematode Brugia malayi. FASEB J. 30, 3501-3514. (10.1096/fj.201600603R) PubMed DOI PMC
Toh SQ, Gobert GN, Malagon Martinez D, Jones MK. 2015. Haem uptake is essential for egg production in the haematophagous blood fluke of humans, Schistosoma mansoni. FEBS J. 282, 3632-3646. (10.1111/febs.13368) PubMed DOI
Rajagopal A, et al. . 2008. Haem homeostasis is regulated by the conserved and concerted functions of HRG-1 proteins. Nature 453, 1127-1131. (10.1038/nature06934) PubMed DOI PMC
Pek RH, et al. . 2019. Hemozoin produced by mammals confers heme tolerance. eLife 8, e49503. (10.7554/eLife.49503) PubMed DOI PMC
White C, et al. . 2013. HRG1 is essential for heme transport from the phagolysosome of macrophages during erythrophagocytosis. Cell Metabolism 17, 261-270. (10.1016/j.cmet.2013.01.005) PubMed DOI PMC
Perner J, et al. . 2016. RNA-seq analyses of the midgut from blood- and serum-fed Ixodes ricinus ticks. Sci. Rep. 6, 36695. (10.1038/srep36695) PubMed DOI PMC
Yuan X, Protchenko O, Philpott CC, Hamza I. 2012. Topologically conserved residues direct heme transport in HRG-1-related proteins. J. Biol. Chem. 287, 4914-4924. (10.1074/jbc.M111.326785) PubMed DOI PMC
Misra S, Puertollano R, Kato Y, Bonifacino JS, Hurley JH. 2002. Structural basis for acidic-cluster-dileucine sorting-signal recognition by VHS domains. Nature 415, 933-937. (10.1038/415933a) PubMed DOI
Shiba T, et al. . 2002. Structural basis for recognition of acidic-cluster dileucine sequence by GGA1. Nature 415, 937-941. (10.1038/415937a) PubMed DOI
Staudt C, Puissant E, Boonen M. 2016. Subcellular trafficking of mammalian lysosomal proteins: an extended view. Int. J. Mol. Sci. 18, 47. (10.3390/ijms18010047) PubMed DOI PMC
Miguel DC, Flannery AR, Mittra B, Andrews NW. 2013. Heme uptake mediated by LHR1 is essential for Leishmania amazonensis virulence. Infection Immunity 81, 3620-3626. (10.1128/IAI.00687-13) PubMed DOI PMC
Severance S, Rajagopal A, Rao AU, Cerqueira GC, Mitreva M, El-Sayed NM, Krause M, Hamza I. 2010. Genome-wide analysis reveals novel genes essential for heme homeostasis in Caenorhabditis elegans. PLoS Genetics 6, e1001044. (10.1371/journal.pgen.1001044) PubMed DOI PMC
Protchenko O, Shakoury-Elizeh M, Keane P, Storey J, Androphy R, Philpott CC. 2008. Role of PUG1 in inducible porphyrin and heme transport in Saccharomyces cerevisiae. Eukaryotic Cell 7, 859-871. (10.1128/ec.00414-07) PubMed DOI PMC
Zhang J, Chambers I, Yun S, Phillips J, Krause M, Hamza I. 2018. Hrg1 promotes heme-iron recycling during hemolysis in the zebrafish kidney. PLoS Genetics 14, e1007665. (10.1371/journal.pgen.1007665) PubMed DOI PMC
Richter K, Van den Driessche F, Coenye T. 2017. Innovative approaches to treat Staphylococcus aureus biofilm-related infections. Essays Biochem. 61, 61-70. (10.1042/ebc20160056) PubMed DOI
Lara FA. 2005. Tracing heme in a living cell: hemoglobin degradation and heme traffic in digest cells of the cattle tick Boophilus microplus. J. Exp. Biol. 208, 3093-3101. (10.1242/jeb.01749) PubMed DOI
Sojka D, et al. . 2016. Multienzyme degradation of host serum albumin in ticks. Ticks Tick-borne Dis. 7, 604-613. (10.1016/j.ttbdis.2015.12.014) PubMed DOI
O'Callaghan KM, Ayllon V, O'keeffe J, Wang Y, Cox OT, Loughran G, Forgac M, O'connor R. 2010. Heme-binding protein HRG-1 is induced by insulin-like growth factor I and associates with the vacuolar H+-ATPase to control endosomal pH and receptor trafficking. J. Biol. Chem. 285, 381-391. (10.1074/jbc.M109.063248) PubMed DOI PMC
Franta Z, et al. . 2010. Dynamics of digestive proteolytic system during blood feeding of the hard tick Ixodes ricinus. Parasit. Vectors 3, 119. (10.1186/1756-3305-3-119) PubMed DOI PMC
Perner J, et al. . 2018. Inducible glutathione S-transferase (IrGST1) from the tick Ixodes ricinus is a haem-binding protein. Insect Biochem. Mol. Biol. 95, 44-54. (10.1016/j.ibmb.2018.02.002) PubMed DOI
Hajdusek O, Sima R, Perner J, Loosova G, Harcubova A, Kopacek P. 2016. Tick iron and heme metabolism — new target for an anti-tick intervention. Ticks Tick-borne Dis. 7, 565-572. (10.1016/j.ttbdis.2016.01.006) PubMed DOI
Liao R, et al. . 2020. Discovering how heme controls genome function through heme-omics. Cell Rep. 31, 107832. (10.1016/j.celrep.2020.107832) PubMed DOI PMC
Hajdusek O, Sojka D, Kopacek P, Buresova V, Franta Z, Sauman I, Winzerling J, Grubhoffer L. 2009. Knockdown of proteins involved in iron metabolism limits tick reproduction and development. Proc. Natl Acad. Sci. 106, 1033-1038. (10.1073/pnas.0807961106) PubMed DOI PMC
Pagura L, Tevere E, Merli ML, Cricco JA. 2020. A new model for Trypanosoma cruzi heme homeostasis depends on modulation of TcHTE protein expression. J. Biol. Chem. 295, 13 202-13 212. (10.1074/jbc.RA120.014574) PubMed DOI PMC
Ponka P, Sheftel AD, English AM, Scott Bohle D, Garcia-Santos D. 2017. Do mammalian cells really need to export and import heme? Trends Biochem. Sci. 42, 395-406. (10.1016/j.tibs.2017.01.006) PubMed DOI
Lara FA, et al. . 2015. ATP binding cassette transporter mediates both heme and pesticide detoxification in tick midgut cells. PLoS ONE 10, e0134779. (10.1371/journal.pone.0134779) PubMed DOI PMC
Jagt DLV, Hunsaker LA, Campos NM. 1987. Comparison of proteases from chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum. Biochem. Pharmacol. 36, 3285-3291. (10.1016/0006-2952(87)90646-0) PubMed DOI
Chugh M, Sundararaman V, Kumar S, Reddy VS, Siddiqui WA, Stuart KD, Malhotra P. 2013. Protein complex directs hemoglobin-to-hemozoin formation in Plasmodium falciparum. Proc. Natl Acad. Sci. 110, 5392-5397. (10.1073/pnas.1218412110) PubMed DOI PMC
Noland GS, Briones N, Sullivan DJ. 2003. The shape and size of hemozoin crystals distinguishes diverse Plasmodium species. Mol. Biochem. Parasitol. 130, 91-99. (10.1016/s0166-6851(03)00163-4) PubMed DOI
Cabello-Donayre M, et al. . 2019. Leishmania heme uptake involves LmFLVCRb, a novel porphyrin transporter essential for the parasite. Cell. Mol. Life Sci. 77, 1827-1845. (10.1007/s00018-019-03258-3) PubMed DOI PMC
Zutz A, Gompf S, Schägger H, Tampé R. 2009. Mitochondrial ABC proteins in health and disease. Biochim. et Biophys. Acta (BBA) 1787, 681-690. (10.1016/j.bbabio.2009.02.009) PubMed DOI
Kotsyfakis M, Schwarz A, Erhart J, Ribeiro JM. 2015. Tissue- and time-dependent transcription in Ixodes ricinus salivary glands and midguts when blood feeding on the vertebrate host. Sci. Rep. 5, 9103. (10.1038/srep09103) PubMed DOI PMC
Laranjeira-Silva MF, Hamza I, Pérez-Victoria JM. 2020. Iron and heme metabolism at the leishmania–host interface. Trends Parasitol. 36, 279-289. (10.1016/j.pt.2019.12.010) PubMed DOI PMC
Stojiljkovic I, Kumar V, Srinivasan N. 1999. Non-iron metalloporphyrins: potent antibacterial compounds that exploit haem/Hb uptake systems of pathogenic bacteria. Mol. Microbiol. 31, 429-442. (10.1046/j.1365-2958.1999.01175.x) PubMed DOI
Hijazi S, Visca P, Frangipani E. 2017. Gallium-protoporphyrin IX inhibits Pseudomonas aeruginosa growth by targeting cytochromes. Front. Cellular Infection Microbiol. 7, 12, (10.3389/fcimb.2017.00012) PubMed DOI PMC
Kröber T, Guerin PM. 2007. In vitro feeding assays for hard ticks. Trends Parasitol. 23, 445-449. (10.1016/j.pt.2007.07.010) PubMed DOI
Ito H, Fukuda Y, Murata K, Kimura A. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153, 163-168. (10.1128/jb.153.1.163-168.1983) PubMed DOI PMC
Iwase T, Tajima A, Sugimoto S, Okuda K, Hironaka I, Kamata Y, Takada K, Mizunoe Y. 2013. A simple assay for measuring catalase activity: a visual approach. Sci. Rep. 3, 03081. (10.1038/srep03081) PubMed DOI PMC
Nijhof AM, Balk JA, Postigo M, Jongejan F. 2009. Selection of reference genes for quantitative RT-PCR studies in Rhipicephalus (Boophilus) microplus and Rhipicephalus appendiculatus ticks and determination of the expression profile of Bm86. BMC Mol. Biol. 10, 112. (10.1186/1471-2199-10-112) PubMed DOI PMC
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772-780. (10.1093/molbev/mst010) PubMed DOI PMC
Darriba D, Taboada GL, Doallo R, Posada D. 2011. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27, 1164-1165. (10.1093/bioinformatics/btr088) PubMed DOI PMC
Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ.. 2016. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44, W232-W235. (10.1093/nar/gkw256) PubMed DOI PMC
Rambaut A. 2019. Figtree v1.4.4. See http://tree.bio.ed.ac.uk/software/figtree/ (accessed 5 Dec 2019).