RNA-seq analyses of the midgut from blood- and serum-fed Ixodes ricinus ticks
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Intramural, práce podpořená grantem
Grantová podpora
Z01 AI000810
Intramural NIH HHS - United States
PubMed
27824139
PubMed Central
PMC5099782
DOI
10.1038/srep36695
PII: srep36695
Knihovny.cz E-zdroje
- MeSH
- klíště genetika metabolismus MeSH
- sekvenční analýza RNA * MeSH
- skot MeSH
- stanovení celkové genové exprese * MeSH
- střeva patologie MeSH
- střevní sliznice metabolismus MeSH
- transkriptom fyziologie MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH
Adult females of the genus Ixodes imbibe blood meals exceeding about 100 times their own weight within 7‒9 days. During this period, ticks internalise components of host blood by endocytic digest cells that line the tick midgut epithelium. Using RNA-seq, we aimed to characterise the midgut transcriptome composition in adult Ixodes ricinus females during early and late phase of engorgement. To address specific adaptations to the haemoglobin-rich diet, we compared the midgut transcriptomes of genetically homogenous female siblings fed either bovine blood or haemoglobin-depleted serum. We noted that tick gut transcriptomes are subject to substantial temporal-dependent expression changes between day 3 and day 8 of feeding. In contrast, the number of transcripts significantly affected by the presence or absence of host red blood cells was low. Transcripts relevant to the processes associated with blood-meal digestion were analysed and involvement of selected encoded proteins in the tick midgut physiology discussed. A total of 7215 novel sequences from I. ricinus were deposited in public databases as an additional outcome of this study. Our results broaden the current knowledge of tick digestive system and may lead to the discovery of potential molecular targets for efficient tick control.
Zobrazit více v PubMed
Mans B. J. & Neitz A. W. Adaptation of ticks to a blood-feeding environment: evolution from a functional perspective. Insect biochemistry and molecular biology 34, 1–17 (2004). PubMed
de la Fuente J., Estrada-Pena A., Venzal J. M., Kocan K. M. & Sonenshine D. E. Overview: Ticks as vectors of pathogens that cause disease in humans and animals. Frontiers in bioscience: a journal and virtual library 13, 6938–6946 (2008). PubMed
Franta Z. et al.. Dynamics of digestive proteolytic system during blood feeding of the hard tick Ixodes ricinus. Parasit Vectors 3, 119, doi: 10.1186/1756-3305-3-119 (2010). PubMed DOI PMC
Sonenshine D. E. & Roe R. M. Biology of ticks. Second edition. Oxford University Press (2014).
Brown M. R., Sieglaff D. H. & Rees H. H. Gonadal ecdysteroidogenesis in arthropoda: occurrence and regulation. Annu Rev Entomol 54, 105–125, doi: 10.1146/annurev.ento.53.103106.093334 (2009). PubMed DOI PMC
Schwarz A. et al.. A systems level analysis reveals transcriptomic and proteomic complexity in Ixodes ricinus midgut and salivary glands during early attachment and feeding. Molecular & cellular proteomics: MCP 13, 2725–2735, doi: 10.1074/mcp.M114.039289 (2014). PubMed DOI PMC
Kotsyfakis M., Schwarz A., Erhart J. & Ribeiro J. M. Tissue- and time-dependent transcription in Ixodes ricinus salivary glands and midguts when blood feeding on the vertebrate host. Sci Rep 5, 9103, doi: 10.1038/srep09103 (2015). PubMed DOI PMC
Xu X. L., Cheng T. Y., Yang H. & Liao Z. H. De novo assembly and analysis of midgut transcriptome of Haemaphysalis flava and identification of genes involved in blood digestion, feeding and defending from pathogens. Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases 38, 62–72, doi: 10.1016/j.meegid.2015.12.005 (2016). PubMed DOI
Richards S. A., Stutzer C., Bosman A. M. & Maritz-Olivier C. Transmembrane proteins–Mining the cattle tick transcriptome. Ticks and tick-borne diseases 6, 695–710, doi: 10.1016/j.ttbdis.2015.06.002 (2015). PubMed DOI
Krober T. & Guerin P. M. In vitro feeding assays for hard ticks. Trends Parasitol 23, 445–449, doi: 10.1016/j.pt.2007.07.010 (2007). PubMed DOI
Perner J. et al.. Acquisition of exogenous haem is essential for tick reproduction. Elife 5, doi: 10.7554/eLife.12318 (2016). PubMed DOI PMC
Lara F. A. et al.. A new intracellular pathway of haem detoxification in the midgut of the cattle tick Boophilus microplus: aggregation inside a specialized organelle, the hemosome. The Journal of experimental biology 206, 1707–1715 (2003). PubMed
Sojka D. et al.. New insights into the machinery of blood digestion by ticks. Trends in parasitology 29, 276–285, doi: 10.1016/j.pt.2013.04.002 (2013). PubMed DOI
Lara F. A. Tracing heme in a living cell: hemoglobin degradation and heme traffic in digest cells of the cattle tick Boophilus microplus. Journal of Experimental Biology 208, 3093–3101, doi: 10.1242/jeb.01749 (2005). PubMed DOI
Schwarz A. et al.. De novo Ixodes ricinus salivary gland transcriptome analysis using two next-generation sequencing methodologies. FASEB J 27, 4745–4756, doi: 10.1096/fj.13-232140 (2013). PubMed DOI PMC
Perally S. r., LaCourse E. J., Campbell A. M. & Brophy P. M. Heme Transport and Detoxification in Nematodes: Subproteomics Evidence of Differential Role of Glutathione Transferases. Journal of Proteome Research 7, 4557–4565, doi: 10.1021/pr800395x (2008). PubMed DOI
Chisholm A. D. et al.. Genome-Wide Analysis Reveals Novel Genes Essential for Heme Homeostasis in Caenorhabditis elegans. PLoS Genetics 6, e1001044, doi: 10.1371/journal.pgen.1001044 (2010). PubMed DOI PMC
Gulia-Nuss M. et al.. Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nature Communications 7, 10507, doi: 10.1038/ncomms10507 (2016). PubMed DOI PMC
James M. O. & Ambadapadi S. Interactions of cytosolic sulfotransferases with xenobiotics. Drug metabolism reviews 45, 401–414, doi: 10.3109/03602532.2013.835613 (2013). PubMed DOI
Kim S.-J., Jung H.-J. & Lim C.-J. Reactive Oxygen Species-Dependent Down-Regulation of Tumor Suppressor Genes PTEN, USP28, DRAM, TIGAR, and CYLD Under Oxidative Stress. Biochemical Genetics 51, 901–915, doi: 10.1007/s10528-013-9616-7 (2013). PubMed DOI
Oliveira J. H. et al.. Blood meal-derived heme decreases ROS levels in the midgut of Aedes aegypti and allows proliferation of intestinal microbiota. PLoS pathogens 7, e1001320, doi: 10.1371/journal.ppat.1001320 (2011). PubMed DOI PMC
Bu C. et al.. Novel and selective acetylcholinesterase inhibitors for Tetranychus cinnabarinus (Acari: Tetranychidae). Insect Biochem Mol Biol 66, 129–135, doi: 10.1016/j.ibmb.2015.10.012 (2015). PubMed DOI
Dermauw W. et al.. A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae. Proceedings of the National Academy of Sciences 110, E113–E122, doi: 10.1073/pnas.1213214110 (2012). PubMed DOI PMC
Van Leeuwen T. & Dermauw W. The Molecular Evolution of Xenobiotic Metabolism and Resistance in Chelicerate Mites. Annu Rev Entomol 61, 475–498, doi: 10.1146/annurev-ento-010715-023907 (2016). PubMed DOI
Zhang Y., He Y., He L., Zong H.-Y. & Cai G.-B. Molecular cloning and characterization of a phospholipid hydroperoxide glutathione peroxidase gene from a blood fluke Schistosoma japonicum. Molecular and Biochemical Parasitology 203, 5–13, doi: 10.1016/j.molbiopara.2015.10.001 (2015). PubMed DOI
Claro da Silva T., Polli J. E. & Swaan P. W. The solute carrier family 10 (SLC10): beyond bile acid transport. Molecular aspects of medicine 34, 252–269, doi: 10.1016/j.mam.2012.07.004 (2013). PubMed DOI PMC
Maekawa S. et al.. Analysis of RNA decay factor mediated RNA stability contributions on RNA abundance. BMC genomics 16, 154, doi: 10.1186/s12864-015-1358-y (2015). PubMed DOI PMC
Li J. J. & Biggin M. D. Gene expression. Statistics requantitates the central dogma. Science 347, 1066–1067, doi: 10.1126/science.aaa8332 (2015). PubMed DOI
Rokyta D. R., Margres M. J. & Calvin K. Post-transcriptional Mechanisms Contribute Little to Phenotypic Variation in Snake Venoms. G3 (Bethesda) 5, 2375–2382, doi: 10.1534/g3.115.020578 (2015). PubMed DOI PMC
Daran-Lapujade P. et al.. The fluxes through glycolytic enzymes in Saccharomyces cerevisiae are predominantly regulated at posttranscriptional levels. Proceedings of the National Academy of Sciences 104, 15753–15758, doi: 10.1073/pnas.0707476104 (2007). PubMed DOI PMC
Kato N. et al.. Regulatory mechanisms of chitin biosynthesis and roles of chitin in peritrophic matrix formation in the midgut of adult Aedes aegypti. Insect Biochem Mol Biol 36, 1–9, doi: 10.1016/j.ibmb.2005.09.003 (2006). PubMed DOI
Narasimhan S. et al.. Gut microbiota of the tick vector Ixodes scapularis modulate colonization of the Lyme disease spirochete. Cell Host Microbe 15, 58–71, doi: 10.1016/j.chom.2013.12.001 (2014). PubMed DOI PMC
Merzendorfer H. The cellular basis of chitin synthesis in fungi and insects: common principles and differences. Eur J Cell Biol 90, 759–769, doi: 10.1016/j.ejcb.2011.04.014 (2011). PubMed DOI
Lenardon M. D., Munro C. A. & Gow N. A. Chitin synthesis and fungal pathogenesis. Curr Opin Microbiol 13, 416–423, doi: 10.1016/j.mib.2010.05.002 (2010). PubMed DOI PMC
Quehenberger O. & Dennis E. A. The human plasma lipidome. N Engl J Med 365, 1812–1823, doi: 10.1056/NEJMra1104901 (2011). PubMed DOI PMC
Ding J. et al.. Application of the accurate mass and time tag approach in studies of the human blood lipidome. J Chromatogr B Analyt Technol Biomed Life Sci 871, 243–252, doi: 10.1016/j.jchromb.2008.04.040 (2008). PubMed DOI PMC
Zhu K., Bowman A. S., Dillwith J. W. & Sauer J. R. Phospholipase A2 activity in salivary glands and saliva of the lone star tick (Acari: Ixodidae) during tick feeding. J Med Entomol 35, 500–504 (1998). PubMed
Zhu K., Dillwith J. W., Bowman A. S. & Sauer J. R. Identification of hemolytic activity in saliva of the lone star tick (Acari:Ixodidae). J Med Entomol 34, 160–166 (1997). PubMed
Kaufman W. R. Correlation between haemolymph ecdysteroid titre, salivary gland degeneration and ovarian development in the Ixodid tick, Amblyomma hebraeum Koch. Journal of Insect Physiology 37, 95–99, doi: 10.1016/0022-1910(91)90094-g (1991). DOI
Friesen K. J. & Kaufman W. R. Quantification of vitellogenesis and its control by 20-hydroxyecdysone in the ixodid tick, Amblyomma hebraeum. Journal of Insect Physiology 48, 773–782, doi: 10.1016/s0022-1910(02)00107-5 (2002). PubMed DOI
Kaufman W. R. Gluttony and sex in female ixodid ticks: How do they compare to other blood-sucking arthropods? Journal of Insect Physiology 53, 264–273, doi: 10.1016/j.jinsphys.2006.10.004 (2007). PubMed DOI
Maya-Monteiro C. M. et al.. HeLp, a Heme Lipoprotein from the Hemolymph of the Cattle Tick, Boophilus microplus. Journal of Biological Chemistry 275, 36584–36589, doi: 10.1074/jbc.M007344200 (2000). PubMed DOI
Horn M. et al.. Hemoglobin digestion in blood-feeding ticks: mapping a multipeptidase pathway by functional proteomics. Chemistry & biology 16, 1053–1063, doi: 10.1016/j.chembiol.2009.09.009 (2009). PubMed DOI PMC
Sojka D. et al.. Profiling of proteolytic enzymes in the gut of the tick Ixodes ricinus reveals an evolutionarily conserved network of aspartic and cysteine peptidases. Parasites & vectors 1, 7, doi: 10.1186/1756-3305-1-7 (2008). PubMed DOI PMC
Sojka D. et al.. Multienzyme degradation of host serum albumin in ticks. Ticks and tick-borne diseases, doi: 10.1016/j.ttbdis.2015.12.014 (2015). PubMed DOI
Sojka D. et al.. Characterization of gut-associated cathepsin D hemoglobinase from tick Ixodes ricinus (IrCD1). The Journal of biological chemistry 287, 21152–21163, doi: 10.1074/jbc.M112.347922 (2012). PubMed DOI PMC
Franta Z. et al.. IrCL1-The haemoglobinolytic cathepsin L of the hard tick, Ixodes ricinus. International journal for parasitology 41, 1253–1262, doi: S0020-7519(11)00175-5 [pii]10.1016/j.ijpara.2011.06.006 (2011). PubMed
Tsuji N. et al.. A cysteine protease is critical for Babesia spp. transmission in Haemaphysalis ticks. PLoS pathogens 4, e1000062, doi: 10.1371/journal.ppat.1000062 (2008). PubMed DOI PMC
Motobu M. et al.. Molecular characterization of a blood-induced serine carboxypeptidase from the ixodid tick Haemaphysalis longicornis. FEBS J 274, 3299–3312, doi: 10.1111/j.1742-4658.2007.05852.x (2007). PubMed DOI
Miyoshi T., Tsuji N., Islam M. K., Kamio T. & Fujisaki K. Cloning and molecular characterization of a cubilin-related serine proteinase from the hard tick Haemaphysalis longicornis. Insect Biochem Mol Biol 34, 799–808, doi: 10.1016/j.ibmb.2004.04.004 (2004). PubMed DOI
Miyoshi T. et al.. Molecular and reverse genetic characterization of serine proteinase-induced hemolysis in the midgut of the ixodid tick Haemaphysalis longicornis. J Insect Physiol 53, 195–203, doi: 10.1016/j.jinsphys.2006.12.001 (2007). PubMed DOI
Pennington J. E., Goldstrohm D. A. & Wells M. A. The role of hemolymph proline as a nitrogen sink during blood meal digestion by the Mosquito Aedes aegypti. Journal of Insect Physiology 49, 115–121, doi: 10.1016/s0022-1910(02)00267-6 (2003). PubMed DOI
Jenkinson C. P., Grody W. W. & Cederbaum S. D. Comparative properties of arginases. Comp Biochem Physiol B Biochem Mol Biol 114, 107–132 (1996). PubMed
Hamdy B. H. Biochemical and physiological studies of certain ticks (Ixodoidea). Excretion during ixodid feeding. J Med Entomol 14, 15–18 (1977). PubMed
Dusbabek F., Zahradnickova H. & Simek P. Chemical stability of assembly pheromone of argasid ticks (Ixodoidea: Argasidae). Folia Parasitologica 45, 62–66 (1998).
Grunclova L. et al.. Two secreted cystatins of the soft tick Ornithodoros moubata: differential expression pattern and inhibitory specificity. Biol Chem 387, 1635–1644, doi: Doi 10.1515/Bc.2006.204 (2006). PubMed DOI
Kobe B. et al.. Isolation, Cloning and Structural Characterisation of Boophilin, a Multifunctional Kunitz-Type Proteinase Inhibitor from the Cattle Tick. PLoS ONE 3, e1624, doi: 10.1371/journal.pone.0001624 (2008). PubMed DOI PMC
Assumpcao T. C. et al.. In Vitro Mode of Action and Anti-thrombotic Activity of Boophilin, a Multifunctional Kunitz Protease Inhibitor from the Midgut of a Tick Vector of Babesiosis, Rhipicephalus microplus. PLoS Negl Trop Dis 10, e0004298, doi: 10.1371/journal.pntd.0004298 (2016). PubMed DOI PMC
Toledano M. B., Delaunay-Moisan A., Outten C. E. & Igbaria A. Functions and Cellular Compartmentation of the Thioredoxin and Glutathione Pathways in Yeast. Antioxidants & Redox Signaling 18, 1699–1711, doi: 10.1089/ars.2012.5033 (2013). PubMed DOI PMC
Prast-Nielsen S., Huang H.-H. & Williams D. L. Thioredoxin glutathione reductase: Its role in redox biology and potential as a target for drugs against neglected diseases. Biochimica et Biophysica Acta (BBA)-General Subjects 1810, 1262–1271, doi: 10.1016/j.bbagen.2011.06.024 (2011). PubMed DOI PMC
Cossío-Bayúgar R., Miranda E. & Holman P. J. Molecular cloning of a phospholipid-hydroperoxide glutathione peroxidase gene from the tick, Boophilus microplus (Acari: Ixodidae). Insect Biochem Mol Biol 35, 1378–1387, doi: 10.1016/j.ibmb.2005.08.008 (2005). PubMed DOI
Das S. et al.. Salp25D, an Ixodes scapularis Antioxidant, Is 1 of 14 Immunodominant Antigens in Engorged Tick Salivary Glands. The Journal of Infectious Diseases 184, 1056–1064, doi: 10.1086/323351 (2001). PubMed DOI
Narasimhan S. et al.. A Tick Antioxidant Facilitates the Lyme Disease Agent’s Successful Migration from the Mammalian Host to the Arthropod Vector. Cell Host Microbe 2, 7–18, doi: 10.1016/j.chom.2007.06.001 (2007). PubMed DOI PMC
McCord J. M. & Fridovich I. The utility of superoxide dismutase in studying free radical reactions. I. Radicals generated by the interaction of sulfite, dimethyl sulfoxide, and oxygen. J Biol Chem 244, 6056–6063 (1969). PubMed
Matoušková P., Vokřál I., Lamka J. & Skálová L. The Role of Xenobiotic-Metabolizing Enzymes in Anthelmintic Deactivation and Resistance in Helminths. Trends Parasitol, doi: 10.1016/j.pt.2016.02.004 (2016). PubMed DOI
Lambert L. A. Molecular evolution of the transferrin family and associated receptors. Biochim Biophys Acta 1820, 244–255, doi: 10.1016/j.bbagen.2011.06.002 ( 2012). PubMed DOI
Bettedi L., Aslam M. F., Szular J., Mandilaras K. & Missirlis F. Iron depletion in the intestines of Malvolio mutant flies does not occur in the absence of a multicopper oxidase. Journal of Experimental Biology 214, 971–978, doi: 10.1242/jeb.051664 (2011). PubMed DOI
Gunshin H. et al.. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388, 482–488, doi: 10.1038/41343 (1997). PubMed DOI
Hajdusek O. et al.. Tick iron and heme metabolism–New target for an anti-tick intervention. Ticks and Tick-borne Diseases, doi: 10.1016/j.ttbdis.2016.01.006 (2016). PubMed DOI
Hajdusek O. et al.. Knockdown of proteins involved in iron metabolism limits tick reproduction and development. Proceedings of the National Academy of Sciences 106, 1033–1038, doi: 10.1073/pnas.0807961106 (2009). PubMed DOI PMC
Kopáček P. et al.. Molecular cloning, expression and isolation of ferritins from two tick species—Ornithodoros moubata and Ixodes ricinus. Insect Biochem Mol Biol 33, 103–113, doi: 10.1016/s0965-1748(02)00181-9 (2003). PubMed DOI
Tiklová K., Senti K.-A., Wang S., Gräslund A. & Samakovlis C. Epithelial septate junction assembly relies on melanotransferrin iron binding and endocytosis in Drosophila. Nature Cell Biology 12, 1071–1077, doi: 10.1038/ncb2111 (2010). PubMed DOI
Zhou G., Velasquez L. S., Geiser D. L., Mayo J. J. & Winzerling J. J. Differential regulation of transferrin 1 and 2 in Aedes aegypti. Insect Biochem Mol Biol 39, 234–244, doi: 10.1016/j.ibmb.2008.12.004 (2009). PubMed DOI
Yuan X., Fleming M. D. & Hamza I. Heme transport and erythropoiesis. Current Opinion in Chemical Biology 17, 204–211, doi: 10.1016/j.cbpa.2013.01.010 (2013). PubMed DOI PMC
Korolnek T. & Hamza I. Like iron in the blood of the people: the requirement for heme trafficking in iron metabolism. Frontiers in Pharmacology 5, doi: 10.3389/fphar.2014.00126 (2014). PubMed DOI PMC
Shayeghi M. et al.. Identification of an Intestinal Heme Transporter. Cell 122, 789–801, doi: 10.1016/j.cell.2005.06.025 (2005). PubMed DOI
Severance S. et al.. Genome-wide analysis reveals novel genes essential for heme homeostasis in Caenorhabditis elegans. PLoS Genet 6, e1001044, doi: 10.1371/journal.pgen.1001044 (2010). PubMed DOI PMC
Rajagopal A. et al.. Haem homeostasis is regulated by the conserved and concerted functions of HRG-1 proteins. Nature 453, 1127–1131, doi: 10.1038/nature06934 (2008). PubMed DOI PMC
Quigley J. G. et al.. Identification of a Human Heme Exporter that Is Essential for Erythropoiesis. Cell 118, 757–766, doi: 10.1016/j.cell.2004.08.014 (2004). PubMed DOI
Korolnek T., Zhang J., Beardsley S., Scheffer, George L. & Hamza I. Control of Metazoan Heme Homeostasis by a Conserved Multidrug Resistance Protein. Cell Metabolism 19, 1008–1019, doi: 10.1016/j.cmet.2014.03.030 (2014). PubMed DOI PMC
Michel K. et al.. ATP Binding Cassette Transporter Mediates Both Heme and Pesticide Detoxification in Tick Midgut Cells. PLoS ONE 10, e0134779, doi: 10.1371/journal.pone.0134779 (2015). PubMed DOI PMC
Robinson M. D., McCarthy D. J. & Smyth G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140, doi: 10.1093/bioinformatics/btp616 (2009). PubMed DOI PMC
Genome sequences of four Ixodes species expands understanding of tick evolution
Insight Into the Dynamics of the Ixodes ricinus Nymphal Midgut Proteome
Lyme disease transmission by severely impaired ticks
Haem-responsive gene transporter enables mobilization of host haem in ticks
Sialome diversity of ticks revealed by RNAseq of single tick salivary glands