Lyme disease transmission by severely impaired ticks
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35167765
PubMed Central
PMC8846998
DOI
10.1098/rsob.210244
Knihovny.cz E-zdroje
- Klíčová slova
- Borrelia, Lyme disease, borreliosis, tRNA synthetase, tick, transmission,
- MeSH
- akaricidy farmakologie MeSH
- aminoacyl-tRNA-synthetasy antagonisté a inhibitory genetika MeSH
- Borrelia burgdorferi komplex MeSH
- klíšťata účinky léků mikrobiologie MeSH
- lidé MeSH
- lymeská nemoc farmakoterapie mikrobiologie přenos MeSH
- proteosyntéza účinky léků MeSH
- vyvíjení léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- akaricidy MeSH
- aminoacyl-tRNA-synthetasy MeSH
It has been demonstrated that impairing protein synthesis using drugs targeted against tRNA amino acid synthetases presents a promising strategy for the treatment of a wide variety of parasitic diseases, including malaria and toxoplasmosis. This is the first study evaluating tRNA synthetases as potential drug targets in ticks. RNAi knock-down of all tested tRNA synthetases had a strong deleterious phenotype on Ixodes ricinus feeding. Our data indicate that tRNA synthetases represent attractive, anti-tick targets warranting the design of selective inhibitors. Further, we tested whether these severely impaired ticks were capable of transmitting Borrelia afzelii spirochaetes. Interestingly, biologically handicapped I. ricinus nymphs transmitted B. afzelii in a manner quantitatively sufficient to develop a systemic infection in mice. These data suggest that initial blood-feeding, despite the incapability of ticks to fully feed and salivate, is sufficient for activating B. afzelii from a dormant to an infectious mode, enabling transmission and dissemination in host tissues.
Zobrazit více v PubMed
Comstedt P, Hanner M, Schüler W, Meinke A, Lundberg U. 2014. Design and development of a novel vaccine for protection against Lyme borreliosis. PLoS ONE 9, e113294. (10.1371/journal.pone.0113294) PubMed DOI PMC
Kamp HD, et al. 2020. Design of a broadly reactive Lyme disease vaccine. NPJ Vaccines 5, 33. (10.1038/s41541-020-0183-8) PubMed DOI PMC
Wressnigg N, et al. 2013. Safety and immunogenicity of a novel multivalent OspA vaccine against Lyme borreliosis in healthy adults: a double-blind, randomised, dose-escalation phase 1/2 trial. Lancet Infect. Dis. 13, 680-689. (10.1016/S1473-3099(13)70110-5) PubMed DOI
Chmelar J, Kotál J, Kovaríková A, Kotsyfakis M. 2019. The use of tick salivary proteins as novel therapeutics. Front. Physiol. 10, 812. (10.3389/fphys.2019.00812) PubMed DOI PMC
Oliveira CJF, et al. 2011. Deconstructing tick saliva: non-protein molecules with potent immunomodulatory properties. J. Biol. Chem. 286, 10 960-10 969. (10.1074/jbc.M110.205047) PubMed DOI PMC
Perner J, Helm D, Haberkant P, Hatalova T, Kropackova S, Ribeiro JM, Kopaceke P. 2020. The central role of salivary metalloproteases in host acquired resistance to tick feeding. Front. Cell. Infect. Microbiol. 10, 563349. (10.3389/fcimb.2020.563349) PubMed DOI PMC
Bonnet S, Kazimírová M, Richardson J, Šimo L. 2018. Tick Saliva and Its Role in Pathogen Transmission. In Skin and arthropod vectors (ed. Boulanger N), pp. 121-191. New York, NY: Academic Press. (10.1016/B978-0-12-811436-0.00005-8) DOI
Schuijt TJ, et al. 2011. A tick mannose-binding lectin inhibitor interferes with the vertebrate complement cascade to enhance transmission of the Lyme disease agent. Cell Host Microbe 10, 136-146. (10.1016/j.chom.2011.06.010) PubMed DOI PMC
Dai J, Wang P, Adusumilli S, Booth CJ, Narasimhan S, Anguita J, Fikrig E. 2009. Antibodies against a tick protein, Salp15, protect mice from the Lyme disease agent. Cell Host Microbe 6, 482-492. (10.1016/j.chom.2009.10.006) PubMed DOI PMC
Dai J, Narasimhan S, Zhang L, Liu L, Wang P, Fikrig E. 2010. Tick histamine release factor is critical for Ixodes scapularis engorgement and transmission of the Lyme disease agent. PLoS Pathog. 6, e1001205. (10.1371/journal.ppat.1001205) PubMed DOI PMC
Sajid A, et al. 2021. mRNA vaccination induces tick resistance and prevents transmission of the Lyme disease agent. Sci. Transl. Med. 13, eabj9827. (10.1126/scitranslmed.abj9827) PubMed DOI
Šimo L, Kazimirova M, Richardson J, Bonnet SI. 2017. The essential role of tick salivary glands and saliva in tick feeding and pathogen transmission. Front. Cell. Infect. Microbiol. 7, 281. (10.3389/fcimb.2017.00281) PubMed DOI PMC
Pechova J, Stepanova G, Kovar L, Kopecky J. 2002. Tick salivary gland extract-activated transmission of Borrelia afzelii spirochaetes. Folia Parasitol. 49, 153-159. (10.14411/fp.2002.027) PubMed DOI
Mans BJ. 2019. Chemical equilibrium at the tick-host feeding interface: a critical examination of biological relevance in hematophagous behavior. Front. Physiol. 10, 530. (10.3389/fphys.2019.00530) PubMed DOI PMC
Perner J, Kropáčková S, Kopáček P, Ribeiro JMC. 2018. Sialome diversity of ticks revealed by RNAseq of single tick salivary glands. PLOS Negl. Trop. Dis. 12, e0006410. (10.1371/journal.pntd.0006410) PubMed DOI PMC
Schwarz A, et al. 2014. A systems level analysis reveals transcriptomic and proteomic complexity in Ixodes ricinus midgut and salivary glands during early attachment and feeding. Mol. Cell. Proteom. 13, 2725-2735. (10.1074/mcp.M114.039289) PubMed DOI PMC
Richter D, Spielman A, Matuschka F-R. 1998. Effect of prior exposure to noninfected ticks on susceptibility of mice to Lyme disease spirochetes. Appl. Environ. Microbiol. 64, 4596. (10.1128/AEM.64.11.4596-4599.1998) PubMed DOI PMC
Jain V, Sharma A. 2017. Repurposing of potent drug candidates for multiparasite targeting. Trends Parasitol. 33, 158-161. (10.1016/j.pt.2016.12.007) PubMed DOI
Hoepfner D, et al. 2012. Selective and specific inhibition of the Plasmodium falciparum lysyl-tRNA synthetase by the fungal secondary metabolite cladosporin. Cell Host Microbe. 11, 654-663. (10.1016/j.chom.2012.04.015) PubMed DOI PMC
Jain V, Yogavel M, Oshima Y, Kikuchi H, Touquet B, Hakimi MA, Sharma A. 2015. Structure of prolyl-tRNA synthetase-halofuginone complex provides basis for development of drugs against malaria and toxoplasmosis. Structure 23, 819-829. (10.1016/j.str.2015.02.011) PubMed DOI
Palencia A, et al. 2016. Cryptosporidium and Toxoplasma parasites are inhibited by a benzoxaborole targeting leucyl-tRNA synthetase. Antimicrob. Agents Chemother. 60, 5817-5827. (10.1128/AAC.00873-16) PubMed DOI PMC
Sharma A, Sharma M, Yogavel M, Sharma A. 2016. Protein translation enzyme lysyl-trna synthetase presents a new target for drug development against causative agents of Loiasis and Schistosomiasis. PLoS Negl. Trop. Dis. 10, e0005084. (10.1371/journal.pntd.000508) PubMed DOI PMC
Francklyn CS, Mullen P. 2019. Progress and challenges in aminoacyl-tRNA synthetase-based therapeutics. J. Biol. Chem. 294, 5365-5385. (10.1074/jbc.REV118.002956) PubMed DOI PMC
Pospisilova T, Urbanova V, Hes O, Kopacek P, Hajdusek O, Sima R. 2019. Tracking of Borrelia afzelii transmission from infected Ixodes ricinus nymphs to mice. Infect. Immun. 87, e00896-18. (10.1128/IAI.00896-18) PubMed DOI PMC
Perner J, Provazník J, Schrenková J, Urbanová V, Ribeiro JMC, Kopáček P. 2016. RNA-seq analyses of the midgut from blood- and serum-fed Ixodes ricinus ticks. Sci. Rep. 6, 36695. (10.1038/srep36695) PubMed DOI PMC
Hajdusek O, Sojka D, Kopacek P, Buresova V, Franta Z, Sauman I, Winzerling J, Grubhoffer L. 2009. Knockdown of proteins involved in iron metabolism limits tick reproduction and development. Proc. Natl. Acad. Sci. USA 106, 1033-1038. (10.1073/pnas.0807961106) PubMed DOI PMC
Pfaffl MW. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45. (10.1093/nar/29.9.e45) PubMed DOI PMC
Sojka D, Franta Z, Horn M, Caffrey CR, Mareš M, Kopáček P. 2013. New insights into the machinery of blood digestion by ticks. Trends Parasitol. 29, 276-285. (10.1016/j.pt.2013.04.002) PubMed DOI
Comstedt P, Schüler W, Meinke A, Lundberg U. 2017. The novel Lyme borreliosis vaccine VLA15 shows broad protection against Borrelia species expressing six different OspA serotypes. PLoS ONE 12, e0184357. (10.1371/journal.pone.0184357) PubMed DOI PMC
Schuijt TJ, Hovius JW, van der Poll T, van Dam AP, Fikrig E. 2011. Lyme borreliosis vaccination: the facts, the challenge, the future. Trends Parasitol. 27, 40-47. (10.1016/j.pt.2010.06.006) PubMed DOI
Rego ROM, et al. 2019. Counterattacking the tick bite: towards a rational design of anti-tick vaccines targeting pathogen transmission. Parasites Vectors 12, 229. (10.1186/s13071-019-3468-x) PubMed DOI PMC
Zeidner NS, Schneider BS, Gern L, Piesman J. 2002. Coinoculation of Borrelia spp. with tick salivary gland lysate enhances spirochete load in mice and is tick species-specific. J. Parasitol. 88, 1276-1278. PubMed
Kuthejlová M, Kopecký J, Štěpánová G, Macela A. 2001. Tick salivary gland extract inhibits killing of Borrelia afzelii spirochetes by mouse macrophages. Infect. Immu. 69, 575-578. (10.1128/IAI.69.1.575-578.2001) PubMed DOI PMC
Ribeiro JMC, Zeidner NS, Ledin K, Dolan MC, Mather TN. 2004. How much pilocarpine contaminates pilocarpine-induced tick saliva? Med. Vet. Entomol. 18, 20-24. (10.1111/j.0269-283X.2003.0469.x) PubMed DOI
Titus RG, Ribeiro JMC. 1988. Salivary gland lysates from the sand fly Lutzomyia longipalpis enhance Leishmania infectivity. Science 239, 1306-1308. (10.1126/science.3344436) PubMed DOI
Tyson K, Elkins C, Patterson H, Fikrig E, De Silva A. 2007. Biochemical and functional characterization of Salp20, an Ixodes scapularis tick salivary protein that inhibits the complement pathway. Insect Mol. Biol. 16, 469-479. (10.1111/j.1365-2583.2007.00742.x) PubMed DOI
Burgdorfer W. 1984. Discovery of the Lyme disease spirochete and its relation to tick vectors. Yale J. Biol. Med. 57, 515-520. PubMed PMC
Benach JL, Coleman JL, Skinner RA, Rosler EM. 1987. Adult Ixodes dammini on rabbits: a hypothesis for the development and transmission of Borrelia burgdorferi. J. Infect. Dis. 155, 1300-1306. PubMed