The Use of Tick Salivary Proteins as Novel Therapeutics

. 2019 ; 10 () : 812. [epub] 20190626

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid31297067

The last three decades of research into tick salivary components have revealed several proteins with important pharmacological and immunological activities. Two primary interests have driven research into tick salivary secretions: the search for suitable pathogen transmission blocking or "anti-tick" vaccine candidates and the search for novel therapeutics derived from tick salivary components. Intensive basic research in the field of tick salivary gland transcriptomics and proteomics has identified several major protein families that play important roles in tick feeding and overcoming vertebrate anti-tick responses. Moreover, these families contain members with unrealized therapeutic potential. Here we review the major tick salivary protein families exploitable in medical applications such as immunomodulation, inhibition of hemostasis and inflammation. Moreover, we discuss the potential, opportunities, and challenges in searching for novel tick-derived drugs.

Zobrazit více v PubMed

Anguita J., Ramamoorthi N., Hovius J. W., Das S., Thomas V., Persinski R., et al. (2002). Salp15, an ixodes scapularis salivary protein, inhibits CD4(+) T cell activation. Immunity 16 849–859. 10.1016/s1074-7613(02)00325-4 PubMed DOI

Assumpcao T. C., Mizurini D. M., Ma D., Monteiro R. Q., Ahlstedt S., Reyes M., et al. (2018). Ixonnexin from tick saliva promotes fibrinolysis by interacting with plasminogen and tissue-type plasminogen activator, and prevents arterial thrombosis. Sci. Rep. 8:4806. 10.1038/s41598-018-22780-1 PubMed DOI PMC

Assumpcao T. C., Ribeiro J. M., Francischetti I. M. (2012). Disintegrins from hematophagous sources. Toxins 4 296–322. 10.3390/toxins4050296 PubMed DOI PMC

Bania J., Stachowiak D., Polanowski A. (1999). Primary structure and properties of the cathepsin G/chymotrypsin inhibitor from the larval hemolymph of Apis mellifera. Eur J. Biochem. 262 680–687. 10.1046/j.1432-1327.1999.00406.x PubMed DOI

Barboza T., Gomes T., Mizurini D. M., Monteiro R. Q., Konig S., Francischetti I. M., et al. (2015). (99m)Tc-ixolaris targets glioblastoma-associated tissue factor: in vitro and pre-clinical applications. Thromb. Res. 136 432–439. 10.1016/j.thromres.2015.05.032 PubMed DOI

Beaufays J., Adam B., Menten-Dedoyart C., Fievez L., Grosjean A., Decrem Y., et al. (2008). Ir-LBP, an ixodes ricinus tick salivary LTB4-binding lipocalin, interferes with host neutrophil function. PLoS One 3:e3987. 10.1371/journal.pone.0003987 PubMed DOI PMC

Berggoetz M., Schmid M., Ston D., Wyss V., Chevillon C., Pretorius A. M., et al. (2014). Protozoan and bacterial pathogens in tick salivary glands in wild and domestic animal environments in South Africa. Ticks Tick Borne Dis. 5 176–185. 10.1016/j.ttbdis.2013.10.003 PubMed DOI

Blisnick A. A., Foulon T., Bonnet S. I. (2017). Serine protease inhibitors in ticks: an overview of their role in tick biology and tick-borne pathogen transmission. Front. Cell Infect. Microbiol. 7:199. 10.3389/fcimb.2017.00199 PubMed DOI PMC

Bonvin P., Power C. A., Proudfoot A. E. (2016). Evasins: therapeutic potential of a new family of chemokine-binding proteins from ticks. Front. Immunol. 7:208. 10.3389/fimmu.2016.00208 PubMed DOI PMC

Braunersreuther V., Montecucco F., Pelli G., Galan K., Proudfoot A. E., Belin A., et al. (2013). Treatment with the CC chemokine-binding protein Evasin-4 improves post-infarction myocardial injury and survival in mice. Thromb. Haemost. 110 807–825. 10.1160/TH13-04-0297 PubMed DOI

Brocklebank V., Kavanagh D. (2017). Complement C5-inhibiting therapy for the thrombotic microangiopathies: accumulating evidence, but not a panacea. Clin. Kidney J. 10 600–624. 10.1093/ckj/sfx081 PubMed DOI PMC

Carneiro-Lobo T. C., Konig S., Machado D. E., Nasciutti L. E., Forni M. F., Francischetti I. M., et al. (2009). Ixolaris, a tissue factor inhibitor, blocks primary tumor growth and angiogenesis in a glioblastoma model. J. Thromb. Haemost. 7 1855–1864. 10.1111/j.1538-7836.2009.03553.x PubMed DOI PMC

Castor M. G., Rezende B., Resende C. B., Alessandri A. L., Fagundes C. T., Sousa L. P., et al. (2010). The CCL3/macrophage inflammatory protein-1alpha-binding protein evasin-1 protects from graft-versus-host disease but does not modify graft-versus-leukemia in mice. J. Immunol. 184 2646–2654. 10.4049/jimmunol.0902614 PubMed DOI

Charo I. F., Ransohoff R. M. (2006). The many roles of chemokines and chemokine receptors in inflammation. N. Engl. J. Med. 354 610–621. 10.1056/nejmra052723 PubMed DOI

Chen Z., Wang B., Hu J., Yang W., Cao Z., Zhuo R., et al. (2013). SjAPI, the first functionally characterized Ascaris-type protease inhibitor from animal venoms. PLoS One 8:e57529. 10.1371/journal.pone.0057529 PubMed DOI PMC

Cherniack E. P. (2011). Bugs as drugs, part two: worms, leeches, scorpions, snails, ticks, centipedes, and spiders. Altern. Med. Rev. 16 50–58. PubMed

Chmelar J., Calvo E., Pedra J. H., Francischetti I. M., Kotsyfakis M. (2012). Tick salivary secretion as a source of antihemostatics. J. Proteomics 75 3842–3854. 10.1016/j.jprot.2012.04.026 PubMed DOI PMC

Chmelar J., Kotal J., Kopecky J., Pedra J. H. F., Kotsyfakis M. (2016). All for one and one for all on the tick-host battlefield. Trends Parasitol. 32 368–377. 10.1016/j.pt.2016.01.004 PubMed DOI PMC

Chmelar J., Kotal J., Langhansova H., Kotsyfakis M. (2017). Protease inhibitors in tick saliva: the role of serpins and cystatins in tick-host-pathogen interaction. Front. Cell Infect. Microbiol. 7:216. 10.3389/fcimb.2017.00216 PubMed DOI PMC

Chudzinski-Tavassi A. M., De-Sa-Junior P. L., Simons S. M., Maria D. A., De Souza Ventura J., Batista I. F., et al. (2010). A new tick Kunitz type inhibitor, Amblyomin-X, induces tumor cell death by modulating genes related to the cell cycle and targeting the ubiquitin-proteasome system. Toxicon 56 1145–1154. 10.1016/j.toxicon.2010.04.019 PubMed DOI

Chudzinski-Tavassi A. M., Maria D. A., Batista I. F., Ho P. L. (2005). Kunitz-Type Recombinant Inhibitor. U.S. Patent No. WO2006029492A1.

Cierpicki T., Bania J., Otlewski J. (2000). NMR solution structure of Apis mellifera chymotrypsin/cathepsin G inhibitor-1 (AMCI-1): structural similarity with Ascaris protease inhibitors. Protein Sci. 9 976–984. 10.1110/ps.9.5.976 PubMed DOI PMC

Coipan E. C., Jahfari S., Fonville M., Maassen C. B., Van Der Giessen J., Takken W., et al. (2013). Spatiotemporal dynamics of emerging pathogens in questing Ixodes ricinus. Front. Cell Infect. Microbiol. 3:36. 10.3389/fcimb.2013.00036 PubMed DOI PMC

Copin J. C., Da Silva R. F., Fraga-Silva R. A., Capettini L., Quintao S., Lenglet S., et al. (2013). Treatment with Evasin-3 reduces atherosclerotic vulnerability for ischemic stroke, but not brain injury in mice. J. Cereb. Blood Flow Metab. 33 490–498. 10.1038/jcbfm.2012.198 PubMed DOI PMC

Corral-Rodriguez M. A., Macedo-Ribeiro S., Barbosa Pereira P. J., Fuentes-Prior P. (2009). Tick-derived Kunitz-type inhibitors as antihemostatic factors. Insect. Biochem. Mol. Biol. 39 579–595. 10.1016/j.ibmb.2009.07.003 PubMed DOI

Couillin I., Maillet I., Vargaftig B. B., Jacobs M., Paesen G. C., Nuttall P. A., et al. (2004). Arthropod-derived histamine-binding protein prevents murine allergic asthma. J. Immunol. 173 3281–3286. 10.4049/jimmunol.173.5.3281 PubMed DOI

Dai J., Wang P., Adusumilli S., Booth C. J., Narasimhan S., Anguita J., et al. (2009). Antibodies against a tick protein, Salp15, protect mice from the Lyme disease agent. Cell Host Microbe. 6 482–492. 10.1016/j.chom.2009.10.006 PubMed DOI PMC

Das S., Banerjee G., Deponte K., Marcantonio N., Kantor F. S., Fikrig E. (2001). Salp25D, an Ixodes scapularis antioxidant, is 1 of 14 immunodominant antigens in engorged tick salivary glands. J. Infect. Dis. 184 1056–1064. 10.1086/323351 PubMed DOI

de Castro M. H., De Klerk D., Pienaar R., Latif A. A., Rees D. J., Mans B. J. (2016). De novo assembly and annotation of the salivary gland transcriptome of Rhipicephalus appendiculatus male and female ticks during blood feeding. Ticks Tick Borne Dis. 7 536–548. 10.1016/j.ttbdis.2016.01.014 PubMed DOI

De Groot A. S., Scott D. W. (2007). Immunogenicity of protein therapeutics. Trends Immunol. 28 482–490. 10.1016/j.it.2007.07.011 PubMed DOI

de Souza J. G., Morais K. L., Angles-Cano E., Boufleur P., De Mello E. S., Maria D. A., et al. (2016). Promising pharmacological profile of a Kunitz-type inhibitor in murine renal cell carcinoma model. Oncotarget 7 62255–62266. 10.18632/oncotarget.11555 PubMed DOI PMC

Decrem Y., Rath G., Blasioli V., Cauchie P., Robert S., Beaufays J., et al. (2009). Ir-CPI, a coagulation contact phase inhibitor from the tick Ixodes ricinus, inhibits thrombus formation without impairing hemostasis. J. Exp. Med. 206 2381–2395. 10.1084/jem.20091007 PubMed DOI PMC

Dehhaghi M., Kazemi Shariat Panahi H., Holmes E. C., Hudson B. J., Schloeffel R., Guillemin G. J. (2019). Human tick-borne diseases in Australia. Front. Cell Infect. Microbiol. 9:3 10.3389/fcimb.2019.00003 PubMed DOI PMC

den Dunnen J., Gringhuis S. I., Geijtenbeek T. B. (2009). Innate signaling by the C-type lectin DC-SIGN dictates immune responses. Cancer Immunol. Immunother. 58 1149–1157. 10.1007/s00262-008-0615-1 PubMed DOI PMC

Deruaz M., Bonvin P., Severin I. C., Johnson Z., Krohn S., Power C. A., et al. (2013). Evasin-4, a tick-derived chemokine-binding protein with broad selectivity can be modified for use in preclinical disease models. FEBS J. 280 4876–4887. 10.1111/febs.12463 PubMed DOI PMC

Deruaz M., Frauenschuh A., Alessandri A. L., Dias J. M., Coelho F. M., Russo R. C., et al. (2008). Ticks produce highly selective chemokine binding proteins with antiinflammatory activity. J. Exp. Med. 205 2019–2031. 10.1084/jem.20072689 PubMed DOI PMC

El-Tantawy N. L. (2015). Helminthes and insects: maladies or therapies. Parasitol. Res. 114 359–377. 10.1007/s00436-014-4260-7 PubMed DOI

Esteves E., Maruyama S. R., Kawahara R., Fujita A., Martins L. A., Righi A. A., et al. (2017). Analysis of the salivary gland transcriptome of unfed and partially fed amblyomma sculptum ticks and descriptive proteome of the saliva. Front. Cell Infect. Microbiol. 7:476. 10.3389/fcimb.2017.00476 PubMed DOI PMC

Francischetti I. M., Mather T. N., Ribeiro J. M. (2003). Cloning of a salivary gland metalloprotease and characterization of gelatinase and fibrin(ogen)lytic activities in the saliva of the Lyme disease tick vector Ixodes scapularis. Biochem. Biophys. Res. Commun. 305 869–875. 10.1016/s0006-291x(03)00857-x PubMed DOI PMC

Francischetti I. M., Meng Z., Mans B. J., Gudderra N., Hall M., Veenstra T. D., et al. (2008). An insight into the salivary transcriptome and proteome of the soft tick and vector of epizootic bovine abortion, Ornithodoros coriaceus. J. Proteomics 71 493–512. 10.1016/j.jprot.2008.07.006 PubMed DOI PMC

Francischetti I. M., My Pham V., Mans B. J., Andersen J. F., Mather T. N., Lane R. S., et al. (2005). The transcriptome of the salivary glands of the female western black-legged tick Ixodes pacificus (Acari: Ixodidae). Insect. Biochem. Mol. Biol. 35 1142–1161. 10.1016/j.ibmb.2005.05.007 PubMed DOI PMC

Francischetti I. M., Sa-Nunes A., Mans B. J., Santos I. M., Ribeiro J. M. (2009). The role of saliva in tick feeding. Front. Biosci. 14 2051–2088. 10.2741/3363 PubMed DOI PMC

Frauenschuh A., Power C. A., Deruaz M., Ferreira B. R., Silva J. S., Teixeira M. M., et al. (2007). Molecular cloning and characterization of a highly selective chemokine-binding protein from the tick Rhipicephalus sanguineus. J. Biol. Chem. 282 27250–27258. 10.1074/jbc.m704706200 PubMed DOI

Fredslund F., Laursen N. S., Roversi P., Jenner L., Oliveira C. L., Pedersen J. S., et al. (2008). Structure of and influence of a tick complement inhibitor on human complement component 5. Nat. Immunol. 9 753–760. 10.1038/ni.1625 PubMed DOI

Garg R., Juncadella I. J., Ramamoorthi N., Ashish Ananthanarayanan S. K., Thomas V., Rincón M., et al. (2006). Cutting edge: CD4 is the receptor for the tick saliva immunosuppressor, Salp15. J. Immunol. 177 6579–6583. 10.4049/jimmunol.177.10.6579 PubMed DOI PMC

Goodship T. H. J., Pinto F., Weston-Davies W. H., Silva J., Nishimura J. I., Nunn M. A., et al. (2017). Use of the complement inhibitor coversin to treat HSCT-associated TMA. Blood Adv. 1 1254–1258. 10.1182/bloodadvances.2016002832 PubMed DOI PMC

Grammer A. C., Lipsky P. E. (2017). Drug repositioning strategies for the identification of novel therapies for rheumatic autoimmune inflammatory diseases. Rheum. Dis. Clin. North Am. 43 467–480. 10.1016/j.rdc.2017.04.010 PubMed DOI

Guo X., Booth C. J., Paley M. A., Wang X., Deponte K., Fikrig E., et al. (2009). Inhibition of neutrophil function by two tick salivary proteins. Infect. Immun. 77 2320–2329. 10.1128/IAI.01507-08 PubMed DOI PMC

Hammer J. F., Jenkins C., Bogema D., Emery D. (2016). Mechanical transfer of Theileria orientalis: possible roles of biting arthropods, colostrum and husbandry practices in disease transmission. Parasit. Vectors 9:34. 10.1186/s13071-016-1323-x PubMed DOI PMC

Hayward J., Sanchez J., Perry A., Huang C., Rodriguez Valle M., Canals M., et al. (2017). Ticks from diverse genera encode chemokine-inhibitory evasin proteins. J. Biol. Chem. 292 15670–15680. 10.1074/jbc.M117.807255 PubMed DOI PMC

Hovius J. W., De Jong M. A., Den Dunnen J., Litjens M., Fikrig E., Van Der Poll T., et al. (2008). Salp15 binding to DC-SIGN inhibits cytokine expression by impairing both nucleosome remodeling and mRNA stabilization. PLoS Pathog. 4:e31. 10.1371/journal.ppat.0040031 PubMed DOI PMC

Huang C., Zheng C., Li Y., Wang Y., Lu A., Yang L. (2014). Systems pharmacology in drug discovery and therapeutic insight for herbal medicines. Brief. Bioinform. 15 710–733. 10.1093/bib/bbt035 PubMed DOI

Huang K., Strynadka N. C., Bernard V. D., Peanasky R. J., James M. N. (1994). The molecular structure of the complex of Ascaris chymotrypsin/elastase inhibitor with porcine elastase. Structure 2 679–689. 10.1016/s0969-2126(00)00068-x PubMed DOI

Izaguirre G., Arciniega M., Quezada A. G. (2019). Specific and selective inhibitors of proprotein convertases engineered by transferring serpin b8 reactive-site and exosite determinants of reactivity to the serpin alpha1PDX. Biochemistry 58 1679–1688. 10.1021/acs.biochem.8b01295 PubMed DOI PMC

Izaguirre G., Qi L., Lima M., Olson S. T. (2013). Identification of serpin determinants of specificity and selectivity for furin inhibition through studies of alpha1PDX (alpha1-protease inhibitor Portland)-serpin B8 and furin active-site loop chimeras. J. Biol. Chem. 288 21802–21814. 10.1074/jbc.M113.462804 PubMed DOI PMC

Jahfari S., Hofhuis A., Fonville M., Van Der Giessen J., Van Pelt W., Sprong H. (2016). Molecular detection of tick-borne pathogens in humans with tick bites and erythema migrans, in the Netherlands. PLoS Negl. Trop Dis. 10:e0005042. 10.1371/journal.pntd.0005042 PubMed DOI PMC

Jokerst J. V., Lobovkina T., Zare R. N., Gambhir S. S. (2011). Nanoparticle PEGylation for imaging and therapy. Nanomedicine 6 715–728. 10.2217/nnm.11.19 PubMed DOI PMC

Jongejan F., Uilenberg G. (2004). The global importance of ticks. Parasitology 129 S3–S14. PubMed

Jorgensen J. T. (2011). A challenging drug development process in the era of personalized medicine. Drug Discov. Today 16 891–897. 10.1016/j.drudis.2011.09.010 PubMed DOI

Juncadella I. J., Anguita J. (2009). The immunosuppresive tick salivary protein, Salp15. Adv. Exp. Med. Biol. 666 121–131. 10.1007/978-1-4419-1601-3_10 PubMed DOI

Juncadella I. J., Bates T. C., Suleiman R., Monteagudo-Mera A., Olson CM.,, Jr., Navasa N., et al. (2010). The tick saliva immunosuppressor, Salp15, contributes to Th17-induced pathology during experimental autoimmune encephalomyelitis. Biochem. Biophys. Res. Commun. 402 105–109. 10.1016/j.bbrc.2010.09.125 PubMed DOI PMC

Juncadella I. J., Garg R., Ananthnarayanan S. K., Yengo C. M., Anguita J. (2007). T-cell signaling pathways inhibited by the tick saliva immunosuppressor, Salp15. FEMS Immunol. Med. Microbiol. 49 433–438. 10.1111/j.1574-695x.2007.00223.x PubMed DOI

Juncadella I. J., Garg R., Bates T. C., Olivera E. R., Anguita J. (2008). The Ixodes scapularis salivary protein, salp15, prevents the association of HIV-1 gp120 and CD4. Biochem. Biophys. Res. Commun. 367 41–46. 10.1016/j.bbrc.2007.12.104 PubMed DOI PMC

Karczewski J., Connolly T. M. (1997). The interaction of disagregin with the platelet fibrinogen receptor, glycoprotein IIb-IIIa. Biochem. Biophys. Res. Commun. 241 744–748. 10.1006/bbrc.1997.7881 PubMed DOI

Karczewski J., Endris R., Connolly T. M. (1994). Disagregin is a fibrinogen receptor antagonist lacking the Arg-Gly-Asp sequence from the tick, Ornithodoros moubata. J. Biol. Chem. 269 6702–6708. PubMed

Karim S., Ribeiro J. M. (2015). An insight into the sialome of the lone star tick, amblyomma americanum, with a glimpse on its time dependent gene expression. PLoS One 10:e0131292. 10.1371/journal.pone.0131292 PubMed DOI PMC

Kazimirova M., Stibraniova I. (2013). Tick salivary compounds: their role in modulation of host defences and pathogen transmission. Front. Cell Infect. Microbiol. 3:43. 10.3389/fcimb.2013.00043 PubMed DOI PMC

Kazimirova M., Thangamani S., Bartikova P., Hermance M., Holikova V., Stibraniova I., et al. (2017). Tick-borne viruses and biological processes at the tick-host-virus interface. Front. Cell Infect. Microbiol. 7:339. 10.3389/fcimb.2017.00339 PubMed DOI PMC

Keller P. M., Waxman L., Arnold B. A., Schultz L. D., Condra C., Connolly T. M. (1993). Cloning of the cDNA and expression of moubatin, an inhibitor of platelet aggregation. J. Biol. Chem. 268 5450–5456. PubMed

Kim T. K., Tirloni L., Pinto A. F., Moresco J., Yates J. R., III, Da Silva Vaz I., et al. (2016). Ixodes scapularis tick saliva proteins sequentially secreted every 24 h during blood feeding. PLoS Negl. Trop Dis. 10:e0004323. 10.1371/journal.pntd.0004323 PubMed DOI PMC

Kotal J., Langhansova H., Lieskovska J., Andersen J. F., Francischetti I. M., Chavakis T., et al. (2015). Modulation of host immunity by tick saliva. J. Proteomics 128 58–68. 10.1016/j.jprot.2015.07.005 PubMed DOI PMC

Kuhn N., Schmidt C. Q., Schlapschy M., Skerra A. (2016). PASylated coversin, a C5-Specific complement inhibitor with extended pharmacokinetics, shows enhanced anti-hemolytic activity in vitro. Bioconjug. Chem. 27 2359–2371. 10.1021/acs.bioconjchem.6b00369 PubMed DOI

Li F. S., Weng J. K. (2017). Demystifying traditional herbal medicine with modern approach. Nat. Plants 3:17109. 10.1038/nplants.2017.109 PubMed DOI

Lieskovska J., Palenikova J., Sirmarova J., Elsterova J., Kotsyfakis M., Campos Chagas A., et al. (2015). Tick salivary cystatin sialostatin L2 suppresses IFN responses in mouse dendritic cells. Parasite Immunol. 37 70–78. 10.1111/pim.12162 PubMed DOI

Lung O., Tram U., Finnerty C. M., Eipper-Mains M. A., Kalb J. M., Wolfner M. F. (2002). The Drosophila melanogaster seminal fluid protein Acp62F is a protease inhibitor that is toxic upon ectopic expression. Genetics 160 211–224. PubMed PMC

Mans B. J., Andersen J. F., Schwan T. G., Ribeiro J. M. (2008a). Characterization of anti-hemostatic factors in the argasid, Argas monolakensis: implications for the evolution of blood-feeding in the soft tick family. Insect. Biochem. Mol. Biol. 38 22–41. 10.1016/j.ibmb.2007.09.002 PubMed DOI PMC

Mans B. J., Ribeiro J. M., Andersen J. F. (2008b). Structure, function, and evolution of biogenic amine-binding proteins in soft ticks. J. Biol. Chem. 283 18721–18733. 10.1074/jbc.M800188200 PubMed DOI PMC

Mans B. J., Louw A. I., Neitz A. W. (2002a). Disaggregation of aggregated platelets by savignygrin, a alphaIIbeta3 antagonist from Ornithodoros savignyi. Exp. Appl. Acarol. 27 231–239. PubMed

Mans B. J., Louw A. I., Neitz A. W. (2002b). Savignygrin, a platelet aggregation inhibitor from the soft tick Ornithodoros savignyi, presents the RGD integrin recognition motif on the Kunitz-BPTI fold. J. Biol. Chem. 277 21371–21378. 10.1074/jbc.m112060200 PubMed DOI

Mans B. J., Ribeiro J. M. (2008). Function, mechanism and evolution of the moubatin-clade of soft tick lipocalins. Insect. Biochem. Mol. Biol. 38 841–852. 10.1016/j.ibmb.2008.06.007 PubMed DOI PMC

Marcet-Palacios M., Ewen C., Pittman E., Duggan B., Carmine-Simmen K., Fahlman R. P., et al. (2015). Design and characterization of a novel human Granzyme B inhibitor. Protein Eng. Des. Sel. 28 9–17. 10.1093/protein/gzu052 PubMed DOI

Marchal C., Schramm F., Kern A., Luft B. J., Yang X., Schuijt T. J., et al. (2011). Antialarmin effect of tick saliva during the transmission of Lyme disease. Infect. Immun. 79 774–785. 10.1128/IAI.00482-10 PubMed DOI PMC

Mignogna G., Pascarella S., Wechselberger C., Hinterleitner C., Mollay C., Amiconi G., et al. (1996). BSTI, a trypsin inhibitor from skin secretions of Bombina bombina related to protease inhibitors of nematodes. Protein Sci. 5 357–362. 10.1002/pro.5560050220 PubMed DOI PMC

Montecucco F., Lenglet S., Braunersreuther V., Pelli G., Pellieux C., Montessuit C., et al. (2010). Single administration of the CXC chemokine-binding protein Evasin-3 during ischemia prevents myocardial reperfusion injury in mice. Arterioscler. Thromb. Vasc. Biol. 30 1371–1377. 10.1161/ATVBAHA.110.206011 PubMed DOI

Montecucco F., Mach F., Lenglet S., Vonlaufen A., Gomes Quindere A. L., Pelli G., et al. (2014). Treatment with Evasin-3 abrogates neutrophil-mediated inflammation in mouse acute pancreatitis. Eur. J. Clin. Invest. 44 940–950. 10.1111/eci.12327 PubMed DOI

Mudenda L., Pierle S. A., Turse J. E., Scoles G. A., Purvine S. O., Nicora C. D., et al. (2014). Proteomics informed by transcriptomics identifies novel secreted proteins in Dermacentor andersoni saliva. Int. J. Parasitol. 44 1029–1037. 10.1016/j.ijpara.2014.07.003 PubMed DOI

Narasimhan S., Koski R. A., Beaulieu B., Anderson J. F., Ramamoorthi N., Kantor F., et al. (2002). A novel family of anticoagulants from the saliva of Ixodes scapularis. Insect. Mol. Biol. 11 641–650. 10.1046/j.1365-2583.2002.00375.x PubMed DOI

Narasimhan S., Montgomery R. R., Deponte K., Tschudi C., Marcantonio N., Anderson J. F., et al. (2004). Disruption of Ixodes scapularis anticoagulation by using RNA interference. Proc. Natl. Acad. Sci. U.S.A. 101 1141–1146. 10.1073/pnas.0307669100 PubMed DOI PMC

Neelakanta G., Sultana H. (2015). Transmission-blocking vaccines: focus on anti-vector vaccines against tick-borne diseases. Arch. Immunol. Ther. Exp. 63 169–179. 10.1007/s00005-014-0324-8 PubMed DOI PMC

Nunn M. A. (2004). Complement Inhibitors From Ticks. U.S. Patent No. WO2004106369A2.

Nunn M. A., Sharma A., Paesen G. C., Adamson S., Lissina O., Willis A. C., et al. (2005). Complement inhibitor of C5 activation from the soft tick Ornithodoros moubata. J. Immunol. 174 2084–2091. 10.4049/jimmunol.174.4.2084 PubMed DOI

Nuttall P. A., Labuda M. (2004). Tick-host interactions: saliva-activated transmission. Parasitology 129 S177–S189. PubMed

Nuttall P. A., Labuda M. (2008). “Saliva-assisted transmission of tick-borne pathogens,” in Ticks: Biology, Disease and Control, eds Bowman A. S., Nuttall P. A. (Cambridge: Cambridge University Press; ), 205–219. 10.1017/cbo9780511551802.011 DOI

Nuttall P. A., Paesen G. C. (2000). Tryptase Inhibitor. U.S. Patent No. WO2001005823A2.

Oleaga A., Escudero-Poblacion A., Camafeita E., Perez-Sanchez R. (2007). A proteomic approach to the identification of salivary proteins from the argasid ticks Ornithodoros moubata and Ornithodoros erraticus. Insect. Biochem. Mol. Biol. 37 1149–1159. 10.1016/j.ibmb.2007.07.003 PubMed DOI

Oliveira C. J., Anatriello E., De Miranda-Santos I. K., Francischetti I. M., Sa-Nunes A., Ferreira B. R., et al. (2013). Proteome of Rhipicephalus sanguineus tick saliva induced by the secretagogues pilocarpine and dopamine. Ticks Tick Borne Dis. 4 469–477. 10.1016/j.ttbdis.2013.05.001 PubMed DOI PMC

Paesen G. C., Adams P. L., Harlos K., Nuttall P. A., Stuart D. I. (1999). Tick histamine-binding proteins: isolation, cloning, and three-dimensional structure. Mol. Cell 3 661–671. 10.1016/s1097-2765(00)80359-7 PubMed DOI

Parizi L. F., Ali A., Tirloni L., Oldiges D. P., Sabadin G. A., Coutinho M. L., et al. (2018). Peptidase inhibitors in tick physiology. Med. Vet. Entomol. 32 129–144. 10.1111/mve.12276 PubMed DOI

Paul S. M., Mytelka D. S., Dunwiddie C. T., Persinger C. C., Munos B. H., Lindborg S. R., et al. (2010). How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov. 9 203–214. PubMed

Paveglio S. A., Allard J., Mayette J., Whittaker L. A., Juncadella I., Anguita J., et al. (2007). The tick salivary protein, Salp15, inhibits the development of experimental asthma. J. Immunol. 178 7064–7071. 10.4049/jimmunol.178.11.7064 PubMed DOI PMC

Pischke S. E., Gustavsen A., Orrem H. L., Egge K. H., Courivaud F., Fontenelle H., et al. (2017). Complement factor 5 blockade reduces porcine myocardial infarction size and improves immediate cardiac function. Basic Res. Cardiol. 112:20. 10.1007/s00395-017-0610-9 PubMed DOI PMC

Porter L. M., Radulovic Z. M., Mulenga A. (2017). A repertoire of protease inhibitor families in Amblyomma americanum and other tick species: inter-species comparative analyses. Parasit. Vectors 10:152. 10.1186/s13071-017-2080-1 PubMed DOI PMC

Pospisilova T., Urbanova V., Hes O., Kopacek P., Hajdusek O., Sima R. (2019). Tracking of Borrelia afzelii transmission from infected Ixodes ricinus nymphs to mice. Infect. Immun. 87:e00896-18. 10.1128/IAI.00896-18 PubMed DOI PMC

Preston S. G., Majtan J., Kouremenou C., Rysnik O., Burger L. F., Cabezas Cruz A., et al. (2013). Novel immunomodulators from hard ticks selectively reprogramme human dendritic cell responses. PLoS Pathog. 9:e1003450. 10.1371/journal.ppat.1003450 PubMed DOI PMC

Ramamoorthi N., Narasimhan S., Pal U., Bao F., Yang X. F., Fish D., et al. (2005). The Lyme disease agent exploits a tick protein to infect the mammalian host. Nature 436 573–577. 10.1038/nature03812 PubMed DOI PMC

Ratcliffe N., Azambuja P., Mello C. B. (2014). Recent advances in developing insect natural products as potential modern day medicines. Evid. Based Complement. Alternat. Med. 2014:904958. 10.1155/2014/904958 PubMed DOI PMC

Ribeiro J. M., Francischetti I. M. (2003). Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. Annu. Rev. Entomol. 48 73–88. 10.1146/annurev.ento.48.060402.102812 PubMed DOI

Ribeiro J. M., Makoul G. T., Levine J., Robinson D. R., Spielman A. (1985). Antihemostatic, antiinflammatory, and immunosuppressive properties of the saliva of a tick, Ixodes dammini. J. Exp. Med. 161 332–344. 10.1084/jem.161.2.332 PubMed DOI PMC

Ribeiro J. M., Slovak M., Francischetti I. M. (2017). An insight into the sialome of Hyalomma excavatum. Ticks Tick Borne Dis. 8 201–207. 10.1016/j.ttbdis.2016.08.011 PubMed DOI PMC

Romay-Penabad Z., Carrera Marin A. L., Willis R., Weston-Davies W., Machin S., Cohen H., et al. (2014). Complement C5-inhibitor rEV576 (coversin) ameliorates in-vivo effects of antiphospholipid antibodies. Lupus 23 1324–1326. 10.1177/0961203314546022 PubMed DOI

Roversi P., Johnson S., Preston S. G., Nunn M. A., Paesen G. C., Austyn J. M., et al. (2017). Structural basis of cholesterol binding by a novel clade of dendritic cell modulators from ticks. Sci. Rep. 7:16057. 10.1038/s41598-017-16413-2 PubMed DOI PMC

Russo R. C., Alessandri A. L., Garcia C. C., Cordeiro B. F., Pinho V., Cassali G. D., et al. (2011). Therapeutic effects of evasin-1, a chemokine binding protein, in bleomycin-induced pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 45 72–80. 10.1165/rcmb.2009-0406OC PubMed DOI

Ryffel B., Couillin I., Maillet I., Schnyder B., Paesen G. C., Nuttall P., et al. (2005). Histamine scavenging attenuates endotoxin-induced acute lung injury. Ann. N. Y. Acad. Sci. 1056 197–205. 10.1196/annals.1352.034 PubMed DOI

Sangamnatdej S., Paesen G. C., Slovak M., Nuttall P. A. (2002). A high affinity serotonin- and histamine-binding lipocalin from tick saliva. Insect. Mol. Biol. 11 79–86. 10.1046/j.0962-1075.2001.00311.x PubMed DOI

Schlapschy M., Binder U., Borger C., Theobald I., Wachinger K., Kisling S., et al. (2013). PASylation: a biological alternative to PEGylation for extending the plasma half-life of pharmaceutically active proteins. Protein Eng. Des. Sel. 26 489–501. 10.1093/protein/gzt023 PubMed DOI PMC

Schuijt T. J., Coumou J., Narasimhan S., Dai J., Deponte K., Wouters D., et al. (2011a). A tick mannose-binding lectin inhibitor interferes with the vertebrate complement cascade to enhance transmission of the lyme disease agent. Cell Host Microbe. 10 136–146. 10.1016/j.chom.2011.06.010 PubMed DOI PMC

Schuijt T. J., Narasimhan S., Daffre S., Deponte K., Hovius J. W., Van’t Veer C., et al. (2011b). Identification and characterization of Ixodes scapularis antigens that elicit tick immunity using yeast surface display. PLoS One 6:e15926. 10.1371/journal.pone.0015926 PubMed DOI PMC

Schwarz A., Cabezas-Cruz A., Kopecky J., Valdes J. J. (2014). Understanding the evolutionary structural variability and target specificity of tick salivary Kunitz peptides using next generation transcriptome data. BMC Evol. Biol. 14:4. 10.1186/1471-2148-14-4 PubMed DOI PMC

Schwarz A., Valdes J. J., Kotsyfakis M. (2012). The role of cystatins in tick physiology and blood feeding. Ticks Tick Borne Dis. 3 117–127. 10.1016/j.ttbdis.2012.03.004 PubMed DOI PMC

Schwarz A., Von Reumont B. M., Erhart J., Chagas A. C., Ribeiro J. M., Kotsyfakis M. (2013). De novo Ixodes ricinus salivary gland transcriptome analysis using two next-generation sequencing methodologies. FASEB J. 27 4745–4756. 10.1096/fj.13-232140 PubMed DOI PMC

Shim J. S., Liu J. O. (2014). Recent advances in drug repositioning for the discovery of new anticancer drugs. Int. J. Biol. Sci. 10 654–663. 10.7150/ijbs.9224 PubMed DOI PMC

Silverman G. A., Whisstock J. C., Bottomley S. P., Huntington J. A., Kaiserman D., Luke C. J., et al. (2010). Serpins flex their muscle: I. Putting the clamps on proteolysis in diverse biological systems. J. Biol. Chem. 285 24299–24305. 10.1074/jbc.R110.112771 PubMed DOI PMC

Simo L., Kazimirova M., Richardson J., Bonnet S. I. (2017). The essential role of tick salivary glands and saliva in tick feeding and pathogen transmission. Front. Cell Infect. Microbiol. 7:281. 10.3389/fcimb.2017.00281 PubMed DOI PMC

Soltys J., Kusner L. L., Young A., Richmonds C., Hatala D., Gong B., et al. (2009). Novel complement inhibitor limits severity of experimentally myasthenia gravis. Ann. Neurol. 65 67–75. 10.1002/ana.21536 PubMed DOI PMC

Song Y., Gong K., Yan H., Hong W., Wang L., Wu Y., et al. (2014). Sj7170, a unique dual-function peptide with a specific alpha-chymotrypsin inhibitory activity and a potent tumor-activating effect from scorpion venom. J. Biol. Chem. 289 11667–11680. 10.1074/jbc.M113.540419 PubMed DOI PMC

Stassens P., Bergum P. W., Gansemans Y., Jespers L., Laroche Y., Huang S., et al. (1996). Anticoagulant repertoire of the hookworm Ancylostoma caninum. Proc. Natl. Acad. Sci. U.S.A. 93 2149–2154. 10.1073/pnas.93.5.2149 PubMed DOI PMC

Swanson S. J., Neitzel D., Reed K. D., Belongia E. A. (2006). Coinfections acquired from ixodes ticks. Clin. Microbiol. Rev. 19 708–727. 10.1128/cmr.00011-06 PubMed DOI PMC

Tang J., Fang Y., Han Y., Bai X., Yan X., Zhang Y., et al. (2015). YY-39, a tick anti-thrombosis peptide containing RGD domain. Peptides 68 99–104. 10.1016/j.peptides.2014.08.008 PubMed DOI

Tirloni L., Islam M. S., Kim T. K., Diedrich J. K., Yates J. R., III, Pinto A. F., et al. (2015). Saliva from nymph and adult females of Haemaphysalis longicornis: a proteomic study. Parasit. Vectors 8:338. 10.1186/s13071-015-0918-y PubMed DOI PMC

Tirloni L., Kim T. K., Pinto A. F. M., Yates J. R., III, Da Silva Vaz I., Jr., et al. (2017). Tick-host range adaptation: changes in protein profiles in unfed adult Ixodes scapularis and Amblyomma americanum saliva stimulated to feed on different hosts. Front. Cell Infect. Microbiol. 7:517. 10.3389/fcimb.2017.00517 PubMed DOI PMC

Tirloni L., Reck J., Terra R. M., Martins J. R., Mulenga A., Sherman N. E., et al. (2014). Proteomic analysis of cattle tick Rhipicephalus (Boophilus) microplus saliva: a comparison between partially and fully engorged females. PLoS One 9:e94831. 10.1371/journal.pone.0094831 PubMed DOI PMC

Tomas-Cortazar J., Martin-Ruiz I., Barriales D., Pascual-Itoiz M. A., De Juan V. G., Caro-Maldonado A., et al. (2017). The immunosuppressive effect of the tick protein, Salp15, is long-lasting and persists in a murine model of hematopoietic transplant. Sci. Rep. 7:10740. 10.1038/s41598-017-11354-2 PubMed DOI PMC

Tuppurainen E. S., Stoltsz W. H., Troskie M., Wallace D. B., Oura C. A., Mellor P. S., et al. (2011). A potential role for ixodid (hard) tick vectors in the transmission of lumpy skin disease virus in cattle. Transbound. Emerg. Dis. 58 93–104. 10.1111/j.1865-1682.2010.01184.x PubMed DOI

Valenzuela J. G., Francischetti I. M., Pham V. M., Garfield M. K., Mather T. N., Ribeiro J. M. (2002). Exploring the sialome of the tick Ixodes scapularis. J. Exp. Biol. 205 2843–2864. PubMed

Veronese F. M., Mero A. (2008). The impact of PEGylation on biological therapies. BioDrugs 22 315–329. 10.2165/00063030-200822050-00004 PubMed DOI

Vieira A. T., Fagundes C. T., Alessandri A. L., Castor M. G., Guabiraba R., Borges V. O., et al. (2009). Treatment with a novel chemokine-binding protein or eosinophil lineage-ablation protects mice from experimental colitis. Am. J. Pathol. 175 2382–2391. 10.2353/ajpath.2009.090093 PubMed DOI PMC

Wagemakers A., Coumou J., Schuijt T. J., Oei A., Nijhof A. M., Van ’t Veer C., et al. (2016). An Ixodes ricinus tick salivary lectin pathway inhibitor protects borrelia burgdorferi sensu lato from human complement. Vector Borne Zoonotic Dis. 16 223–228. 10.1089/vbz.2015.1901 PubMed DOI

Wang X., Coons L. B., Taylor D. B., Stevens S. E., Jr., Gartner T. K. (1996). Variabilin, a novel RGD-containing antagonist of glycoprotein IIb-IIIa and platelet aggregation inhibitor from the hard tick Dermacentor variabilis. J. Biol. Chem. 271 17785–17790. 10.1074/jbc.271.30.17785 PubMed DOI

Wang X., Huang Y., Niu S. B., Jiang B. G., Jia N., Van Der Geest L., et al. (2014). Genetic diversity of Salp15 in the Ixodes ricinus complex (Acari: Ixodidae). PLoS One 9:e94131. 10.1371/journal.pone.0094131 PubMed DOI PMC

Wang X. J., Ren J. L., Zhang A. H., Sun H., Yan G. L., Han Y., et al. (2019). Novel applications of mass spectrometry-based metabolomics in herbal medicines and its active ingredients: current evidence. Mass Spectrom Rev. [Epub ahead of print] PubMed

Wang Y., Li Z., Zhou Y., Cao J., Zhang H., Gong H., et al. (2016). Specific histamine binding activity of a new lipocalin from Hyalomma asiaticum (Ixodidae) and therapeutic effects on allergic asthma in mice. Parasit. Vectors 9:506. 10.1186/s13071-016-1790-0 PubMed DOI PMC

Weston-Davies W., Couillin I., Schnyder S., Schnyder B., Moser R., Lissina O., et al. (2005). Arthropod-derived protein EV131 inhibits histamine action and allergic asthma. Ann. N. Y. Acad. Sci. 1056 189–196. 10.1196/annals.1352.009 PubMed DOI

Whisstock J. C., Silverman G. A., Bird P. I., Bottomley S. P., Kaiserman D., Luke C. J., et al. (2010). Serpins flex their muscle: II. Structural insights into target peptidase recognition, polymerization, and transport functions. J. Biol. Chem. 285 24307–24312. 10.1074/jbc.R110.141408 PubMed DOI PMC

Wikel S. (2013). Ticks and tick-borne pathogens at the cutaneous interface: host defenses, tick countermeasures, and a suitable environment for pathogen establishment. Front. Microbiol. 4:337. 10.3389/fmicb.2013.00337 PubMed DOI PMC

Wikel S. K. (1982). Influence of Dermacentor andersoni infestation on lymphocyte responsiveness to mitogens. Ann. Trop Med. Parasitol. 76 627–632. 10.1080/00034983.1982.11687593 PubMed DOI

Xu X. L., Cheng T. Y., Yang H., Yan F., Yang Y. (2015). De novo sequencing, assembly and analysis of salivary gland transcriptome of Haemaphysalis flava and identification of sialoprotein genes. Infect. Genet. Evol. 32 135–142. 10.1016/j.meegid.2015.03.010 PubMed DOI

Yu X., Gong H., Zhou Y., Zhang H., Cao J., Zhou J. (2015). Differential sialotranscriptomes of unfed and fed Rhipicephalus haemaphysaloides, with particular regard to differentially expressed genes of cysteine proteases. Parasit. Vectors 8:597. 10.1186/s13071-015-1213-7 PubMed DOI PMC

Zhou W., Wang Y., Lu A., Zhang G. (2016). Systems pharmacology in small molecular drug discovery. Int. J. Mol. Sci. 17:246. 10.3390/ijms17020246 PubMed DOI PMC

Zhou Y. F., Eng E. T., Zhu J., Lu C., Walz T., Springer T. A. (2012). Sequence and structure relationships within von Willebrand factor. Blood 120 449–458. 10.1182/blood-2012-01-405134 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Tick cysteine protease inhibitors suppress immune responses in mannan-induced psoriasis-like inflammation

. 2024 ; 15 () : 1344878. [epub] 20240220

Iripin-1, a new anti-inflammatory tick serpin, inhibits leukocyte recruitment in vivo while altering the levels of chemokines and adhesion molecules

. 2023 ; 14 () : 1116324. [epub] 20230123

Serpins in Tick Physiology and Tick-Host Interaction

. 2022 ; 12 () : 892770. [epub] 20220519

Lyme disease transmission by severely impaired ticks

. 2022 Feb ; 12 (2) : 210244. [epub] 20220216

rDromaserpin: A Novel Anti-Hemostatic Serpin, from the Salivary Glands of the Hard Tick Hyalomma dromedarii

. 2021 Dec 20 ; 13 (12) : . [epub] 20211220

Probing an Ixodes ricinus salivary gland yeast surface display with tick-exposed human sera to identify novel candidates for an anti-tick vaccine

. 2021 Aug 03 ; 11 (1) : 15745. [epub] 20210803

Iripin-3, a New Salivary Protein Isolated From Ixodes ricinus Ticks, Displays Immunomodulatory and Anti-Hemostatic Properties In Vitro

. 2021 ; 12 () : 626200. [epub] 20210301

A combined transcriptomic approach to identify candidates for an anti-tick vaccine blocking B. afzelii transmission

. 2020 Nov 18 ; 10 (1) : 20061. [epub] 20201118

Tick Salivary Compounds for Targeted Immunomodulatory Therapy

. 2020 ; 11 () : 583845. [epub] 20200923

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...