rDromaserpin: A Novel Anti-Hemostatic Serpin, from the Salivary Glands of the Hard Tick Hyalomma dromedarii
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34941750
PubMed Central
PMC8703697
DOI
10.3390/toxins13120913
PII: toxins13120913
Knihovny.cz E-zdroje
- Klíčová slova
- Hyalomma dromedarii, anticoagulants, salivary glands, serpin, thrombin inhibitor,
- MeSH
- antikoagulancia chemie metabolismus MeSH
- fylogeneze MeSH
- hemokoagulace účinky léků MeSH
- Ixodidae metabolismus MeSH
- konformace proteinů MeSH
- molekulární modely MeSH
- počítačová simulace MeSH
- sekvence aminokyselin MeSH
- serpiny chemie metabolismus farmakologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antikoagulancia MeSH
- serpiny MeSH
Hemostatic disorders are caused either by platelet-related dysfunctions, defective blood coagulation, or by a combination of both, leading to an increased susceptibility to cardiovascular diseases (CVD) and other related illnesses. The unique specificity of anticoagulants from hematophagous arthropods, such as ticks, suggests that tick saliva holds great promise for discovering new treatments for these life-threatening diseases. In this study, we combined in silico and in vitro analyses to characterize the first recombinant serpin, herein called Dromaserpin, from the sialotranscriptome of the Hyalomma dromedarii tick. Our in silico data described Dromaserpin as a secreted protein of ~43 kDa with high similarities to previously characterized inhibitory serpins. The recombinant protein (rDromaserpin) was obtained as a well-structured monomer, which was tested using global blood coagulation and platelet aggregation assays. With this approach, we confirmed rDromaserpin anticoagulant activity as it significantly delayed plasma clotting in activated partial thromboplastin time and thrombin time assays. The profiling of proteolytic activity shows its capacity to inhibit thrombin in the micromolar range (0.2 to 1 μM) and in the presence of heparin this inhibition was clearly increased. It was also able to inhibit Kallikrein, FXIa and slightly FXIIa, with no significant effect on other factors. In addition, the rDromaserpin inhibited thrombin-induced platelet aggregation. Taken together, our data suggest that rDromaserpin deserves to be further investigated as a potential candidate for developing therapeutic compounds targeting disorders related to blood clotting and/or platelet aggregation.
Centre of Excellence in New Target Discovery Butantan Institute Butantã São Paulo 05503 900 Brazil
Laboratory of Bacteriology Butantan Institute São Paulo 05503 900 Brazil
Zobrazit více v PubMed
The World Health Organization Web Site. [(accessed on 17 September 2020)]. Available online: https://www.who.int/health-topics/cardiovascular-diseases/#tab=tab_1.
Stoney C.M., Kaufmann P.G., Czajkowski S.M. Cardiovascular disease: Psychological, social, and behavioral influences: Introduction to the special issue. Am. Psychol. 2018;73:949–954. doi: 10.1037/amp0000359. PubMed DOI
Chang J.C. Hemostasis based on a bovel “two-path unifying theory” and classification of hemostatic disorders. Blood Coagul. Fibrinolysis. 2018;29:573–584. doi: 10.1097/MBC.0000000000000765. PubMed DOI
Ogedegbe H.O. An overview of hemostasis. Lab. Med. 2002;33:948–953. doi: 10.1309/50UQ-GUPF-W6XW-1X7B. DOI
Versteeg H.H., Heemskerk J.W.M., Levi M., Reitsma P.H. New fundamentals in hemostasis. Physiol. Rev. 2013;93:327–358. doi: 10.1152/physrev.00016.2011. PubMed DOI
Mussbacher M., Kral-Pointner J.B., Salzmann M., Schrottmaier W.C., Assinger A. Mechanisms of hemostasis: Contributions of platelets, coagulation factors, and the vessel wall. In: Geiger M., editor. Fundamentals of Vascular Biology. Springer International Publishing; Cham, Switzerland: 2019. pp. 145–169. (Learning Materials in Biosciences).
Page M.J., Macgillivray R.T.A., Di Cera E. Determinants of specificity in coagulation proteases. J. Thromb. Haemost. 2005;3:2401–2408. doi: 10.1111/j.1538-7836.2005.01456.x. PubMed DOI
Gettins P.G.W. Serpin structure, mechanism, and function. Chem. Rev. 2002;102:4751–4804. doi: 10.1021/cr010170+. PubMed DOI
Crawley J.T.B., Zanardelli S., Chion C.K.N.K., Lane D.A. The central role of thrombin in hemostasis. J. Thromb. Haemost. 2007;5((Suppl. S1)):95–101. doi: 10.1111/j.1538-7836.2007.02500.x. PubMed DOI
Siller-Matula J.M., Schwameis M., Blann A., Mannhalter C., Jilma B. Thrombin as a multi-functional enzyme. Focus on in vitro and in vivo effects. Thromb. Haemost. 2011;106:1020–1033. doi: 10.1160/TH10-11-0711. PubMed DOI
Mega J.L., Simon T. Pharmacology of antithrombotic drugs: An assessment of oral antiplatelet and anticoagulant treatments. Lancet. 2015;386:281–291. doi: 10.1016/S0140-6736(15)60243-4. PubMed DOI
Tang N., Bai H., Chen X., Gong J., Li D., Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J. Thromb. Haemost. 2020;18:1094–1099. doi: 10.1111/jth.14817. PubMed DOI PMC
Koehn F.E., Carter G.T. The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov. 2005;4:206–220. doi: 10.1038/nrd1657. PubMed DOI
Carvalhal F., Cristelo R.R., Resende D.I.S.P., Pinto M.M.M., Sousa E., Correia-da-Silva M. Antithrombotics from the sea: Polysaccharides and beyond. Mar. Drugs. 2019;17:170. doi: 10.3390/md17030170. PubMed DOI PMC
Lucas A., Yaron J.R., Zhang L., Ambadapadi S. Overview of serpins and their roles in biological systems. Methods Mol. Biol. 2018;1826:1–7. doi: 10.1007/978-1-4939-8645-3_1. PubMed DOI
Lucas A., Yaron J.R., Zhang L., Macaulay C., McFadden G. Serpins: Development for therapeutic applications. Methods Mol. Biol. 2018;1826:255–265. doi: 10.1007/978-1-4939-8645-3_17. PubMed DOI
Van Gent D., Sharp P., Morgan K., Kalsheker N. Serpins: Structure, Function and Molecular Evolution. Int. J. Biochem. Cell Biol. 2003;35:1536–1547. doi: 10.1016/S1357-2725(03)00134-1. PubMed DOI
Stein P.E., Leslie A.G., Finch J.T., Carrell R.W. Crystal structure of uncleaved ovalbumin at 1.95 A Resolution. J. Mol. Biol. 1991;221:941–959. doi: 10.1016/0022-2836(91)80185-W. PubMed DOI
Engh R., Löbermann H., Schneider M., Wiegand G., Huber R., Laurell C.B. The S variant of human alpha 1-antitrypsin, structure and implications for function and metabolism. Protein Eng. 1989;2:407–415. doi: 10.1093/protein/2.6.407. PubMed DOI
Skinner R., Abrahams J.P., Whisstock J.C., Lesk A.M., Carrell R.W., Wardell M.R. The 2.6 A structure of antithrombin indicates a conformational change at the heparin binding site. J. Mol. Biol. 1997;266:601–609. doi: 10.1006/jmbi.1996.0798. PubMed DOI
Tucker H.M., Mottonen J., Goldsmith E.J., Gerard R.D. Engineering of plasminogen activator inhibitor-1 to reduce the rate of latency tansition. Nat. Struct. Biol. 1995;2:442–445. doi: 10.1038/nsb0695-442. PubMed DOI
Chen H., Davids J.A., Zheng D., Bryant M., Bot I., Van Berckel T.J.C., Biessen E., Pepine C., Ryman K., Progulski-Fox A., et al. The serpin solution; targeting thrombotic and thrombolytic serine proteases in inflammation. Cardiovasc. Hematol. Disord. Drug Targets. 2013;13:99–110. doi: 10.2174/1871529X11313020003. PubMed DOI
Irving J.A., Ekeowa U.I., Belorgey D., Haq I., Gooptu B., Miranda E., Pérez J., Roussel B.D., Ordóñez A., Dalton L.E., et al. The serpinopathies studying serpin polymerization in vivo. Meth. Enzymol. 2011;501:421–466. doi: 10.1016/B978-0-12-385950-1.00018-3. PubMed DOI
Rau J.C., Beaulieu L.M., Huntington J.A., Church F.C. Serpins in thrombosis, hemostasis and fibrinolysis. J. Thromb. Haemost. 2007;5((Suppl. S1)):102–115. doi: 10.1111/j.1538-7836.2007.02516.x. PubMed DOI PMC
Bang N.U. Leeches, snakes, ticks, and vampire bats in today’s cardiovascular drug development. Circulation. 1991;84:436–438. doi: 10.1161/01.CIR.84.1.436. PubMed DOI
Jmel M.A., Aounallah H., Bensaoud C., Mekki I., Chmelař J., Faria F., M’ghirbi Y., Kotsyfakis M. Insights into the role of tick salivary protease inhibitors during ectoparasite-host crosstalk. Int. J. Mol. Sci. 2021;22:892. doi: 10.3390/ijms22020892. PubMed DOI PMC
Chmelař J., Kotál J., Kovaříková A., Kotsyfakis M. The use of tick salivary proteins as novel therapeutics. Front. Physiol. 2019;10:812. doi: 10.3389/fphys.2019.00812. PubMed DOI PMC
Chmelař J., Kotál J., Langhansová H., Kotsyfakis M. Protease inhibitors in tick saliva: The role of serpins and cystatins in tick-host-pathogen interaction. Front. Cell Infect. Microbiol. 2017;7:216. doi: 10.3389/fcimb.2017.00216. PubMed DOI PMC
Irving J.A., Pike R.N., Lesk A.M., Whisstock J.C. Phylogeny of the serpin superfamily: Implications of patterns of amino acid conservation for structure and function. Genome Res. 2000;10:1845–1864. doi: 10.1101/gr.147800. PubMed DOI
Schechter I., Berger A. On the size of the active site in proteases. I. Papain. 1967. Biochem. Biophys. Res. Commun. 2012;425:497–502. doi: 10.1016/j.bbrc.2012.08.015. PubMed DOI
Nguyen K.D., Pan Y. A knowledge-based multiple-sequence alignment algorithm. IEEE/ACM Trans. Comput. Biol. Bioinform. 2013;10:884–896. doi: 10.1109/TCBB.2013.102. PubMed DOI
Yu Y., Cao J., Zhou Y., Zhang H., Zhou J. Isolation and characterization of two novel serpins from the tick Rhipicephalus haemaphysaloides. Ticks Tick Borne Dis. 2013;4:297–303. doi: 10.1016/j.ttbdis.2013.02.001. PubMed DOI
Kumar S., Stecher G., Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016;33:1870–1874. doi: 10.1093/molbev/msw054. PubMed DOI PMC
Tirloni L., Seixas A., Mulenga A., Vaz I.d.S., Termignoni C. A Family of serine protease inhibitors (serpins) in the cattle tick Rhipicephalus (boophilus) microplus. Exp. Parasitol. 2014;137:25–34. doi: 10.1016/j.exppara.2013.12.001. PubMed DOI
Martin S.R., Schilstra M.J. Circular dichroism and its application to the study of biomolecules. Methods Cell Biol. 2008;84:263–293. doi: 10.1016/S0091-679X(07)84010-6. PubMed DOI
Sanrattana W., Maas C., De Maat S. SERPINs—From trap to treatment. Front. Med. 2019;6:25. doi: 10.3389/fmed.2019.00025. PubMed DOI PMC
Ng V.L. Prothrombin time and partial thromboplastin time assay considerations. Clin. Lab. Med. 2009;29:253–263. doi: 10.1016/j.cll.2009.05.002. PubMed DOI
Higgins W.J., Fox D.M., Kowalski P.S., Nielsen J.E., Worrall D.M. Heparin enhances serpin inhibition of the cysteine protease cathepsin L. J. Biol. Chem. 2010;285:3722–3729. doi: 10.1074/jbc.M109.037358. PubMed DOI PMC
Chmelar J., Calvo E., Pedra J.H.F., Francischetti I.M.B., Kotsyfakis M. Tick salivary secretion as a source of antihemostatics. J. Proteom. 2012;75:3842–3854. doi: 10.1016/j.jprot.2012.04.026. PubMed DOI PMC
Bensaoud C., Aounallah H., Sciani J.M., Faria F., Chudzinski-Tavassi A.M., Bouattour A., M’ghirbi Y. Proteomic informed by transcriptomic for salivary glands components of the camel tick Hyalomma dromedarii. BMC Genom. 2019;20:675. doi: 10.1186/s12864-019-6042-1. PubMed DOI PMC
Bensaoud C., Nishiyama M.Y., Ben Hamda C., Lichtenstein F., Castro de Oliveira U., Faria F., Loiola Meirelles Junqueira-de-Azevedo I., Ghedira K., Bouattour A., M’Ghirbi Y., et al. De novo assembly and annotation of Hyalomma dromedarii Tick (Acari: Ixodidae) sialotranscriptome with regard to gender differences in gene expression. Parasit. Vectors. 2018;11:314. doi: 10.1186/s13071-018-2874-9. PubMed DOI PMC
Schussler G.C. The thyroxine-binding proteins. Thyroid. 2000;10:141–149. doi: 10.1089/thy.2000.10.141. PubMed DOI
Simard M., Underhill C., Hammond G.L. Functional implications of corticosteroid-binding globulin N-glycosylation. J. Mol. Endocrinol. 2018;60:71–84. doi: 10.1530/JME-17-0234. PubMed DOI PMC
Polderdijk S.G.I., Huntington J.A. Identification of serpins specific for activated protein C using a lysate-based screening assay. Sci. Rep. 2018;8:8793. doi: 10.1038/s41598-018-27067-z. PubMed DOI PMC
Roberts T.H., Hejgaard J., Saunders N.F.W., Cavicchioli R., Curmi P.M.G. Serpins in unicellular eukarya, archaea, and bacteria: Sequence analysis and evolution. J. Mol. Evol. 2004;59:437–447. doi: 10.1007/s00239-004-2635-6. PubMed DOI
Kim T.K., Radulovic Z., Mulenga A. Target validation of highly conserved Amblyomma americanum tick saliva serine protease inhibitor 19. Ticks Tick Borne Dis. 2016;7:405–414. doi: 10.1016/j.ttbdis.2015.12.017. PubMed DOI PMC
Wang F., Song Z., Chen J., Wu Q., Zhou X., Ni X., Dai J. The immunosuppressive functions of two novel tick serpins, HlSerpin-a and HlSerpin-b, from Haemaphysalis longicornis. Immunology. 2019;159:109–120. doi: 10.1111/imm.13130. PubMed DOI PMC
Mahon B.P., Ambadapadi S., Yaron J.R., Lomelino C.L., Pinard M.A., Keinan S., Kurnikov I., Macaulay C., Zhang L., Reeves W., et al. Crystal structure of cleaved Serp-1, a Myxomavirus-derived immune modulating serpin: Structural design of serpin reactive center loop peptides with improved therapeutic function. Biochemistry. 2018;57:1096–1107. doi: 10.1021/acs.biochem.7b01171. PubMed DOI
Pongprayoon P., Niramitranon J., Kaewhom P., Kaewmongkol S., Suwan E., Stich R.W., Jittapalapong S. Dynamic and structural insights into tick serpin from Ixodes ricinus. J. Biomol. Struct. Dyn. 2019;38:2296–2303. doi: 10.1080/07391102.2019.1630003. PubMed DOI
Chmelar J., Oliveira C.J., Rezacova P., Francischetti I.M.B., Kovarova Z., Pejler G., Kopacek P., Ribeiro J.M.C., Mares M., Kopecky J., et al. A Tick salivary protein targets cathepsin G and chymase and inhibits host inflammation and platelet aggregation. Blood. 2011;117:736–744. doi: 10.1182/blood-2010-06-293241. PubMed DOI PMC
Kovářová Z., Chmelař J., Sanda M., Brynda J., Mareš M., Rezáčová P. Crystallization and diffraction analysis of the serpin IRS-2 from the hard tick Ixodes ricinus. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2010;66:1453–1457. doi: 10.1107/S1744309110032343. PubMed DOI PMC
Meekins D.A., Kanost M.R., Michel K. Serpins in arthropod biology. Semin. Cell Dev. Biol. 2017;62:105–119. doi: 10.1016/j.semcdb.2016.09.001. PubMed DOI PMC
Smith S.A. The Cell-based model of coagulation. J. Vet. Emerg. Crit. Care. 2009;19:3–10. doi: 10.1111/j.1476-4431.2009.00389.x. PubMed DOI
Ibrahim M.A., Masoud H.M.M. Thrombin inhibitor from the salivary gland of the camel Tick Hyalomma dromedarii. Exp. Appl. Acarol. 2018;74:85–97. doi: 10.1007/s10493-017-0196-9. PubMed DOI
Francischetti I.M.B., Sa-Nunes A., Mans B.J., Santos I.M., Ribeiro J.M.C. The role of saliva in tick feeding. Front. Biosci. 2009;14:2051–2088. doi: 10.2741/3363. PubMed DOI PMC
Rumbaut R.E., Thiagarajan P. Platelet Aggregation. Morgan & Claypool Life Sciences, Texas Medical Center; Houston, TX, USA: 2010. PubMed
Davì G., Patrono C. Platelet activation and atherothrombosis. N. Engl. J. Med. 2007;357:2482–2494. doi: 10.1056/NEJMra071014. PubMed DOI
Furman M.I., Liu L., Benoit S.E., Becker R.C., Barnard M.R., Michelson A.D. The cleaved peptide of the thrombin receptor is a strong platelet agonist. Proc. Natl. Acad. Sci. USA. 1998;95:3082–3087. doi: 10.1073/pnas.95.6.3082. PubMed DOI PMC
Al Ghumlas A.K., Gader A.G.M.A. Characterization of the aggregation responses of camel platelets. Vet. Clin. Pathol. 2013;42:307–313. doi: 10.1111/vcp.12062. PubMed DOI
Abdel Gader A.G.M., Al Momen A.K.M., Alhaider A., Brooks M.B., Catalfamo J.L., Al Haidary A.A., Hussain M.F. Clotting factor VIII (FVIII) and thrombin generation in camel plasma: A comparative study with humans. Can. J. Vet. Res. 2013;77:150–157. PubMed PMC
Schechter N.M., Plotnick M.I. Measurement of the kinetic parameters mediating protease-serpin inhibition. Methods. 2004;32:159–168. doi: 10.1016/S1046-2023(03)00207-X. PubMed DOI
Gray E., Hogwood J., Mulloy B. Heparin—A Century of Progress. Springer; Berlin/Heidelberg, Germany: 2012. The anticoagulant and antithrombotic mechanisms of heparin; pp. 43–61. PubMed DOI
Varki A., Cummings R.D., Esko J.D., Freeze H.H., Stanley P., Bertozzi C.R., Hart G.W., Etzler M.E. Essentials of Glycobiology. 2nd ed. Cold Spring Harbor Laboratory Press; Woodbury, NY, USA: 2009. 784p PubMed
Forster M., Mulloy B. Computational approaches to the identification of heparin-binding sites on the surfaces of proteins. Biochem. Soc. Trans. 2006;34:431–434. doi: 10.1042/BST0340431. PubMed DOI
Handel T.M., Johnson Z., Crown S.E., Lau E.K., Sweeney M., Proudfoot A.E. Regulation of protein function by glycosaminoglycans—As exemplified by chemokines. Annu. Rev. Biochem. 2005;74:385–410. doi: 10.1146/annurev.biochem.72.121801.161747. PubMed DOI
Fromm J.R., Hileman R.E., Caldwell E.E.O., Weiler J.M., Linhardt R.J. Pattern and spacing of basic amino acids in heparin binding sites. Arch. Biochem. Biophys. 1997;343:92–100. doi: 10.1006/abbi.1997.0147. PubMed DOI
Li W., Huntington J.A. Crystal structures of protease Nexin-1 in complex with heparin and thrombin suggest a 2-Step recognition mechanism. Blood. 2012;120:459–467. doi: 10.1182/blood-2012-03-415869. PubMed DOI
Li W., Johnson D.J.D., Esmon C.T., Huntington J.A. Structure of the antithrombin-thrombin-heparin ternary complex reveals the antithrombotic mechanism of heparin. Nat. Struct. Mol. Biol. 2004;11:857–862. doi: 10.1038/nsmb811. PubMed DOI
Jones D.T., Taylor W.R., Thornton J.M. The Rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. 1992;8:275–282. doi: 10.1093/bioinformatics/8.3.275. PubMed DOI
Batista I.F.C., Ramos O.H.P., Ventura J.S., Junqueira-de-Azevedo I.L.M., Ho P.L., Chudzinski-Tavassi A.M. A new Factor Xa inhibitor from Amblyomma cajennense with a Unique Domain Composition. Arch. Biochem. Biophys. 2010;493:151–156. doi: 10.1016/j.abb.2009.10.009. PubMed DOI
Bock S.C., Wion K.L., Vehar G.A., Lawn R.M. Cloning and Expression of the cDNA for Human Antithrombin III. Nucleic Acids Res. 1982;10:8113–8125. doi: 10.1093/nar/10.24.8113. PubMed DOI PMC
Mulenga A., Khumthong R., Blandon M.A. Molecular and Expression Analysis of a Family of the Amblyomma americanum Tick Lospins. J. Exp. Biol. 2007;210:3188–3198. doi: 10.1242/jeb.006494. PubMed DOI
Porter L., Radulović Ž., Kim T., Braz G.R.C., Da Silva Vaz I., Mulenga A. Bioinformatic Analyses of Male and Female Amblyomma americanum Tick Expressed Serine Protease Inhibitors (Serpins) Ticks Tick Borne Dis. 2015;6:16–30. doi: 10.1016/j.ttbdis.2014.08.002. PubMed DOI PMC
Imamura S., Da Silva Vaz Junior I., Sugino M., Ohashi K., Onuma M. A Serine Protease Inhibitor (Serpin) from Haemaphysalis longicornis as an Anti-Tick Vaccine. Vaccine. 2005;23:1301–1311. doi: 10.1016/j.vaccine.2004.08.041. PubMed DOI
Chlastáková A., Kotál J., Beránková Z., Kaščáková B., Martins L.A., Langhansová H., Prudnikova T., Ederová M., Kutá Smatanová I., Kotsyfakis M., et al. Iripin-3, a New Salivary Protein Isolated From Ixodes ricinus Ticks, Displays Immunomodulatory and Anti-Hemostatic Properties In Vitro. Front. Immunol. 2021;12:626200. doi: 10.3389/fimmu.2021.626200. PubMed DOI PMC
Schwarz A., Von Reumont B.M., Erhart J., Chagas A.C., Ribeiro J.M.C., Kotsyfakis M. De Novo Ixodes ricinus Salivary Gland Transcriptome Analysis Using Two Next-Generation Sequencing Methodologies. FASEB J. 2013;27:4745–4756. doi: 10.1096/fj.13-232140. PubMed DOI PMC
Ibelli A.M.G., Kim T.K., Hill C.C., Lewis L.A., Bakshi M., Miller S., Porter L., Mulenga A. A Blood Meal-Induced Ixodes scapularis Tick Saliva Serpin Inhibits Trypsin and Thrombin, and Interferes with Platelet Aggregation and Blood Clotting. Int. J. Parasitol. 2014;44:369–379. doi: 10.1016/j.ijpara.2014.01.010. PubMed DOI PMC
Mulenga A., Tsuda A., Onuma M., Sugimoto C. Four Serine Proteinase Inhibitors (Serpin) from the Brown Ear Tick, Rhiphicephalus appendiculatus; cDNA Cloning and Preliminary Characterization. Insect Biochem. Mol. Biol. 2003;33:267–276. doi: 10.1016/S0965-1748(02)00240-0. PubMed DOI