Insights into the Role of Tick Salivary Protease Inhibitors during Ectoparasite-Host Crosstalk
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
19-382 07247S
Grantová Agentura České Republiky
PubMed
33477394
PubMed Central
PMC7831016
DOI
10.3390/ijms22020892
PII: ijms22020892
Knihovny.cz E-zdroje
- Klíčová slova
- drug discovery, protease inhibitors, proteases, tick saliva,
- MeSH
- inhibitory proteas izolace a purifikace terapeutické užití MeSH
- interakce hostitele a parazita genetika imunologie MeSH
- klíšťata metabolismus MeSH
- lidé MeSH
- slinné žlázy metabolismus MeSH
- sliny chemie metabolismus MeSH
- transkriptom genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- inhibitory proteas MeSH
Protease inhibitors (PIs) are ubiquitous regulatory proteins present in all kingdoms. They play crucial tasks in controlling biological processes directed by proteases which, if not tightly regulated, can damage the host organism. PIs can be classified according to their targeted proteases or their mechanism of action. The functions of many PIs have now been characterized and are showing clinical relevance for the treatment of human diseases such as arthritis, hepatitis, cancer, AIDS, and cardiovascular diseases, amongst others. Other PIs have potential use in agriculture as insecticides, anti-fungal, and antibacterial agents. PIs from tick salivary glands are special due to their pharmacological properties and their high specificity, selectivity, and affinity to their target proteases at the tick-host interface. In this review, we discuss the structure and function of PIs in general and those PI superfamilies abundant in tick salivary glands to illustrate their possible practical applications. In doing so, we describe tick salivary PIs that are showing promise as drug candidates, highlighting the most promising ones tested in vivo and which are now progressing to preclinical and clinical trials.
Zobrazit více v PubMed
Hartl M., Giri A.P., Kaur H., Baldwin I.T. The multiple functions of plant serine protease inhibitors: Defense against herbivores and beyond. Plant Signal. Behav. 2011;6:1009–1011. doi: 10.4161/psb.6.7.15504. PubMed DOI PMC
Craik D.J., Fairlie D.P., Liras S., Price D. The future of peptide-based drugs. Chem. Biol. Drug Des. 2013;81:136–147. doi: 10.1111/cbdd.12055. PubMed DOI
Shamsi T.N., Parveen R., Fatima S. Characterization, biomedical and agricultural applications of protease inhibitors: A review. Int. J. Biol. Macromol. 2016;91:1120–1133. doi: 10.1016/j.ijbiomac.2016.02.069. PubMed DOI
Harish B.S., Uppuluri K.B. Microbial serine protease inhibitors and their therapeutic applications. Int. J. Biol. Macromol. 2018;107:1373–1387. doi: 10.1016/j.ijbiomac.2017.09.115. PubMed DOI
Dunaevsky Y.E., Popova V.V., Semenova T.A., Beliakova G.A., Belozersky M.A. Fungal inhibitors of proteolytic enzymes: Classification, properties, possible biological roles, and perspectives for practical use. Biochimie. 2014;101:10–20. doi: 10.1016/j.biochi.2013.12.007. PubMed DOI
Sabotic J., Kos J. Microbial and fungal protease inhibitors—Current and potential applications. Appl. Microbiol. Biotechnol. 2012;93:1351–1375. doi: 10.1007/s00253-011-3834-x. PubMed DOI PMC
Oliva M.L., Sampaio M.U. Action of plant proteinase inhibitors on enzymes of physiopathological importance. An. Acad. Bras. Cienc. 2009;81:615–621. doi: 10.1590/S0001-37652009000300023. PubMed DOI
Gagaoua M., Hafid K., Boudida Y., Becila S., Ouali A., Picard B., Boudjellal A., Sentandreu M.A. Caspases and Thrombin Activity Regulation by Specific Serpin Inhibitors in Bovine Skeletal Muscle. Appl. Biochem. Biotechnol. 2015;177:279–303. doi: 10.1007/s12010-015-1762-4. PubMed DOI
Doljak B., Cateni F., Anderluh M., Procida G., Zilic J., Zacchigna M. Glycerolipids as selective thrombin inhibitors from the fungus Stereum hirsutum. Drug Dev. Ind. Pharm. 2006;32:635–643. doi: 10.1080/03639040500530026. PubMed DOI
Overall C.M., Blobel C.P. In search of partners: Linking extracellular proteases to substrates. Nat. Rev. Mol. Cell Biol. 2007;8:245–257. doi: 10.1038/nrm2120. PubMed DOI
Stibraniova I., Bartikova P., Holikova V., Kazimirova M. Deciphering Biological Processes at the Tick-Host Interface Opens New Strategies for Treatment of Human Diseases. Front. Physiol. 2019;10 doi: 10.3389/fphys.2019.00830. PubMed DOI PMC
Chmelar J., Kotal J., Langhansova H., Kotsyfakis M. Protease Inhibitors in Tick Saliva: The Role of Serpins and Cystatins in Tick-host-Pathogen Interaction. Front. Cell. Infect. Microbiol. 2017;7:216. doi: 10.3389/fcimb.2017.00216. PubMed DOI PMC
Rawlings N.D., Alan J., Thomas P.D., Huang X.D., Bateman A., Finn R.D. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018;46:D624–D632. doi: 10.1093/nar/gkx1134. PubMed DOI PMC
Laskowski M., Kato I. Protein Inhibitors of Proteinases. Annu. Rev. Biochem. 1980;49:593–626. doi: 10.1146/annurev.bi.49.070180.003113. PubMed DOI
Rawlings N.D., Tolle D.P., Barrett A.J. Evolutionary families of peptidase inhibitors. Biochem. J. 2004;378:705–716. doi: 10.1042/bj20031825. PubMed DOI PMC
Jacobson A.R., Adler M., Silvaggi N.R., Allen K.N., Smith G.M., Fredenburg R.A., Stein R.L., Park J.B., Feng X.C., Shoemaker C.B., et al. Small molecule metalloprotease inhibitor with in vitro, ex vivo and in vivo efficacy against botulinum neurotoxin serotype A. Toxicon Off. J. Int. Soc. Toxinol. 2017;137:36–47. doi: 10.1016/j.toxicon.2017.06.016. PubMed DOI PMC
Page M.J., Di Cera E. Serine peptidases: Classification, structure and function. Cell. Mol. Life Sci. 2008;65:1220–1236. doi: 10.1007/s00018-008-7565-9. PubMed DOI PMC
Billinger E., Zuo S.S., Johansson G. Characterization of Serine Protease Inhibitor from Solanum tuberosum Conjugated to Soluble Dextran and Particle Carriers. ACS Omega. 2019;4:18456–18464. doi: 10.1021/acsomega.9b02815. PubMed DOI PMC
Durvanger Z., Boros E., Hegedus R., Dobo J., Kocsis A., Fodor K., Gal P., Mezo G., Pal G., Harmat V., et al. Studying the Structural Basis for Selectivity in Complexes of Peptide Inhibitors and Serine-Proteases of the Complement System. Acta. Crystallogr. A. 2019;75:E120. doi: 10.1107/S2053273319094361. DOI
Shi Y.H., Shao Y.N., Lv Z.M., Li C.H. Serpin-type serine protease inhibitor mediates coelomocyte apoptosis in Apostichopus japonicus. Fish Shellfish Immunol. 2020;104:410–418. doi: 10.1016/j.fsi.2020.06.006. PubMed DOI
Wei X.M., Xu J., Yang J.M., Liu X.Q., Zhang R.R., Wang W.J., Yang J.L. Involvement of a Serpin serine protease inhibitor (OoSerpin) from mollusc Octopus ocellatus in antibacterial response. Fish Shellfish Immunol. 2015;42:79–87. doi: 10.1016/j.fsi.2014.10.028. PubMed DOI
Gettins P.G.W. Serpin structure, mechanism, and function. Chem. Rev. 2002;102:4751–4803. doi: 10.1021/cr010170+. PubMed DOI
Hellinger R., Gruber C.W. Peptide-based protease inhibitors from plants. Drug Discov. Today. 2019;24:1877–1889. doi: 10.1016/j.drudis.2019.05.026. PubMed DOI PMC
Huntington J.A. Serpin structure, function and dysfunction. J. Thromb. Haemost. 2011;9:26–34. doi: 10.1111/j.1538-7836.2011.04360.x. PubMed DOI
Turk B., Turk D., Turk V. Protease signalling: The cutting edge. EMBO J. 2012;31:1630–1643. doi: 10.1038/emboj.2012.42. PubMed DOI PMC
Bendre A.D., Ramasamy S., Suresh C.G. Analysis of Kunitz inhibitors from plants for comprehensive structural and functional insights. Int. J. Biol. Macromol. 2018;113:933–943. doi: 10.1016/j.ijbiomac.2018.02.148. PubMed DOI
Blisnick A.A., Foulon T., Bonnet S.I. Serine Protease Inhibitors in Ticks: An Overview of Their Role in Tick Biology and Tick-Borne Pathogen Transmission. Front. Cell. Infect. Microbiol. 2017;7:199. doi: 10.3389/fcimb.2017.00199. PubMed DOI PMC
Gomes M.T., Oliva M.L., Lopes M.T., Salas C.E. Plant proteinases and inhibitors: An overview of biological function and pharmacological activity. Curr. Protein Pept. Sci. 2011;12:417–436. doi: 10.2174/138920311796391089. PubMed DOI
Yang X., van der Donk W.A. Ribosomally synthesized and post-translationally modified peptide natural products: New insights into the role of leader and core peptides during biosynthesis. Chemistry. 2013;19:7662–7677. doi: 10.1002/chem.201300401. PubMed DOI PMC
Armstrong W.B., Taylor T.H., Kennedy A.R., Melrose R.J., Messadi D.V., Gu M., Le A.D., Perloff M., Civantos F., Goodwin W.J., et al. Bowman birk inhibitor concentrate and oral leukoplakia: A randomized phase IIb trial. Cancer Prev. Res. 2013;6:410–418. doi: 10.1158/1940-6207.CAPR-13-0004. PubMed DOI PMC
Dai H., Ciric B., Zhang G.X., Rostami A. Bowman-Birk Inhibitor attenuates experimental autoimmune encephalomyelitis by delaying infiltration of inflammatory cells into the CNS. Immunol. Res. 2011;51:145–152. doi: 10.1007/s12026-011-8254-6. PubMed DOI PMC
Safavi F., Rostami A. Role of serine proteases in inflammation: Bowman-Birk protease inhibitor (BBI) as a potential therapy for autoimmune diseases. Exp. Mol. Pathol. 2012;93:428–433. doi: 10.1016/j.yexmp.2012.09.014. PubMed DOI
Palavalli M.H., Natarajan S.S., Wang T.T., Krishnan H.B. Imbibition of soybean seeds in warm water results in the release of copious amounts of Bowman-Birk protease inhibitor, a putative anticarcinogenic agent. J. Agric. Food Chem. 2012;60:3135–3143. doi: 10.1021/jf205308w. PubMed DOI
Zajc I., Sever N., Bervar A., Lah T.T. Expression of cysteine peptidase cathepsin L and its inhibitors stefins A and B in relation to tumorigenicity of breast cancer cell lines. Cancer Lett. 2002;187:185–190. doi: 10.1016/S0304-3835(02)00452-4. PubMed DOI
Martins L.A., Kotal J., Bensaoud C., Chmelar J., Kotsyfakis M. Small protease inhibitors in tick saliva and salivary glands and their role in tick-host-pathogen interactions. Biochim. Biophys. Acta Proteins Proteom. 2020;1868:140336. doi: 10.1016/j.bbapap.2019.140336. PubMed DOI
Srikanth S., Chen Z. Plant Protease Inhibitors in Therapeutics-Focus on Cancer Therapy. Front. Pharmacol. 2016;7:470. doi: 10.3389/fphar.2016.00470. PubMed DOI PMC
Filler G., Bokenkamp A., Hofmann W., Le Bricon T., Martinez-Bru C., Grubb A. Cystatin C as a marker of GFR-history, indications, and future research. Clin. Biochem. 2005;38:1–8. doi: 10.1016/j.clinbiochem.2004.09.025. PubMed DOI
Priyadarshini M., Khan R.H., Bano B. Physicochemical properties of thiol proteinase inhibitor isolated from goat pancreas. Biopolymers. 2010;93:708–717. doi: 10.1002/bip.21451. PubMed DOI
Benchabane M., Schluter U., Vorster J., Goulet M.C., Michaud D. Plant cystatins. Biochimie. 2010;92:1657–1666. doi: 10.1016/j.biochi.2010.06.006. PubMed DOI
Vorster B.J., Goulet M.C., Michaud D. Plant cystatins and insect cysteine proteases: Weapons in a molecular arms race. S. Afr. J. Bot. 2012;79:221–222.
Farady C.J., Craik C.S. Mechanisms of macromolecular protease inhibitors. Chembiochem A Eur. J. Chem. Biol. 2010;11:2341–2346. doi: 10.1002/cbic.201000442. PubMed DOI PMC
Gomis-Ruth F.X., Maskos K., Betz M., Bergner A., Huber R., Suzuki K., Yoshida N., Nagase H., Brew K., Bourenkov G.P., et al. Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1. Nature. 1997;389:77–81. doi: 10.1038/37995. PubMed DOI
Bateman K.S., James M.N. Plant protein proteinase inhibitors: Structure and mechanism of inhibition. Curr. Protein Pept. Sci. 2011;12:340–347. doi: 10.2174/138920311796391124. PubMed DOI
Turra D., Lorito M. Potato type I and II proteinase inhibitors: Modulating plant physiology and host resistance. Curr. Protein Pept. Sci. 2011;12:374–385. doi: 10.2174/138920311796391151. PubMed DOI
Li B.J., Gadahi J.A., Gao W.X., Zhang Z.C., Ehsan M., Xu L.X., Song X.K., Li X.R., Yan R.F. Characterization of a novel aspartyl protease inhibitor from Haemonchus contortus. Parasites Vectors. 2017;10 doi: 10.1186/s13071-017-2137-1. PubMed DOI PMC
Mondal M., Radeva N., Koster H., Park A., Potamitis C., Zervou M., Klebe G., Hirsch A.K.H. Structure-Based Design of Inhibitors of the Aspartic Protease Endothiapepsin by Exploiting Dynamic Combinatorial Chemistry. Angew. Chem. Int. Edit. 2014;53:3259–3263. doi: 10.1002/anie.201309682. PubMed DOI
Motwani H.V., De Rosa M., Odell L.R., Hallberg A., Larhed M. Aspartic protease inhibitors containing tertiary alcohol transition-state mimics. Eur. J. Med. Chem. 2015;90:462–490. doi: 10.1016/j.ejmech.2014.11.036. PubMed DOI
Jiang L.G., Andersen L.M., Andreasen P.A., Chen L.Q., Huang M.D. Insights into the serine protease mechanism based on structural observations of the conversion of a peptidyl serine protease inhibitor to a substrate. BBA Gen. Subj. 2016;1860:599–606. doi: 10.1016/j.bbagen.2015.12.009. PubMed DOI
Zuchowski J., Grzywnowicz K. Partial purification of proteinase K inhibitors from liquid-cultured mycelia of the white rot basidiomycete Trametes versicolor. Curr. Microbiol. 2006;53:259–264. doi: 10.1007/s00284-005-0386-2. PubMed DOI
Laskowski M., Qasim M.A. What can the structures of enzyme-inhibitor complexes tell us about the structures of enzyme substrate complexes? BBA Protein Struct. M. 2000;1477:324–337. doi: 10.1016/S0167-4838(99)00284-8. PubMed DOI
Grosse-Holz F.M., van der Hoorn R.A.L. Juggling jobs: Roles and mechanisms of multifunctional protease inhibitors in plants. New Phytol. 2016;210:794–807. doi: 10.1111/nph.13839. PubMed DOI
Clemente M., Corigliano M.G., Pariani S.A., Sanchez-Lopez E.F., Sander V.A., Ramos-Duarte V.A. Plant Serine Protease Inhibitors: Biotechnology Application in Agriculture and Molecular Farming. Int. J. Mol. Sci. 2019;20:1345. doi: 10.3390/ijms20061345. PubMed DOI PMC
Joshi R.S., Mishra M., Suresh C.G., Gupta V.S., Giri A.P. Complementation of intramolecular interactions for structural-functional stability of plant serine proteinase inhibitors. BBA Gen. Subj. 2013;1830:5087–5094. doi: 10.1016/j.bbagen.2013.07.019. PubMed DOI
Stoops J.K., Schroeter J.P., Kolodziej S.J., Strickland D.K. Structure-Function-Relationships of Human Alpha(2)-Macroglobulin-3-Dimensional Structures of Native Alpha(2)-Macroglobulin and Its Methylamine and Chymotrypsin Derivatives. Biol. Alpha2 Macroglobulin Recept. Relat. Proteins. 1994;737:212–228. doi: 10.1111/j.1749-6632.1994.tb44314.x. PubMed DOI
Antao C.M., Malcata F.X. Plant serine proteases: Biochemical, physiological and molecular features. Plant Physiol. Bioch. 2005;43:637–650. doi: 10.1016/j.plaphy.2005.05.001. PubMed DOI
Kodoth S.M., Chavan S.J., Pahwa S.G. Immunomodulatory effect of protease inhibitor Nelfinavir on host cells: Implications for treatment in HIV disease. J. Allergy Clin. Immun. 2001;107:S199.
Sierko E., Wojtukiewicz M.Z., Zimnoch L., Tokajuk P., Ostrowska-Cichocka K., Kisiel W. Co-localization of Protein Z, Protein Z-Dependent protease inhibitor and coagulation factor X in human colon cancer tissue: Implications for coagulation regulation on tumor cells. Thromb. Res. 2012;129:E112–E118. doi: 10.1016/j.thromres.2011.10.027. PubMed DOI
Barragan P., Podzamczer D. Lopinavir/ritonavir: A protease inhibitor for HIV-1 treatment. Expert Opin. Pharmaco. 2008;9:2363–2375. doi: 10.1517/14656566.9.13.2363. PubMed DOI
Ng T.B., Lam S.K., Fong W.P. A homodimeric sporamin-type trypsin inhibitor with antiproliferative, HIV reverse transcriptase-inhibitory and antifungal activities from wampee (Clausena lansium) seeds. Biol. Chem. 2003;384:289–293. doi: 10.1515/BC.2003.032. PubMed DOI
Koblinski J.E., Ahram M., Sloane B.F. Unraveling the role of proteases in cancer. Clin. Chim. Acta. 2000;291:113–135. doi: 10.1016/S0009-8981(99)00224-7. PubMed DOI
Clemente A., Arques M.D. Bowman-Birk inhibitors from legumes as colorectal chemopreventive agents. World J. Gastroentero. 2014;20:10305–10315. doi: 10.3748/wjg.v20.i30.10305. PubMed DOI PMC
Mannisto T.K., Karvonen K.E., Kerola T.V., Ryhanen L.J. Inhibitory effect of the angiotensin converting enzyme inhibitors captopril and enalapril on the conversion of procollagen to collagen. J. Hypertens. 2001;19:1835–1839. doi: 10.1097/00004872-200110000-00018. PubMed DOI
Wiggins B.S., Spinler S., Wittkowsky A.K., Stringer K.A. Bivalirudin: A direct thrombin inhibitor for percutaneous transluminal coronary angioplasty. Pharmacotherapy. 2002;22:1007–1018. doi: 10.1592/phco.22.12.1007.33600. PubMed DOI
Ussuf K.K., Laxmi N.H., Mitra R. Proteinase inhibitors: Plant-derived genes of insecticidal protein for developing insect-resistant transgenic plants. Curr. Sci. India. 2001;80:847–853.
Schuler T.H., Poppy G.M., Kerry B.R., Denholm I. Insect-resistant transgenic plants. Trends Biotechnol. 1998;16:168–175. doi: 10.1016/S0167-7799(97)01171-2. PubMed DOI
Ahmed A., Shamsi A., Bano B. Deciphering the toxic effects of iprodione, a fungicide and malathion, an insecticide on thiol protease inhibitor isolated from yellow Indian mustard seeds. Environ. Toxicol. Phar. 2018;61:52–60. doi: 10.1016/j.etap.2018.05.019. PubMed DOI
Braga-Silva L.A., Santos A.L.S. Aspartic Protease Inhibitors as Potential Anti-Candida albicans Drugs: Impacts on Fungal Biology, Virulence and Pathogenesis. Curr. Med. Chem. 2011;18:2401–2419. doi: 10.2174/092986711795843182. PubMed DOI
Zhao Y.R., Xu Y.H., Jiang H.S., Xu S., Zhao X.F., Wang J.X. Antibacterial activity of serine protease inhibitor 1 from kuruma shrimp Marsupenaeus japonicus. Dev. Comp. Immunol. 2014;44:261–269. doi: 10.1016/j.dci.2014.01.002. PubMed DOI
Jongsma M.A., Beekwilder J. Co-Evolution of Insect Proteases and Plant Protease Inhibitors. Curr. Protein Pept. Sci. 2011;12:437–447. doi: 10.2174/138920311796391115. PubMed DOI
Zhu J.Y., He Y.X., Yan X.M., Liu L., Guo R., Xia X.B., Cheng D.J., Mi X.Z., Samarina L., Liu S.R., et al. Duplication and transcriptional divergence of three Kunitz protease inhibitor genes that modulate insect and pathogen defenses in tea plant (Camellia sinensis) Hortic. Res. 2019;6 doi: 10.1038/s41438-019-0208-5. PubMed DOI PMC
de Almeida Barros B., da Silva W.G., Moreira M.A., de Barros E.G. In silico characterization and expression analysis of the multigene family encoding the Bowman-Birk protease inhibitor in soybean. Mol. Biol. Rep. 2012;39:327–334. doi: 10.1007/s11033-011-0742-1. PubMed DOI
Odeny D.A., Stich B., Gebhardt C. Physical organization of mixed protease inhibitor gene clusters, coordinated expression and association with resistance to late blight at the StKI locus on potato chromosome III. Plant Cell Environ. 2010;33:2149–2161. doi: 10.1111/j.1365-3040.2010.02213.x. PubMed DOI
Alvarez-Alfageme F., Maharramov J., Carrillo L., Vandenabeele S., Vercammen D., Van Breusegem F., Smagghe G. Potential Use of a Serpin from Arabidopsis for Pest Control. PLoS ONE. 2011;6:e0020278. doi: 10.1371/annotation/099db8aa-be3a-4635-b464-dc94ba0fb069. PubMed DOI PMC
Goulet M.C., Dallaire C., Vaillancourt L.P., Khalf M., Badri A.M., Preradov A., Duceppe M.O., Goulet C., Cloutier C., Michaud D. Tailoring the specificity of a plant cystatin toward herbivorous insect digestive cysteine proteases by single mutations at positively selected amino acid sites. Plant Physiol. 2008;146:1010–1019. doi: 10.1104/pp.108.115741. PubMed DOI PMC
Garcia V.A., Freire M., Novello J.C., Marangoni S., Macedo M.L. Trypsin inhibitor from Poecilanthe parviflora seeds: Purification, characterization, and activity against pest proteases. Protein J. 2004;23:343–350. doi: 10.1023/B:JOPC.0000032654.67733.d5. PubMed DOI
Manara A., Fasani E., Molesini B., DalCorso G., Pennisi F., Pandolfini T., Furini A. The Tomato Metallocarboxypeptidase Inhibitor I, which Interacts with a Heavy Metal-Associated Isoprenylated Protein, Is Implicated in Plant Response to Cadmium. Molecules. 2020;25:700. doi: 10.3390/molecules25030700. PubMed DOI PMC
Diez-Diaz M., Conejero V., Rodrigo I., Pearce G., Ryan C.A. Isolation and characterization of wound-inducible carboxypeptidase inhibitor from tomato leaves. Phytochemistry. 2004;65:1919–1924. doi: 10.1016/j.phytochem.2004.06.007. PubMed DOI
Guimaraes L.C., de Oliveira C.F., Marangoni S., de Oliveira D.G., Macedo M.L. Purification and characterization of a Kunitz inhibitor from Poincianella pyramidalis with insecticide activity against the Mediterranean flour moth. Pestic. Biochem. Physiol. 2015;118:1–9. doi: 10.1016/j.pestbp.2014.12.001. PubMed DOI
Dunaevsky Y.E., Gladysheva I.P., Pavlukova E.B., Beliakova G.A., Gladyshev D.P., Papisova A.I., Larionova N.I., Belozersky M.A. The anionic protease inhibitor BWI-1 from buckwheat seeds. Kinetic properties and possible biological role. Physiol. Plant. 1997;101:483–488. doi: 10.1111/j.1399-3054.1997.tb01027.x. PubMed DOI
Aguiar J.M., Franco O.L., Rigden D.J., Bloch C., Jr., Monteiro A.C., Flores V.M., Jacinto T., Xavier-Filho J., Oliveira A.E., Grossi-de-Sa M.F., et al. Molecular modeling and inhibitory activity of cowpea cystatin against bean bruchid pests. Proteins. 2006;63:662–670. doi: 10.1002/prot.20901. PubMed DOI
Zhang X., Liu S., Takano T. Two cysteine proteinase inhibitors from Arabidopsis thaliana, AtCYSa and AtCYSb, increasing the salt, drought, oxidation and cold tolerance. Plant Mol. Biol. 2008;68:131–143. doi: 10.1007/s11103-008-9357-x. PubMed DOI
Maass N., Teffner M., Rosel F., Pawaresch R., Jonat W., Nagasaki K., Rudolph P. Decline in the expression of the serine proteinase inhibitor maspin is associated with tumour progression in ductal carcinomas of the breast. J. Pathol. 2001;195:321–326. doi: 10.1002/path.948. PubMed DOI
Cooley J., Takayama T.K., Shapiro S.D., Schechter N.M., Remold-O’Donnell E. The serpin MNEI inhibits elastase-like and chymotrypsin-like serine proteases through efficient reactions at two active sites. Biochemistry. 2001;40:15762–15770. doi: 10.1021/bi0113925. PubMed DOI
Bhattacharyya A., Babu C.R. Purification and biochemical characterization of a serine proteinase inhibitor from Derris trifoliata Lour. seeds: Insight into structural and antimalarial features. Phytochemistry. 2009;70:703–712. doi: 10.1016/j.phytochem.2009.04.001. PubMed DOI
Touil T., Ciric B., Ventura E., Shindler K.S., Gran B., Rostami A. Bowman-Birk inhibitor suppresses autoimmune inflammation and neuronal loss in a mouse model of multiple sclerosis. J. Neurol. Sci. 2008;271:191–202. doi: 10.1016/j.jns.2008.04.030. PubMed DOI PMC
Kennedy A.R. The Bowman-Birk inhibitor from soybeans as an anticarcinogenic agent. Am. J. Clin. Nutr. 1998;68:1406s–1412s. doi: 10.1093/ajcn/68.6.1406S. PubMed DOI
Bell-McGuinn K.M., Garfall A.L., Bogyo M., Hanahan D., Joyce J.A. Inhibition of cysteine cathepsin protease activity enhances chemotherapy regimens by decreasing tumor growth and invasiveness in a mouse model of multistage cancer. Cancer Res. 2007;67:7378–7385. doi: 10.1158/0008-5472.CAN-07-0602. PubMed DOI
Guo J.X., Erskine P.T., Coker A.R., Wood S.P., Cooper J.B. Structure of a Kunitz-type potato cathepsin D inhibitor. J. Struct. Biol. 2015;192:554–560. doi: 10.1016/j.jsb.2015.10.020. PubMed DOI
Krishnamoorthi R., Gong Y.X., Richardson M. A New-Protein Inhibitor of Trypsin and Activated Hageman-Factor from Pumpkin (Cucurbita-Maxima) Seeds. FEBS Lett. 1990;273:163–167. doi: 10.1016/0014-5793(90)81075-Y. PubMed DOI
Visetnan S., Donpudsa S., Supungul P., Tassanakajon A., Rimphanitchayakit V. Domain 2 of a Kazal serine proteinase inhibitor SPIPm2 from Penaeus monodon possesses antiviral activity against WSSV. Fish Shellfish Immunol. 2014;41:526–530. doi: 10.1016/j.fsi.2014.09.036. PubMed DOI
Lamarre D., Anderson P.C., Bailey M., Beaulieu P., Bolger G., Bonneau P., Bos M., Cameron D.R., Cartier M., Cordingley M.G., et al. An NS3 protease inhibitor with antiviral effects in humans infected with hepatitis C virus. Nature. 2003;426:186–189. doi: 10.1038/nature02099. PubMed DOI
Hinrichsen H., Benhamou Y., Wedemeyer H., Reiser M., Sentjens R.E., Calleja J.L., Forns X., Erhardt A., Cronlein J., Chaves R.L., et al. Short-term antiviral efficacy of BILN 2061, a hepatitis C virus serine protease inhibitor, in hepatitis C genotype 1 patients. Gastroenterology. 2004;127:1347–1355. doi: 10.1053/j.gastro.2004.08.002. PubMed DOI
Okumura Y., Ogawa K., Uchiya K., Nikai T. Isolation and characterization of a novel elastase inhibitor, AFLEI from Aspergillus flavus. Nihon Ishinkin Gakkai Zasshi. 2006;47:219–224. doi: 10.3314/jjmm.47.219. PubMed DOI
Hibbetts K., Hines B., Williams D. An overview of proteinase inhibitors. J. Vet. Intern. Med. 1999;13:302–308. doi: 10.1111/j.1939-1676.1999.tb02185.x. PubMed DOI
Abrahamson M., Mason R.W., Hansson H., Buttle D.J., Grubb A., Ohlsson K. Human cystatin C. role of the N-terminal segment in the inhibition of human cysteine proteinases and in its inactivation by leucocyte elastase. Biochem. J. 1991;273:621–626. doi: 10.1042/bj2730621. PubMed DOI PMC
Travis J., Bangalore N. Biochemical mechanisms for disrupting the proteinase-proteinase inhibitor balance in tissues. Agents Actions Suppl. 1993;42:19–25. doi: 10.1007/978-3-0348-7397-0_2. PubMed DOI
Jongejan F., Uilenberg G. The global importance of ticks. Parasitology. 2004;129:S3–S14. doi: 10.1017/S0031182004005967. PubMed DOI
Francischetti I.M.B., Sa-Nunes A., Mans B.J., Santos I.M., Ribeiro J.M.C. The role of saliva in tick feeding. Front. Biosci. A J. Virtual Libr. 2009;14:2051–2088. doi: 10.2741/3363. PubMed DOI PMC
Mans B.J. Evolution of Vertebrate Hemostatic and Inflammatory Control Mechanisms in Blood-Feeding Arthropods. J. Innate Immun. 2011;3:41–51. doi: 10.1159/000321599. PubMed DOI
Mans B.J., Neitz A.W.H. Adaptation of ticks to a blood-feeding environment: Evolution from a functional perspective. Insect Biochem. Mol. Biol. 2004;34:1–17. doi: 10.1016/j.ibmb.2003.09.002. PubMed DOI
Zavasnik-Bergant T., Vidmar R., Sekirnik A., Fonovic M., Salat J., Grunclova L., Kopacek P., Turk B. Salivary Tick Cystatin OmC2 Targets Lysosomal Cathepsins S and C in Human Dendritic Cells. Front. Cell. Infect. Microbiol. 2017;7 doi: 10.3389/fcimb.2017.00288. PubMed DOI PMC
Nuttall P.A. Wonders of tick saliva. Ticks Tickborne Dis. 2019;10:470–481. doi: 10.1016/j.ttbdis.2018.11.005. PubMed DOI
Parizi L.F., Ali A., Tirloni L., Oldiges D.P., Sabadin G.A., Coutinho M.L., Seixas A., Logullo C., Termignoni C., Vaz I.D. Peptidase inhibitors in tick physiology. Med. Vet. Entomol. 2018;32:129–144. doi: 10.1111/mve.12276. PubMed DOI
Liu X.Y., de la Fuente J., Cote M., Galindo R.C., Moutailler S., Vayssier-Taussat M., Bonnet S.I. IrSPI, a Tick Serine Protease Inhibitor Involved in Tick Feeding and Bartonella henselae Infection. PLoS Negl. Trop. Dis. 2014;8:e2993. doi: 10.1371/journal.pntd.0002993. PubMed DOI PMC
Sojka D., Pytelkova J., Perner J., Horn M., Konvickova J., Schrenkova J., Mares M., Kopacek P. Multienzyme degradation of host serum albumin in ticks. Ticks TickBorne Dis. 2016;7:604–613. doi: 10.1016/j.ttbdis.2015.12.014. PubMed DOI
Estrela A., Seixas A., Termignoni C. A cysteine endopeptidase from tick (Rhipicephalus (Boophilus) microplus) larvae with vitellin digestion activity. Comp. Biochem. Phys. B. 2007;148:410–416. doi: 10.1016/j.cbpb.2007.07.009. PubMed DOI
Limo M.K., Voigt W.P., Tumbo-Oeri A.G., Njogu R.M., ole-MoiYoi O.K. Purification and characterization of an anticoagulant from the salivary glands of the ixodid tick Rhipicephalus appendiculatus. Exp. Parasitol. 1991;72:418–429. doi: 10.1016/0014-4894(91)90088-E. PubMed DOI
Katz L., Baltz R.H. Natural product discovery: Past, present, and future. J. Ind. Microbiol. Biot. 2016;43:155–176. doi: 10.1007/s10295-015-1723-5. PubMed DOI
Gileadi O. Recombinant Protein Expression in E. coli: A Historical Perspective. Methods Mol. Biol. 2017;1586:3–10. doi: 10.1007/978-1-4939-6887-9_1. PubMed DOI
Baghban R., Farajnia S., Ghasemi Y., Mortazavi M., Zarghami N., Samadi N. New Developments in Pichia pastoris Expression System, Review and Update. Curr. Pharm. Biotechnol. 2018;19:451–467. doi: 10.2174/1389201019666180718093037. PubMed DOI
Rozov S.M., Permyakova N.V., Deineko E.V. Main Strategies of Plant Expression System Glycoengineering for Producing Humanized Recombinant Pharmaceutical Proteins. Biochem. Biokhimiia. 2018;83:215–232. doi: 10.1134/S0006297918030033. PubMed DOI
Chmelar J., Kotal J., Karim S., Kopacek P., Francischetti I.M.B., Pedra J.H.F., Kotsyfakis M. Sialomes and Mialomes: A Systems-Biology View of Tick Tissues and Tick-Host Interactions. Trends Parasitol. 2016;32:242–254. doi: 10.1016/j.pt.2015.10.002. PubMed DOI PMC
Koh C.Y., Kini R.M. Anticoagulants from hematophagous animals. Expert Rev. Hematol. 2008;1:135–139. doi: 10.1586/17474086.1.2.135. PubMed DOI
Aounallah H., Bensaoud C., M’ghirbi Y., Faria F., Chmelar J., Kotsyfakis M. Tick Salivary Compounds for Targeted Immunomodulatory Therapy. Front. Immunol. 2020;11 doi: 10.3389/fimmu.2020.583845. PubMed DOI PMC
Ranasinghe S., McManus D.P. Structure and function of invertebrate Kunitz serine protease inhibitors. Dev. Comp. Immunol. 2013;39:219–227. doi: 10.1016/j.dci.2012.10.005. PubMed DOI
Ribeiro J.M.C., Alarcon-Chaidez F., Francischetti I.M.B., Mans B.J., Mather T.N., Valenzuela J.G., Wikel S.K. An annotated catalog of salivary gland transcripts from Ixodes scapularis ticks. Insect Biochem. Mol. Biol. 2006;36:111–129. doi: 10.1016/j.ibmb.2005.11.005. PubMed DOI
Chmelar J., Calvo E., Pedra J.H.F., Francischetti I.M.B., Kotsyfakis M. Tick salivary secretion as a source of antihemostatics. J. Proteom. 2012;75:3842–3854. doi: 10.1016/j.jprot.2012.04.026. PubMed DOI PMC
Decrem Y., Rath G., Blasioli V., Cauchie P., Robert S., Beaufays J., Frere J.M., Feron O., Dogne J.M., Dessy C., et al. Ir-CPI, a coagulation contact phase inhibitor from the tick Ixodes ricinus, inhibits thrombus formation without impairing hemostasis. J. Exp. Med. 2009;206:2381–2395. doi: 10.1084/jem.20091007. PubMed DOI PMC
Neeper M.P., Waxman L., Smith D.E., Schulman C.A., Sardana M., Ellis R.W., Schaffer L.W., Siegl P.K.S., Vlasuk G.P. Characterization of Recombinant Tick Anticoagulant Peptide—A Highly Selective Inhibitor of Blood-Coagulation Factor-Xa. J. Biol. Chem. 1990;265:17746–17752. doi: 10.1016/S0021-9258(18)38226-7. PubMed DOI
Pireaux V., Tassignon J., Demoulin S., Derochette S., Borenstein N., Ente A., Fiette L., Douxfils J., Lancellotti P., Guyaux M., et al. Anticoagulation With an Inhibitor of Factors XIa and XIIa During Cardiopulmonary Bypass. J. Am. Coll. Cardiol. 2019;74:2178–2189. doi: 10.1016/j.jacc.2019.08.1028. PubMed DOI
Schaffer L.W., Davidson J.T., Vlasuk G.P., Siegl P.K.S. Antithrombotic Efficacy of Recombinant Tick Anticoagulant Peptide—A Potent Inhibitor of Coagulation Factor-Xa in a Primate Model of Arterial Thrombosis. Circulation. 1991;84:1741–1748. doi: 10.1161/01.CIR.84.4.1741. PubMed DOI
Onishi A., St Ange K., Dordick J.S., Linhardt R.J. Heparin and anticoagulation. Front. Biosci. Landmrk. 2016;21:1372–1392. doi: 10.2741/4462. PubMed DOI
Stoll P., Bassler N., Hagemeyer C.E., Eisenhardt S.U., Chen Y.C., Schmidt R., Schwarz M., Ahrens I., Katagiri Y., Pannen B., et al. Targeting ligand-induced binding sites on GPIIb/IIIa via single-chain antibody allows effective anticoagulation without bleeding time prolongation. Arterioscl. Throm. Vas. 2007;27:1206–1212. doi: 10.1161/ATVBAHA.106.138875. PubMed DOI
Karczewski J., Connolly T.M. The interaction of disagregin with the platelet fibrinogen receptor, glycoprotein IIb-IIIa. Biochem. Biophys. Res. Commun. 1997;241:744–748. doi: 10.1006/bbrc.1997.7881. PubMed DOI
Barboza T., Gomes T., da Costa Medeiros P., Ramos I.P., Francischetti I., Monteiro R.Q., Gutfilen B., de Souza S.A.L. Development of 131I-ixolaris as a theranostic agent: Metastatic melanoma preclinical studies. Clin. Exp. Metastasis. 2020;37:489–497. doi: 10.1007/s10585-020-10036-0. PubMed DOI
Boufleur P., Sciani J.M., Goldfeder M., Faria F., Branco V., Chudzinski-Tavassi A.M. Biodistribution and Pharmacokinetics of Amblyomin-X, a Novel Antitumour Protein Drug in Healthy Mice. Eur. J. Drug Metab. Pharmacokinet. 2019;44:111–120. doi: 10.1007/s13318-018-0500-z. PubMed DOI
Francischetti I.M.B., Valenzuela J.G., Andersen J.F., Mather T.N., Ribeiro J.M.C. Ixolaris, a novel recombinant tissue factor pathway inhibitor (TFPI) from the salivary gland of the tick, Ixodes scapularis: Identification of factor X and factor Xa as scaffolds for the inhibition of factor VIIa/tissue factor complex. Blood. 2002;99:3602–3612. doi: 10.1182/blood-2001-12-0237. PubMed DOI
Monteiro R.Q., Rezaie A.R., Ribeiro J.M.C., Francischetti I.M.B. Ixolaris: A factor Xa heparin-binding exosite inhibitor. Biochem. J. 2005;387:871–877. doi: 10.1042/BJ20041738. PubMed DOI PMC
Monteiro R.Q., Rezaie A.R., Bae J.-S., Calvo E., Andersen J.F., Francischetti I.M.B. Ixolaris binding to factor X reveals a precursor state of factor Xa heparin-binding exosite. Protein Sci. 2008;17:146–153. doi: 10.1110/ps.073016308. PubMed DOI PMC
De Paula V.S., Sgourakis N.G., Francischetti I.M.B., Almeida F.C.L., Monteiro R.Q., Valente A.P. NMR structure determination of Ixolaris and factor X(a) interaction reveals a noncanonical mechanism of Kunitz inhibition. Blood. 2019;134:699–708. doi: 10.1182/blood.2018889493. PubMed DOI PMC
Monteiro R.Q. Targeting exosites on blood coagulation proteases. An Acad. Bras. Cienc. 2005;77:275–280. doi: 10.1590/S0001-37652005000200007. PubMed DOI
Nazareth R.A., Tomaz L.S., Ortiz-Costa S., Atella G.C., Ribeiro J.M.C., Francischetti I.M.B., Monteiro R.Q. Antithrombotic properties of Ixolaris, a potent inhibitor of the extrinsic pathway of the coagulation cascade. Thromb. Haemost. 2006;96:7–13. doi: 10.1160/TH06-02-0105. PubMed DOI PMC
Chudzinski-Tavassi A.M., Morais K.L.P., Pacheco M.T.F., Pasqualoto K.F.M., de Souza J.G. Tick salivary gland as potential natural source for the discovery of promising antitumor drug candidates. Biomed. Pharmacother. 2016;77:14–19. doi: 10.1016/j.biopha.2015.11.003. PubMed DOI
Carneiro-Lobo T.C., Konig S., Machado D.E., Nasciutti L.E., Forni M.F., Francischetti I.M.B., Sogayar M.C., Monteiro R.Q. Ixolaris, a tissue factor inhibitor, blocks primary tumor growth and angiogenesis in a glioblastoma model. J. Thromb. Haemost. 2009;7:1855–1864. doi: 10.1111/j.1538-7836.2009.03553.x. PubMed DOI PMC
Carneiro-Lobo T.C., Schaffner F., Disse J., Ostergaard H., Francischetti I.M.B., Monteiro R.Q., Ruf W. The tick-derived inhibitor Ixolaris prevents tissue factor signaling on tumor cells. J. Thromb. Haemost. 2012;10:1849–1858. doi: 10.1111/j.1538-7836.2012.04864.x. PubMed DOI PMC
Batista I.F.C., Ramos O.H.P., Ventura J.S., Junqueira-de-Azevedo I.L.M., Ho P.L., Chudzinski-Tavassi A.M. A new Factor Xa inhibitor from Amblyomma cajennense with a unique domain composition. Arch. Biochem. Biophys. 2010;493:151–156. doi: 10.1016/j.abb.2009.10.009. PubMed DOI
Branco V.G., Iqbal A., Alvarez-Flores M.P., Sciani J.M., de Andrade S.A., Iwai L.K., Serrano S.M.T., Chudzinski-Tavassi A.M. Amblyomin-X having a Kunitz-type homologous domain, is a noncompetitive inhibitor of FXa and induces anticoagulation in vitro and in vivo. Biochim. Biophys. Acta. 2016;1864:1428–1435. doi: 10.1016/j.bbapap.2016.07.011. PubMed DOI
Akagi E.M., Júnior P.L.d.S., Simons S.M., Bellini M.H., Barreto S.A., Chudzinski-Tavassi A.M. Pro-apoptotic effects of Amblyomin-X in murine renal cell carcinoma “in vitro”. Biomed. Pharmacother. 2012;66:64–69. doi: 10.1016/j.biopha.2011.11.015. PubMed DOI
Maria D.A., de Souza J.G., Morais K.L.P., Berra C.M., Zampolli H.d.C., Demasi M., Simons S.M., de Freitas Saito R., Chammas R., Chudzinski-Tavassi A.M. A novel proteasome inhibitor acting in mitochondrial dysfunction, ER stress and ROS production. Invest New Drugs. 2013;31:493–505. doi: 10.1007/s10637-012-9871-1. PubMed DOI PMC
Schmidt M.C.B., Morais K.L.P., Almeida M.E.S.d., Iqbal A., Goldfeder M.B., Chudzinski-Tavassi A.M. Amblyomin-X, a recombinant Kunitz-type inhibitor, regulates cell adhesion and migration of human tumor cells. Cell. Adh. Migr. 2020;14:129–138. doi: 10.1080/19336918.2018.1516982. PubMed DOI PMC
Drewes C.C., Dias R.Y.S., Hebeda C.B., Simons S.M., Barreto S.A., Ferreira J.M., Chudzinski-Tavassi A.M., Farsky S.H.P. Actions of the Kunitz-type serine protease inhibitor Amblyomin-X on VEGF-A-induced angiogenesis. Toxicon. 2012;60:333–340. doi: 10.1016/j.toxicon.2012.04.349. PubMed DOI
Drewes C.C., Dias R.Y., Branco V.G., Cavalcante M.F., Souza J.G., Abdalla D.S.P., Chudzinski-Tavassi A.M., Farsky S.H.P. Post-transcriptional control of Amblyomin-X on secretion of vascular endothelial growth factor and expression of adhesion molecules in endothelial cells. Toxicon. 2015;101:1–10. doi: 10.1016/j.toxicon.2015.04.002. PubMed DOI
Maria D.A., Will S.E.A.L., Bosch R.V., Souza J.G., Sciani J.M., Goldfeder M.B., Rondon G.G., Chudzinski-Tavassi A.M. Preclinical evaluation of Amblyomin-X, a Kunitz-type protease inhibitor with antitumor activity. Toxicol. Rep. 2019;6:51–63. doi: 10.1016/j.toxrep.2018.11.014. PubMed DOI PMC
Lichtenstein F., Iqbal A., de Lima Will S.E.A., Bosch R.V., DeOcesano-Pereira C., Goldfeder M.B., Chammas R., Trufen C.E.M., Morais K.L.P., de Souza J.G., et al. Modulation of Stress and Immune Response by AMBLYOMIN-X Results in Tumor Cell Death in a Horse Melanoma Model. [(accessed on 15 January 2021)]; Available online: https://pubmed.ncbi.nlm.nih.gov/32286411/ PubMed PMC
Blisnick A.A., Šimo L., Grillon C., Fasani F., Brûlé S., Le Bonniec B., Prina E., Marsot M., Relmy A., Blaise-Boisseau S., et al. The Immunomodulatory Effect of IrSPI, a Tick Salivary Gland Serine Protease Inhibitor Involved in Ixodes ricinus Tick Feeding. Vaccines. 2019;7:148. doi: 10.3390/vaccines7040148. PubMed DOI PMC
Duran A.F.A., Neves L.d.P., da Silva F.R.S., Machado G.C., Ferreira G.C., Lourenço J.D., Tanaka A.S., Martins M.d.A., Lopes F.D.T.Q.S., Sasaki S.D. rBmTI-6 attenuates pathophysiological and inflammatory parameters of induced emphysema in mice. Int. J. Biol. Macromol. 2018;111:1214–1221. doi: 10.1016/j.ijbiomac.2018.01.066. PubMed DOI
Paesen G.C., Siebold C., Harlos K., Peacey M.F., Nuttall P.A., Stuart D.I. A tick protein with a modified Kunitz fold inhibits human tryptase. J. Mol. Biol. 2007;368:1172–1186. doi: 10.1016/j.jmb.2007.03.011. PubMed DOI
Sommerhoff C.P., Schaschke N. Mast cell tryptase beta as a target in allergic inflammation: An evolving story. Curr. Pharm. Des. 2007;13:313–332. doi: 10.2174/138161207779313579. PubMed DOI
Valdés J.J., Schwarz A., Cabeza de Vaca I., Calvo E., Pedra J.H.F., Guallar V., Kotsyfakis M. Tryptogalinin is a tick Kunitz serine protease inhibitor with a unique intrinsic disorder. PLoS ONE. 2013;8:e62562. doi: 10.1371/journal.pone.0062562. PubMed DOI PMC
Castaneda O., Harvey A.L. Discovery and characterization of cnidarian peptide toxins that affect neuronal potassium ion channels. Toxicon. 2009;54:1119–1124. doi: 10.1016/j.toxicon.2009.02.032. PubMed DOI
Lucchesi K.J., Moczydlowski E. On the Interaction of Bovine Pancreatic Trypsin-Inhibitor with Maxi Ca2+-Activated K+ Channels—A Model System for Analysis of Peptide-Induced Subconductance States. J. Gen. Physiol. 1991;97:1295–1319. doi: 10.1085/jgp.97.6.1295. PubMed DOI PMC
Paesen G.C., Siebold C., Dallas M.L., Peers C., Harlos K., Nuttall P.A., Nunn M.A., Stuart D.I., Esnouf R.M. An Ion-channel Modulator from the Saliva of the Brown Ear Tick has a Highly Modified Kunitz/BPTI Structure. J. Mol. Biol. 2009;389:734–747. doi: 10.1016/j.jmb.2009.04.045. PubMed DOI
Lucas A., Yaron J.R., Zhang L.Q., Ambadapadi S. Overview of Serpins and Their Roles in Biological Systems. Methods Protoc. 2018;1826:1–7. doi: 10.1007/978-1-4939-8645-3_1. PubMed DOI
Kim T.K., Tirloni L., Berger M., Diedrich J.K., Yates I.I.I., Termignoni C., Vaz I.D., Mulenga A. Amblyomma americanum serpin 41 (AAS41) inhibits inflammation by targeting chymase and chymotrypsin. Int. J. Biol. Macromol. 2020;156:1007–1021. doi: 10.1016/j.ijbiomac.2020.04.088. PubMed DOI PMC
Tirloni L., Kim T.K., Berger M., Termignoni C., Vaz I.D., Mulenga A. Amblyomma americanum serpin 27 (AAS27) is a tick salivary anti-inflammatory protein secreted into the host during feeding. PLoS Negl. Trop. Dis. 2019;13:e7660. doi: 10.1371/journal.pntd.0007660. PubMed DOI PMC
Mulenga A., Kim T., Ibelli A.M.G. Amblyomma americanum tick saliva serine protease inhibitor 6 is a cross-class inhibitor of serine proteases and papain-like cysteine proteases that delays plasma clotting and inhibits platelet aggregation. Insect Mol. Biol. 2013;22:306–319. doi: 10.1111/imb.12024. PubMed DOI PMC
Ibelli A.M.G., Kim T.K., Hill C.C., Lewis L.A., Bakshi M., Miller S., Porter L., Mulenga A. A blood meal-induced Ixodes scapularis tick saliva serpin inhibits trypsin and thrombin, and interferes with platelet aggregation and blood clotting. Int. J. Parasitol. 2014;44:369–379. doi: 10.1016/j.ijpara.2014.01.010. PubMed DOI PMC
Tirloni L., Kim T.K., Coutinho M.L., Ali A., Seixas A., Termignoni C., Mulenga A., Vaz I.D. The putative role of Rhipicephalus microplus salivary serpins in the tick-host relationship. Insect Biochem. Mol. Biol. 2016;71:12–28. doi: 10.1016/j.ibmb.2016.01.004. PubMed DOI PMC
Radulovic Z.M., Mulenga A. Heparan sulfate/heparin glycosaminoglycan binding alters inhibitory profile and enhances anticoagulant function of conserved Amblyomma americanum tick saliva serpin 19. Insect Biochem. Mol. Biol. 2017;80:1–10. doi: 10.1016/j.ibmb.2016.11.002. PubMed DOI PMC
Kim T.K., Tirloni L., Radulovic Z., Lewis L., Bakshi M., Hill C., Vaz I.D., Logullo C., Termignoni C., Mulenga A. Conserved Amblyomma americanum tick Serpin19, an inhibitor of blood clotting factors Xa and XIa, trypsin and plasmin, has anti-haemostatic functions. Int. J. Parasitol. 2015;45:613–627. doi: 10.1016/j.ijpara.2015.03.009. PubMed DOI PMC
Sanrattana W., Maas C., de Maat S. SERPINs-From Trap to Treatment. Front. Med. 2019;6 doi: 10.3389/fmed.2019.00025. PubMed DOI PMC
Wang F.Q., Song Z.Y., Chen J., Wu Q.H., Zhou X., Ni X.H., Dai J.F. The immunosuppressive functions of two novel tick serpins, HlSerpin-a and HlSerpin-b, from Haemaphysalis longicornis. Immunology. 2020;159:109–120. doi: 10.1111/imm.13130. PubMed DOI PMC
Xu Z.M., Yan Y.J., Zhang H.S., Cao J., Zhou Y.Z., Xu Q.M., Zhou J.L. A serpin from the tick Rhipicephalus haemaphysaloides: Involvement in vitellogenesis. Vet. Parasitol. 2020;279 doi: 10.1016/j.vetpar.2020.109064. PubMed DOI
Jittapalapong S., Kaewhom P., Pumhom P., Canales M., de la Fuente J., Stich R.W. Immunization of rabbits with recombinant serine protease inhibitor reduces the performance of adult female Rhipicephalus microplus. Transbound. Emerg. Dis. 2010;57:103–106. doi: 10.1111/j.1865-1682.2010.01108.x. PubMed DOI
Prevot P.P., Couvreur B., Denis V., Brossard A., Vanhamme L., Godfroid E. Protective immunity against Ixodes ricinus induced by a salivary serpin. Vaccine. 2007;25:3284–3292. doi: 10.1016/j.vaccine.2007.01.008. PubMed DOI
Lucas A., Yaron J.R., Zhang L.Q., Macaulay C., McFadden G. Serpins: Development for Therapeutic Applications. Serpins Methods Protoc. 2018;1826:255–265. doi: 10.1007/978-1-4939-8645-3_17. PubMed DOI
Leboulle G., Crippa M., Decrem Y., Mejri N., Brossard M., Bollen A., Godfroid E. Characterization of a novel salivary immunosuppressive protein from Ixodes ricinus ticks. J. Biol. Chem. 2002;277:10083–10089. doi: 10.1074/jbc.M111391200. PubMed DOI
Prevot P.P., Adam B., Boudjeltia K.Z., Brossard M., Lins L., Cauchie P., Brasseur R., Vanhaeverbeek M., Vanhamme L., Godfroid E. Anti-hemostatic effects of a serpin from the saliva of the tick Ixodes ricinus. J. Biol. Chem. 2006;281:26361–26369. doi: 10.1074/jbc.M604197200. PubMed DOI
Prevot P.P., Beschin A., Lins L., Beaufays J., Grosjean A., Bruys L., Adam B., Brossard M., Brasseur R., Boudjeltia K.Z., et al. Exosites mediate the anti-inflammatory effects of a multifunctional serpin from the saliva of the tick Ixodes ricinus. Febs. J. 2009;276:3235–3246. doi: 10.1111/j.1742-4658.2009.07038.x. PubMed DOI
Chmelar J., Oliveira C.J., Rezacova P., Francischetti I.M.B., Kovarova Z., Pejler G., Kopacek P., Ribeiro J.M.C., Mares M., Kopecky J., et al. A tick salivary protein targets cathepsin G and chymase and inhibits host inflammation and platelet aggregation. Blood. 2011;117:736–744. doi: 10.1182/blood-2010-06-293241. PubMed DOI PMC
Palenkova J., Lieskovska J., Langhansova H., Kotsyfakis M., Chmelar J., Kopecky J. Ixodes ricinus Salivary Serpin IRS-2 Affects Th17 Differentiation via Inhibition of the Interleukin-6/STAT-3 Signaling Pathway. Infect. Immun. 2015;83:1949–1956. doi: 10.1128/IAI.03065-14. PubMed DOI PMC
Fogaca A.C., Almeida I.C., Eberlin M.N., Tanaka A.S., Bulet P., Daffre S. Ixodidin, a novel antimicrobial peptide from the hemocytes of the cattle tick Boophilus microplus with inhibitory activity against serine proteinases. Peptides. 2006;27:667–674. doi: 10.1016/j.peptides.2005.07.013. PubMed DOI
Iqbal A., Goldfeder M.B., Marques-Porto R., Asif H., Souza J.G., Faria F., Chudzinski-Tavassi A.M. Revisiting antithrombotic therapeutics; sculptin, a novel specific, competitive, reversible, scissile and tight binding inhibitor of thrombin. Sci. Rep. 2017;7:1431. doi: 10.1038/s41598-017-01486-w. PubMed DOI PMC
Lee C.J., Ansell J.E. Direct thrombin inhibitors. Br. J. Clin. Pharmacol. 2011;72:581–592. doi: 10.1111/j.1365-2125.2011.03916.x. PubMed DOI PMC
Schwarz A., Valdes J.J., Kotsyfakis M. The role of cystatins in tick physiology and blood feeding. Ticks Tickborne Dis. 2012;3:117–127. doi: 10.1016/j.ttbdis.2012.03.004. PubMed DOI PMC
Kotsyfakis M., Horka H., Salat J., Andersen J.F. The crystal structures of two salivary cystatins from the tick Ixodes scapularis and the effect of these inhibitors on the establishment of Borrelia burgdorferi infection in a murine model. Mol. Microbiol. 2010;77:456–470. doi: 10.1111/j.1365-2958.2010.07220.x. PubMed DOI PMC
Kotsyfakis M., Sa-Nunes A., Francischetti I.M.B., Mather T.N., Andersen J.F., Ribeiro J.M.C. Antiinflammatory and immunosuppressive activity of sialostatin L, a salivary cystatin from the tick Ixodes scapularis. J. Biol. Chem. 2006;281:26298–26307. doi: 10.1074/jbc.M513010200. PubMed DOI
Sa-Nunes A., Bafica A., Lucas D.A., Conrads T.P., Veenstra T.D., Andersen J.F., Mather T.N., Ribeiro J.M.C., Francischetti I.M.B. Prostaglandin E-2 is a major inhibitor of dendritic cell maturation and function in Ixodes scapularis saliva. J. Immunol. 2007;179:1497–1505. doi: 10.4049/jimmunol.179.3.1497. PubMed DOI
Horka H., Staudt V., Klein M., Taube C., Reuter S., Dehzad N., Andersen J.F., Kopecky J., Schild H., Kotsyfakis M., et al. The Tick Salivary Protein Sialostatin L Inhibits the Th9-Derived Production of the Asthma-Promoting Cytokine IL-9 and Is Effective in the Prevention of Experimental Asthma. J. Immunol. 2012;188:2669–2676. doi: 10.4049/jimmunol.1100529. PubMed DOI PMC
Klein M., Bruhl T.J., Staudt V., Reuter S., Grebe N., Gerlitzki B., Hoffmann M., Bohn T., Ulges A., Stergiou N., et al. Tick Salivary Sialostatin L Represses the Initiation of Immune Responses by Targeting IRF4-Dependent Transcription in Murine Mast Cells. J. Immunol. 2015;195:621–631. doi: 10.4049/jimmunol.1401823. PubMed DOI PMC
Sa-Nunes A., Bafica A., Antonelli L.R., Choi E.Y., Francischetti I.M.B., Andersen J.F., Shi G.P., Chavakis T., Ribeiro J.M., Kotsyfakis M. The Immunomodulatory Action of Sialostatin L on Dendritic Cells Reveals Its Potential to Interfere with Autoimmunity. J. Immunol. 2009;182:7422–7429. doi: 10.4049/jimmunol.0900075. PubMed DOI PMC
Chen G., Wang X.W., Severo M.S., Sakhon O.S., Sohail M., Brown L.J., Sircar M., Snyder G.A., Sundberg E.J., Ulland T.K., et al. The Tick Salivary Protein Sialostatin L2 Inhibits Caspase-1-Mediated Inflammation during Anaplasma phagocytophilum Infection. Infect. Immun. 2014;82:2553–2564. doi: 10.1128/IAI.01679-14. PubMed DOI PMC
Lieskovska J., Palenikova J., Sirmarova J., Elsterova J., Kotsyfakis M., Chagas A.C., Calvo E., Ruzek D., Kopecky J. Tick salivary cystatin sialostatin L2 suppresses IFN responses in mouse dendritic cells. Parasite Immunol. 2015;37:70–78. doi: 10.1111/pim.12162. PubMed DOI
Sun T., Wang F.Q., Pan W., Wu Q.H., Wang J.W., Dai J.F. An Immunosuppressive Tick Salivary Gland Protein DsCystatin Interferes With Toll-Like Receptor Signaling by Downregulating TRAF6. Front. Immunol. 2018;9 doi: 10.3389/fimmu.2018.01245. PubMed DOI PMC
Kotal J., Stergiou N., Busa M., Chlastakova A., Berankova Z., Rezacova P., Langhansova H., Schwarz A., Calvo E., Kopecky J., et al. The structure and function of Iristatin, a novel immunosuppressive tick salivary cystatin. Cell. Mol. Life Sci. 2019;76:2003–2013. doi: 10.1007/s00018-019-03034-3. PubMed DOI PMC
Editorial: Special Issue on the "Molecular Biology of Disease Vectors"
Serpins in Tick Physiology and Tick-Host Interaction