Salivary Tick Cystatin OmC2 Targets Lysosomal Cathepsins S and C in Human Dendritic Cells
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28713775
PubMed Central
PMC5492865
DOI
10.3389/fcimb.2017.00288
Knihovny.cz E-zdroje
- Klíčová slova
- DPP1, cathepsin C, cathepsin S, cystatin OmC2, dendritic cells, dipeptidyl peptidase 1, lysosomal proteases, tick saliva,
- MeSH
- antigeny CD86 MeSH
- antigeny diferenciační B-lymfocytární MeSH
- buněčné linie MeSH
- cystatiny metabolismus MeSH
- dendritické buňky imunologie metabolismus MeSH
- epoxidové sloučeniny imunologie metabolismus MeSH
- geny MHC třídy II imunologie MeSH
- histokompatibilita - antigeny třídy II MeSH
- kathepsin C metabolismus MeSH
- kathepsiny chemie imunologie metabolismus MeSH
- klíšťata enzymologie MeSH
- lidé MeSH
- lyzozomy enzymologie MeSH
- Ornithodoros enzymologie MeSH
- rekombinantní proteiny MeSH
- sliny enzymologie MeSH
- tyrosin analogy a deriváty imunologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny CD86 MeSH
- antigeny diferenciační B-lymfocytární MeSH
- cathepsin S MeSH Prohlížeč
- cathestatin C MeSH Prohlížeč
- CTSC protein, human MeSH Prohlížeč
- cystatiny MeSH
- epoxidové sloučeniny MeSH
- histokompatibilita - antigeny třídy II MeSH
- invariant chain MeSH Prohlížeč
- kathepsin C MeSH
- kathepsiny MeSH
- rekombinantní proteiny MeSH
- tyrosin MeSH
To ensure successful feeding tick saliva contains a number of inhibitory proteins that interfere with the host immune response and help to create a permissive environment for pathogen transmission. Among the potential targets of the salivary cystatins are two host cysteine proteases, cathepsin S, which is essential for antigen- and invariant chain-processing, and cathepsin C (dipeptidyl peptidase 1, DPP1), which plays a critical role in processing and activation of the granule serine proteases. Here, the effect of salivary cystatin OmC2 from Ornithodoros moubata was studied using differentiated MUTZ-3 cells as a model of immature dendritic cells of the host skin. Following internalization, cystatin OmC2 was initially found to inhibit the activity of several cysteine cathepsins, as indicated by the decreased rates of degradation of fluorogenic peptide substrates. To identify targets, affinity chromatography was used to isolate His-tagged cystatin OmC2 together with the bound proteins from MUTZ-3 cells. Cathepsins S and C were identified in these complexes by mass spectrometry and confirmed by immunoblotting. Furthermore, reduced increase in the surface expression of MHC II and CD86, which are associated with the maturation of dendritic cells, was observed. In contrast, human inhibitor cystatin C, which is normally expressed and secreted by dendritic cells, did not affect the expression of CD86. It is proposed that internalization of salivary cystatin OmC2 by the host dendritic cells targets cathepsins S and C, thereby affecting their maturation.
Department of Biochemistry Molecular and Structural Biology Jožef Stefan InstituteLjubljana Slovenia
Faculty of Chemistry and Chemical Technology University of LjubljanaLjubljana Slovenia
Institute of Parasitology Biology Centre of the Czech Academy of SciencesČeské Budějovice Czechia
Zobrazit více v PubMed
Alvarez-Fernandez M., Barrett A. J., Gerhartz B., Dando P. M., Ni J., Abrahamson M. (1999). Inhibition of mammalian legumain by some cystatins is due to a novel second reactive site. J. Biol. Chem. 274, 19195–19203. 10.1074/jbc.274.27.19195 PubMed DOI
Blum J. S., Wearsch P. A., Cresswell P. (2013). Pathways of antigen processing. Annu. Rev. Immunol. 31, 443–473. 10.1146/annurev-immunol-032712-095910 PubMed DOI PMC
Carrega P., Ferlazzo G. (2012). Natural killer cell distribution and trafficking in human tissues. Front. Immunol. 3:347. 10.3389/fimmu.2012.00347 PubMed DOI PMC
Cavassani K. A., Aliberti J. C., Dias A. R., Silva J. S., Ferreira B. R. (2005). Tick saliva inhibits differentiation, maturation and function of murine bone-marrow-derived dendritic cells. Immunology 114, 235–245. 10.1111/j.1365-2567.2004.02079.x PubMed DOI PMC
Cimerman N., Prebanda M. T., Turk B., Popovic T., Dolenc I., Turk V. (1999). Interaction of cystatin C variants with papain and human cathepsins B, H and L. J. Enzyme Inhib. 14, 167–174. 10.3109/14756369909036552 PubMed DOI
Clausen B. E., Stoitzner P. (2015). Functional specialization of skin dendritic cell subsets in regulating T cell responses. Front. Immunol. 6:534. 10.3389/fimmu.2015.00534 PubMed DOI PMC
Cox J., Mann M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372. 10.1038/nbt.1511 PubMed DOI
Cox J., Neuhauser N., Michalski A., Scheltema R. A., Olsen J. V., Mann M. (2011). Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805. 10.1021/pr101065j PubMed DOI
Dahl S. W., Halkier T., Lauritzen C., Dolenc I., Pedersen J., Turk V., et al. (2001). Human recombinant pro-dipeptidyl peptidase I (cathepsin C) can be activated by cathepsins L and S but not by autocatalytic processing. Biochemistry 40, 1671–1678. 10.1021/bi001693z PubMed DOI
Díaz-Martin V., Manzano-Román R., Valero L., Oleaga A., Encinas-Grandes A., Pérez-Sánchez R. (2013). An insight into the proteome of the saliva of the argasid tick Ornithodoros moubata reveals important differences in saliva protein composition between the sexes. J. Proteomics 80, 216–235. 10.1016/j.jprot.2013.01.015 PubMed DOI
Driessen C., Bryant R. A., Lennon-Duménil A. M., Villadangos J. A., Bryant P. W., Shi G. P., et al. . (1999). Cathepsin S controls the trafficking and maturation of MHC class II molecules in dendritic cells. J. Cell Biol. 147, 775–790. 10.1083/jcb.147.4.775 PubMed DOI PMC
Fabricius D., Trzaska T., Jahrsdörfer B. (2016). Granzyme B produced by plasmacytoid dendritic cells promotes antigen uptake while suppressing premature T cell activation. Int. J. Vaccine Res. 1:3 10.15226/2473-2176/1/2/00113 DOI
Fialová A., Cimburek Z., Iezzi G., Kopecký J. (2010). Ixodes ricinus tick saliva modulates tick-borne encephalitis virus infection of dendritic cells. Microbes Infect. 12, 580–585. 10.1016/j.micinf.2010.03.015 PubMed DOI
Francischetti I. M., Sá-Nunes A., Mans B. J., Santos I. M., Ribeiro J. M. (2009). The role of saliva in tick feeding. Front. Biosci. 14, 2051–2088. 10.2741/3363 PubMed DOI PMC
Gregorio J., Meller S., Conrad C., Di Nardo A., Homey B., Lauerma A. (2010). Plasmacytoid dendritic cells sense skin injury and promote wound healing through type I interferons. J. Exp. Med. 207, 2921–2930. 10.1084/jem.20101102 PubMed DOI PMC
Grunclová L., Horn M., Vancová M., Sojka D., Franta Z., Mares M., et al. . (2006). Two secreted cystatins of the soft tick Ornithodoros moubata: differential expression pattern and inhibitory specificity. Biol. Chem. 387, 1635–1644. 10.1515/BC.2006.204 PubMed DOI
Guarino C., Hamon Y., Croix C., Lamort A. S., Dallet-Choisy S., Marchand-Adam S., et al. . (2017). Prolonged pharmacological inhibition of cathepsin C results in elimination of neutrophil serine proteases. Biochem. Pharmacol. 131, 52–67. 10.1016/j.bcp.2017.02.009 PubMed DOI
Guerra F., Bucci C. (2016). Multiple roles of the small GTPase Rab7. Cells 5:E34. 10.3390/cells5030034 PubMed DOI PMC
Hamilton G., Colbert J. D., Schuettelkopf A. W., Watts C. (2008). Cystatin F is a cathepsin C-directed protease inhibitor regulated by proteolysis. EMBO J. 27, 499–508. 10.1038/sj.emboj.7601979 PubMed DOI PMC
Hamon Y., Legowska M., Hervé V., Dallet-Choisy S., Marchand-Adam S., Vanderlynden L., et al. . (2016). Neutrophilic cathepsin C is maturated by a multistep proteolytic process and secreted by activated cells during inflammatory lung diseases. J. Biol. Chem. 291, 8486–8499. 10.1074/jbc.M115.707109 PubMed DOI PMC
Hashimoto S., Suzuki T., Dong H. Y., Nagai S., Yamazaki N., Matsushima K. (1999). Serial analysis of gene expression in human monocyte-derived dendritic cells. Blood 94, 845–852. PubMed
Huber L. A., Teis D. (2016). Lysosomal signaling in control of degradation pathways. Curr. Opin. Cell Biol. 39, 8–14. 10.1016/j.ceb.2016.01.006 PubMed DOI
Ishri R. K., Menzies S., Hersey P., Halliday G. M. (2004). Rapid downregulation of antigen processing enzymes in ex vivo generated human monocyte derived dendritic cells occur endogenously in extended cultures. Immunol. Cell Biol. 82, 239–246. 10.1046/j.1440-1711.2004.01237.x PubMed DOI
Jahrsdörfer B., Beyer T., Schrezenmeier H., Debatin K.-M., Fabricius D. (2014). Granzyme B is a key regulator of plasmacytoid dendritic cell immunogenicity. Blood 124:4127.
Kar S., Ukil A., Das P. K. (2009). Signaling events leading to the curative effect of cystatin on experimental visceral leishmaniasis: involvement of ERK1/2, NF-kappaB and JAK/STAT pathways. Eur. J. Immunol. 39, 741–751. 10.1002/eji.200838465 PubMed DOI
Kar S., Ukil A., Das P. K. (2011). Cystatin cures visceral leishmaniasis by NF-kappaB-mediated proinflammatory response through co-ordination of TLR/MyD88 signaling with p105-Tpl2-ERK pathway. Eur. J. Immunol. 41, 116–127. 10.1002/eji.201040533 PubMed DOI
Karczewski J., Endris R., Connolly T. M. (1994). Disagregin is a fibrinogen receptor antagonist lacking the Arg-Gly-Asp sequence from the tick, Ornithodoros moubata. J. Biol. Chem. 269, 6702–6708. PubMed
Kazimírová M., Štibrániová I. (2013). Tick salivary compounds: their role in modulation of host defences and pathogen transmission. Front. Cell. Infect. Microbiol. 3:43. 10.3389/fcimb.2013.00043 PubMed DOI PMC
Kim K. D., Choi S. C., Noh Y. W., Kim J. W., Paik S. G., Yang Y., et al. . (2006). Impaired responses of leukemic dendritic cells derived from a human myeloid cell line to LPS stimulation. Exp. Mol. Med. 38, 72–84. 10.1038/emm.2006.9 PubMed DOI
Kosten I. J., Spiekstra S. W., de Gruijl T. D., Gibbs S. (2015). MUTZ-3 derived Langerhans cells in human skin equivalents show differential migration and phenotypic plasticity after allergen or irritant exposure. Toxicol. Appl. Pharmacol. 287, 35–42. 10.1016/j.taap.2015.05.017 PubMed DOI
Kotál J., Langhansová H., Lieskovská J., Andersen J. F., Francischetti I. M., Chavakis T., et al. . (2015). Modulation of host immunity by tick saliva. J. Proteomics 128, 58–68. 10.1016/j.jprot.2015.07.005 PubMed DOI PMC
Kovár L. (2004). Tick saliva in anti-tick immunity and pathogen transmission. Folia Microbiol. 49, 327–336. 10.1007/BF02931051 PubMed DOI
Larsson K., Lindstedt M., Borrebaeck C. A. (2006). Functional and transcriptional profiling of MUTZ-3, a myeloid cell line acting as a model for dendritic cells. Immunology 117, 156–166. 10.1111/j.1365-2567.2005.02274.x PubMed DOI PMC
Le Naour F., Hohenkirk L., Grolleau A., Misek D. E., Lescure P., Geiger J. D., et al. . (2001). Profiling changes in gene expression during differentiation and maturation of monocyte-derived dendritic cells using both oligonucleotide microarrays and proteomics. J. Biol. Chem. 276, 17920–17931. 10.1074/jbc.M100156200 PubMed DOI
Lennon-Duménil A. M., Bakker A. H., Wolf-Bryant P., Ploegh H. L., Lagaudriere-Gesbert C. (2002). A closer look at proteolysis and MHC-class-II-restricted antigen presentation. Curr. Opin. Immunol. 14, 15–21. 10.1016/S0952-7915(01)00293-X PubMed DOI
Lennon-Duménil A. M., Roberts R. A., Valentijn K., Driessen C., Overkleeft H. S., Erickson A., et al. . (2001). The p41 isoform of invariant chain is a chaperone for cathepsin L. EMBO J. 20, 4055–4064. 10.1093/emboj/20.15.4055 PubMed DOI PMC
Lieskovská J., Páleniková J., Langhansová H., Campos Chagas A., Calvo E., Kotsyfakis M., et al. . (2015a). Tick sialostatins L and L2 differentially influence dendritic cell responses to Borrelia spirochetes. Parasit. Vectors 8:275. 10.1186/s13071-015-0887-1 PubMed DOI PMC
Lieskovská J., Páleniková J., Širmarová J., Elsterová J., Kotsyfakis M., Campos Chagas A., et al. . (2015b). Tick salivary cystatin sialostatin L2 suppresses IFN responses in mouse dendritic cells. Parasite Immunol. 37, 70–78. 10.1111/pim.12162 PubMed DOI
Lindner R. (2017). Invariant chain complexes and clusters as platforms for MIF signaling. Cells 6:E6. 10.3390/cells6010006 PubMed DOI PMC
Lundberg K., Albrekt A. S., Nelissen I., Santegoets S., de Gruijl T. D., Gibbs S., et al. . (2013). Transcriptional profiling of human dendritic cell populations and models–unique profiles of in vitro dendritic cells and implications on functionality and applicability. PLoS ONE 8:e52875. 10.1371/journal.pone.0052875 PubMed DOI PMC
Maher K., Konjar S., Watts C., Turk B., Kopitar-Jerala N. (2014). Cystatin F regulates proteinase activity in IL-2-activated natural killer cells. Protein Pept. Lett. 21, 957–965. 10.2174/0929866521666140403124146 PubMed DOI
Manoury B., Gregory W. F., Maizels R. M., Watts C. (2001). Bm-CPI-2, a cystatin homolog secreted by the filarial parasite Brugia malayi, inhibits class II MHC-restricted antigen processing. Curr. Biol. 11, 447–451. 10.1016/S0960-9822(01)00118-X PubMed DOI
Matsumoto F., Saitoh S., Fukui R., Kobayashi T., Tanimura N., Konno K., et al. . (2008). Cathepsins are required for Toll-like receptor 9 responses. Biochem. Biophys. Res. Commun. 367, 693–699. 10.1016/j.bbrc.2007.12.130 PubMed DOI
Mattila J. T., Maiello P., Sun T., Via L. E., Flynn J. L. (2015). Granzyme B-expressing neutrophils correlate with bacterial load in granulomas from Mycobacterium tuberculosis-infected cynomolgus macaques. Cell. Microbiol. 17, 1085–1097. 10.1111/cmi.12428 PubMed DOI PMC
Mihelič M., Doberšek A., Gunčar G., Turk D. (2008). Inhibitory fragment from the p41 form of invariant chain can regulate activity of cysteine cathepsins in antigen presentation. J. Biol. Chem. 283, 14453–14460. 10.1074/jbc.M801283200 PubMed DOI
Murray J., Manoury B., Balic A., Watts C., Maizels R. M. (2005). Bm-CPI-2, a cystatin from Brugia malayi nematode parasites, differs from Caenorhabditis elegans cystatins in a specific site mediating inhibition of the antigen-processing enzyme AEP. Mol. Biochem. Parasitol. 139, 197–203. 10.1016/j.molbiopara.2004.11.008 PubMed DOI
Nagy N., Vályi P., Csoma Z., Sulák A., Tripolszki K., Farkas K., et al. . (2014). CTSC and Papillon-Lefèvre syndrome: detection of recurrent mutations in Hungarian patients, a review of published variants and database update. Mol. Genet. Genomic Med. 2, 217–228. 10.1002/mgg3.61 PubMed DOI PMC
Nelissen I., Selderslaghs I., Heuvel R. V., Witters H., Verheyen G. R., Schoeters G. (2009). MUTZ-3-derived dendritic cells as an in vitro alternative model to CD34+ progenitor-derived dendritic cells for testing of chemical sensitizers. Toxicol. In Vitro 23, 1477–1481. 10.1016/j.tiv.2009.08.022 PubMed DOI
Nunn M. A., Sharma A., Paesen G. C., Adamson S., Lissina O., Willis A. C., et al. . (2005). Complement inhibitor of C5 activation from the soft tick Ornithodoros moubata. J. Immunol. 174, 2084–2091. 10.4049/jimmunol.174.4.2084 PubMed DOI
Obermajer N., Švajger U., Bogyo M., Jeras M., Kos J. (2008). Maturation of dendritic cells depends on proteolytic cleavage by cathepsin X. J. Leukoc. Biol. 84, 1306–1315. 10.1189/jlb.0508285 PubMed DOI PMC
Old W. M., Meyer-Arendt K., Aveline-Wolf L., Pierce K. G., Mendoza A., Sevinsky J. R., et al. . (2005). Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol. Cell. Proteomics 4, 1487–1502. 10.1074/mcp.M500084-MCP200 PubMed DOI
Parola P., Raoult D. (2001). Ticks and tickborne bacterial diseases in humans: an emerging infectious threat. Clin. Infect. Dis. 32, 897–928. 10.1086/319347 PubMed DOI
Pham C. T. (2006). Neutrophil serine proteases: specific regulators of inflammation. Nat. Rev. Immunol. 6, 541–550. 10.1038/nri1841 PubMed DOI
Pham C. T., Ley T. J. (1999). Dipeptidyl peptidase I is required for the processing and activation of granzymes A and B in vivo. Proc. Natl. Acad. Sci. U.S.A. 96, 8627–8632. 10.1073/pnas.96.15.8627 PubMed DOI PMC
Pierre P., Mellman I. (1998). Developmental regulation of invariant chain proteolysis controls MHC class II trafficking in mouse dendritic cells. Cell 93, 1135–1145. 10.1016/S0092-8674(00)81458-0 PubMed DOI
Poreba M., Mihelic M., Krai P., Rajkovic J., Krezel A., Pawelczak M., et al. . (2014). Unnatural amino acids increase activity and specificity of synthetic substrates for human and malarial cathepsin C. Amino Acids 46, 931–943. 10.1007/s00726-013-1654-2 PubMed DOI PMC
Preston S. G., Majtan J., Kouremenou C., Rysnik O., Burger L. F., Cabezas Cruz A., et al. . (2013). Novel immunomodulators from hard ticks selectively reprogramme human dendritic cell responses. PLoS Pathog. 9:e1003450. 10.1371/journal.ppat.1003450 PubMed DOI PMC
Rawlings N. D., Barrett A. J., Finn R. D. (2016). Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 44, D343–D350. 10.1093/nar/gkv1118 PubMed DOI PMC
Roche P. A., Furuta K. (2015). The ins and outs of MHC class II-mediated antigen processing and presentation. Nat. Rev. Immunol. 15, 203–216. 10.1038/nri3818 PubMed DOI PMC
Salát J., Paesen G. C., Rezácová P., Kotsyfakis M., Kovárová Z., Sanda M., et al. . (2010). Crystal structure and functional characterization of an immunomodulatory salivary cystatin from the soft tick Ornithodoros moubata. Biochem. J. 429, 103–112. 10.1042/BJ20100280 PubMed DOI PMC
Santegoets S. J., van den Eertwegh A. J., van de Loosdrecht A. A., Scheper R. J., de Gruijl T. D. (2008). Human dendritic cell line models for DC differentiation and clinical DC vaccination studies. J. Leukoc. Biol. 84, 1364–1373. 10.1189/jlb.0208092 PubMed DOI
Sá-Nunes A., Bafica A., Antonelli L. R., Choi E. Y., Francischetti I. M., Andersen J. F., et al. . (2009). The immunomodulatory action of sialostatin L on dendritic cells reveals its potential to interfere with autoimmunity. J. Immunol. 182, 7422–7429. 10.4049/jimmunol.0900075 PubMed DOI PMC
Schwarz A., Valdes J. J., Kotsyfakis M. (2012). The role of cystatins in tick physiology and blood feeding. Ticks Tick Borne Dis. 3, 117–127. 10.1016/j.ttbdis.2012.03.004 PubMed DOI PMC
Sepulveda F. E., Maschalidi S., Colisson R., Heslop L., Ghirelli C., Sakka E., et al. . (2009). Critical role for asparagine endopeptidase in endocytic Toll-like receptor signaling in dendritic cells. Immunity 31, 737–748. 10.1016/j.immuni.2009.09.013 PubMed DOI
Slámová M., Skallová A., Páleniková J., Kopecký J. (2011). Effect of tick saliva on immune interactions between Borrelia afzelii and murine dendritic cells. Parasite Immunol. 33, 654–660. 10.1111/j.1365-3024.2011.01332.x PubMed DOI
Sobotič B., Vizovišek M., Vidmar R., Van Damme P., Gocheva V., Joyce J. A., et al. . (2015). Proteomic identification of cysteine cathepsin substrates shed from the surface of cancer cells. Mol. Cell. Proteomics 14, 2213–2228. 10.1074/mcp.M114.044628 PubMed DOI PMC
Sojka D. K., Plougastel-Douglas B., Yang L., Pak-Wittel M. A., Artyomov M. N., Ivanova Y., et al. . (2014). Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells. eLife 3:e01659. 10.7554/eLife.01659 PubMed DOI PMC
Song J. S., Kim Y. J., Han K. U., Yoon B. D., Kim J. W. (2015). Zymosan and PMA activate the immune responses of Mutz3-derived dendritic cells synergistically. Immunol. Lett. 167, 41–46. 10.1016/j.imlet.2015.07.002 PubMed DOI
Stary G., Bangert C., Tauber M., Strohal R., Kopp T., Stingl G. (2007). Tumoricidal activity of TLR7/8-activated inflammatory dendritic cells. J. Exp. Med. 204, 1441–1451. 10.1084/jem.20070021 PubMed DOI PMC
Sulák A., Tóth L., Farkas K., Tripolszki K., Fábos B., Kemény L., et al. . (2016). One mutation, two phenotypes: a single nonsense mutation of the CTSC gene causes two clinically distinct phenotypes. Clin. Exp. Dermatol. 41, 190–195. 10.1111/ced.12710 PubMed DOI
Turk D., Janjić V., Štern I., Podobnik M., Lamba D., Dahl S. V., et al. . (2001). Structure of human dipeptidyl peptidase I (cathepsin C): exclusion domain added to an endopeptidase framework creates the machine for activation of granular serine proteases. EMBO J. 20, 6570–6582. 10.1093/emboj/20.23.6570 PubMed DOI PMC
Turk V., Stoka V., Vasiljeva O., Renko M., Sun T., Turk B., et al. . (2012). Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim. Biophys. Acta 1824, 68–88. 10.1016/j.bbapap.2011.10.002 PubMed DOI PMC
van de Locht A., Stubbs M. T., Bode W., Friedrich T., Bollschweiler C., Höffken W., et al. . (1996). The ornithodorin-thrombin crystal structure, a key to the TAP enigma? EMBO J. 15, 6011–6017. PubMed PMC
Waxman L., Connolly T. M. (1993). Isolation of an inhibitor selective for collagen-stimulated platelet aggregation from the soft tick Ornithodoros moubata. J. Biol. Chem. 268, 5445–5449. PubMed
Waxman L., Smith D. E., Arcuri K. E., Vlasuk G. P. (1990). Tick anticoagulant peptide (TAP) is a novel inhibitor of blood coagulation factor Xa. Science 248, 593–596. 10.1126/science.2333510 PubMed DOI
Wilgus T. A., Roy S., McDaniel J. C. (2013). Neutrophils and wound repair: positive actions and negative reactions. Adv. Wound Care 2, 379–388. 10.1089/wound.2012.0383 PubMed DOI PMC
Wu J., Wang Y., Liu H., Yang H., Ma D., Li J., et al. . (2010). Two immunoregulatory peptides with antioxidant activity from tick salivary glands. J. Biol. Chem. 285, 16606–16613. 10.1074/jbc.M109.094615 PubMed DOI PMC
Zavašnik-Bergant T. (2008). Cystatin protease inhibitors and immune functions. Front. Biosci. 13, 4625–4637. 10.2741/3028 PubMed DOI
Zavašnik-Bergant T., Bergant Marušič M. (2016). Exogenous Thyropin from p41 Invariant chain diminishes cysteine protease activity and affects IL-12 secretion during maturation of human dendritic cells. PLoS ONE 11:e0150815. 10.1371/journal.pone.0150815 PubMed DOI PMC
Zavašnik-Bergant T., Repnik U., Schweiger A., Romih R., Jeras M., Turk V., et al. . (2005). Differentiation- and maturation-dependent content, localization, and secretion of cystatin C in human dendritic cells. J. Leukoc. Biol. 78, 122–134. 10.1189/jlb.0804451 PubMed DOI
Insights into the Role of Tick Salivary Protease Inhibitors during Ectoparasite-Host Crosstalk