Tick sialostatins L and L2 differentially influence dendritic cell responses to Borrelia spirochetes
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25975355
PubMed Central
PMC4436792
DOI
10.1186/s13071-015-0887-1
PII: 10.1186/s13071-015-0887-1
Knihovny.cz E-zdroje
- MeSH
- Borrelia burgdorferi imunologie MeSH
- cystatiny farmakologie MeSH
- dendritické buňky účinky léků fyziologie MeSH
- klíště fyziologie MeSH
- kyseliny teichoové MeSH
- lipopolysacharidy MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- signální transdukce fyziologie MeSH
- sliny chemie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cystatiny MeSH
- kyseliny teichoové MeSH
- lipopolysacharidy MeSH
- lipoteichoic acid MeSH Prohlížeč
- sialostatin L, Ixodes scapularis MeSH Prohlížeč
BACKGROUND: Transmission of pathogens by ticks is greatly supported by tick saliva released during feeding. Dendritic cells (DC) act as immunological sentinels and interconnect the innate and adaptive immune system. They control polarization of the immune response towards Th1 or Th2 phenotype. We investigated whether salivary cystatins from the hard tick Ixodes scapularis, sialostatin L (Sialo L) and sialostatin L2 (Sialo L2), influence mouse dendritic cells exposed to Borrelia burgdorferi and relevant Toll-like receptor ligands. METHODS: DCs derived from bone-marrow by GM-CSF or Flt-3 ligand, were activated with Borrelia spirochetes or TLR ligands in the presence of 3 μM Sialo L and 3 μM Sialo L2. Produced chemokines and IFN-β were measured by ELISA test. The activation of signalling pathways was tested by western blotting using specific antibodies. The maturation of DC was determined by measuring the surface expression of CD86 by flow cytometry. RESULTS: We determined the effect of cystatins on the production of chemokines in Borrelia-infected bone-marrow derived DC. The production of MIP-1α was severely suppressed by both cystatins, while IP-10 was selectively inhibited only by Sialo L2. As TLR-2 is a major receptor activated by Borrelia spirochetes, we tested whether cystatins influence signalling pathways activated by TLR-2 ligand, lipoteichoic acid (LTA). Sialo L2 and weakly Sialo L attenuated the extracellular matrix-regulated kinase (Erk1/2) pathway. The activation of phosphatidylinositol-3 kinase (PI3K)/Akt pathway and nuclear factor-κB (NF-κB) was decreased only by Sialo L2. In response to Borrelia burgdorferi, the activation of Erk1/2 was impaired by Sialo L2. Production of IFN-β was analysed in plasmacytoid DC exposed to Borrelia, TLR-7, and TLR-9 ligands. Sialo L, in contrast to Sialo L2, decreased the production of IFN-β in pDC and also impaired the maturation of these cells. CONCLUSIONS: This study shows that DC responses to Borrelia spirochetes are affected by tick cystatins. Sialo L influences the maturation of DC thus having impact on adaptive immune response. Sialo L2 affects the production of chemokines potentially engaged in the development of inflammatory response. The impact of cystatins on Borrelia growth in vivo is discussed.
Zobrazit více v PubMed
Mason LM, Veerman CC, Geijtenbeek TB, Hovius JW. Menage a trois: Borrelia, dendritic cells, and tick saliva interactions. Trends Parasitol. 2014;30(2):95–103. doi: 10.1016/j.pt.2013.12.003. PubMed DOI
Berende A, Oosting M, Kullberg BJ, Netea MG, Joosten LA. Activation of innate host defense mechanisms by Borrelia. Eur Cytokine Netw. 2010;21(1):7–18. PubMed
Bolz DD, Sundsbak RS, Ma Y, Akira S, Kirschning CJ, Zachary JF, Weis JH, Weis JJ. MyD88 plays a unique role in host defense but not arthritis development in Lyme disease. J Immunol. 2004;173(3):2003–2010. doi: 10.4049/jimmunol.173.3.2003. PubMed DOI
Liu N, Montgomery RR, Barthold SW, Bockenstedt LK. Myeloid differentiation antigen 88 deficiency impairs pathogen clearance but does not alter inflammation in Borrelia burgdorferi-infected mice. Infect Immun. 2004;72(6):3195–3203. doi: 10.1128/IAI.72.6.3195-3203.2004. PubMed DOI PMC
Hirschfeld M, Kirschning CJ, Schwandner R, Wesche H, Weis JH, Wooten RM, Weis JJ. Cutting edge: inflammatory signaling by Borrelia burgdorferi lipoproteins is mediated by toll-like receptor 2. J Immunol. 1999;163(5):2382–2386. PubMed
Shin OS, Isberg RR, Akira S, Uematsu S, Behera AK, Hu LT. Distinct roles for MyD88 and Toll-like receptors 2, 5, and 9 in phagocytosis of Borrelia burgdorferi and cytokine induction. Infect Immun. 2008;76(6):2341–2351. doi: 10.1128/IAI.01600-07. PubMed DOI PMC
Salazar JC, Duhnam-Ems S, La Vake C, Cruz AR, Moore MW, Caimano MJ, Velez-Climent L, Shupe J, Krueger W, Radolf JD. Activation of human monocytes by live Borrelia burgdorferi generates TLR2-dependent and -independent responses which include induction of IFN-beta. PLoS Pathog. 2009;5(5):e1000444. doi: 10.1371/journal.ppat.1000444. PubMed DOI PMC
Cervantes JL, Dunham-Ems SM, La Vake CJ, Petzke MM, Sahay B, Sellati TJ, Radolf JD, Salazar JC. Phagosomal signaling by Borrelia burgdorferi in human monocytes involves Toll-like receptor (TLR) 2 and TLR8 cooperativity and TLR8-mediated induction of IFN-beta. Proc Natl Acad Sci U S A. 2011;108(9):3683–3688. doi: 10.1073/pnas.1013776108. PubMed DOI PMC
Petzke MM, Brooks A, Krupna MA, Mordue D, Schwartz I. Recognition of Borrelia burgdorferi, the Lyme disease spirochete, by TLR7 and TLR9 induces a type I IFN response by human immune cells. J Immunol. 2009;183(8):5279–5292. doi: 10.4049/jimmunol.0901390. PubMed DOI
Petnicki-Ocwieja T, Chung E, Acosta DI, Ramos LT, Shin OS, Ghosh S, Kobzik L, Li X, Hu LT. TRIF mediates Toll-like receptor 2-dependent inflammatory responses to Borrelia burgdorferi. Infect Immun. 2013;81(2):402–410. doi: 10.1128/IAI.00890-12. PubMed DOI PMC
Izadi H, Motameni AT, Bates TC, Olivera ER, Villar-Suarez V, Joshi I, Garg R, Osborne BA, Davis RJ, Rincon M, et al. c-Jun N-terminal kinase 1 is required for Toll-like receptor 1 gene expression in macrophages. Infect Immun. 2007;75(10):5027–5034. doi: 10.1128/IAI.00492-07. PubMed DOI PMC
Anguita J, Barthold SW, Persinski R, Hedrick MN, Huy CA, Davis RJ, Flavell RA, Fikrig E. Murine Lyme arthritis development mediated by p38 mitogen-activated protein kinase activity. J Immunol. 2002;168(12):6352–6357. doi: 10.4049/jimmunol.168.12.6352. PubMed DOI PMC
Behera AK, Thorpe CM, Kidder JM, Smith W, Hildebrand E, Hu LT. Borrelia burgdorferi-induced expression of matrix metalloproteinases from human chondrocytes requires mitogen-activated protein kinase and Janus kinase/signal transducer and activator of transcription signaling pathways. Infect Immun. 2004;72(5):2864–2871. doi: 10.1128/IAI.72.5.2864-2871.2004. PubMed DOI PMC
Shin OS, Miller LS, Modlin RL, Akira S, Uematsu S, Hu LT. Downstream signals for MyD88-mediated phagocytosis of Borrelia burgdorferi can be initiated by TRIF and are dependent on PI3K. J Immunol. 2009;183(1):491–498. doi: 10.4049/jimmunol.0900724. PubMed DOI PMC
Shin OS, Behera AK, Bronson RT, Hu LT. Role of novel protein kinase C isoforms in Lyme arthritis. Cell Microbiol. 2007;9(8):1987–1996. doi: 10.1111/j.1462-5822.2007.00929.x. PubMed DOI PMC
Kaisho T, Akira S. Regulation of dendritic cell function through Toll-like receptors. Curr Mol Med. 2003;3(4):373–385. doi: 10.2174/1566524033479726. PubMed DOI
Gautam A, Dixit S, Philipp MT, Singh SR, Morici LA, Kaushal D, Dennis VA. Interleukin-10 alters effector functions of multiple genes induced by Borrelia burgdorferi in macrophages to regulate Lyme disease inflammation. Infect Immun. 2011;79(12):4876–4892. doi: 10.1128/IAI.05451-11. PubMed DOI PMC
Chung Y, Zhang N, Wooten RM. Borrelia burgdorferi elicited-IL-10 suppresses the production of inflammatory mediators, phagocytosis, and expression of co-stimulatory receptors by murine macrophages and/or dendritic cells. PLoS One. 2013;8(12):e84980. doi: 10.1371/journal.pone.0084980. PubMed DOI PMC
Clark GJ, Angel N, Kato M, Lopez JA, MacDonald K, Vuckovic S, Hart DN. The role of dendritic cells in the innate immune system. Microbes Infect. 2000;2(3):257–272. doi: 10.1016/S1286-4579(00)00302-6. PubMed DOI
Lutz MB, Kukutsch N, Ogilvie AL, Rossner S, Koch F, Romani N, Schuler G. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods. 1999;223(1):77–92. doi: 10.1016/S0022-1759(98)00204-X. PubMed DOI
Brasel K, De Smedt T, Smith JL, Maliszewski CR. Generation of murine dendritic cells from flt3-ligand-supplemented bone marrow cultures. Blood. 2000;96(9):3029–3039. PubMed
Asselin-Paturel C, Boonstra A, Dalod M, Durand I, Yessaad N, Dezutter-Dambuyant C, Vicari A, O‘Garra A, Biron C, Briere F, et al. Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nat Immunol. 2001;2(12):1144–1150. doi: 10.1038/ni736. PubMed DOI
Pulendran B, Smith JL, Caspary G, Brasel K, Pettit D, Maraskovsky E, Maliszewski CR. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc Natl Acad Sci U S A. 1999;96(3):1036–1041. doi: 10.1073/pnas.96.3.1036. PubMed DOI PMC
Cavassani KA, Aliberti JC, Dias AR, Silva JS, Ferreira BR. Tick saliva inhibits differentiation, maturation and function of murine bone-marrow-derived dendritic cells. Immunology. 2005;114(2):235–245. doi: 10.1111/j.1365-2567.2004.02079.x. PubMed DOI PMC
Skallova A, Iezzi G, Ampenberger F, Kopf M, Kopecky J. Tick saliva inhibits dendritic cell migration, maturation, and function while promoting development of Th2 responses. J Immunol. 2008;180(9):6186–6192. doi: 10.4049/jimmunol.180.9.6186. PubMed DOI
Slamova M, Skallova A, Palenikova J, Kopecky J. Effect of tick saliva on immune interactions between Borrelia afzelii and murine dendritic cells. Parasite Immunol. 2011;33(12):654–660. doi: 10.1111/j.1365-3024.2011.01332.x. PubMed DOI
Sa-Nunes A, Bafica A, Lucas DA, Conrads TP, Veenstra TD, Andersen JF, Mather TN, Ribeiro JM, Francischetti IM. Prostaglandin E2 is a major inhibitor of dendritic cell maturation and function in Ixodes scapularis saliva. J Immunol. 2007;179(3):1497–1505. doi: 10.4049/jimmunol.179.3.1497. PubMed DOI
Oliveira CJ, Sa-Nunes A, Francischetti IM, Carregaro V, Anatriello E, Silva JS, Santos IK, Ribeiro JM, Ferreira BR. Deconstructing tick saliva: non-protein molecules with potent immunomodulatory properties. J Biol Chem. 2011;286(13):10960–10969. doi: 10.1074/jbc.M110.205047. PubMed DOI PMC
Hovius JW, de Jong MA, den Dunnen J, Litjens M, Fikrig E, van der Poll T, Gringhuis SI, Geijtenbeek TB. Salp15 binding to DC-SIGN inhibits cytokine expression by impairing both nucleosome remodeling and mRNA stabilization. PLoS Pathog. 2008;4(2) doi: 10.1371/journal.ppat.0040031. PubMed DOI PMC
Sa-Nunes A, Bafica A, Antonelli LR, Choi EY, Francischetti IM, Andersen JF, Shi GP, Chavakis T, Ribeiro JM, Kotsyfakis M. The immunomodulatory action of sialostatin L on dendritic cells reveals its potential to interfere with autoimmunity. J Immunol. 2009;182(12):7422–7429. doi: 10.4049/jimmunol.0900075. PubMed DOI PMC
Kotsyfakis M, Karim S, Andersen JF, Mather TN, Ribeiro JM. Selective cysteine protease inhibition contributes to blood-feeding success of the tick Ixodes scapularis. J Biol Chem. 2007;282(40):29256–29263. doi: 10.1074/jbc.M703143200. PubMed DOI
Kotsyfakis M, Sa-Nunes A, Francischetti IM, Mather TN, Andersen JF, Ribeiro JM. Antiinflammatory and immunosuppressive activity of sialostatin L, a salivary cystatin from the tick Ixodes scapularis. J Biol Chem. 2006;281(36):26298–26307. doi: 10.1074/jbc.M513010200. PubMed DOI
Francischetti IM, Sa-Nunes A, Mans BJ, Santos IM, Ribeiro JM. The role of saliva in tick feeding. Front Biosci. 2009;14:2051–2088. doi: 10.2741/3363. PubMed DOI PMC
Kotsyfakis M, Anderson JM, Andersen JF, Calvo E, Francischetti IM, Mather TN, Valenzuela JG, Ribeiro JM. Cutting edge: Immunity against a “silent” salivary antigen of the Lyme vector Ixodes scapularis impairs its ability to feed. J Immunol. 2008;181(8):5209–5212. doi: 10.4049/jimmunol.181.8.5209. PubMed DOI PMC
Kotsyfakis M, Horka H, Salat J, Andersen JF. The crystal structures of two salivary cystatins from the tick Ixodes scapularis and the effect of these inhibitors on the establishment of Borrelia burgdorferi infection in a murine model. Mol Microbiol. 2010;77(2):456–470. doi: 10.1111/j.1365-2958.2010.07220.x. PubMed DOI PMC
Chen G, Wang X, Severo MS, Sakhon OS, Sohail M, Brown LJ, Sircar M, Snyder GA, Sundberg EJ, Ulland TK, et al. The Tick Salivary Protein Sialostatin L2 Inhibits Caspase-1-Mediated Inflammation during Anaplasma phagocytophilum Infection. Infect Immun. 2014;82(6):2553–2564. doi: 10.1128/IAI.01679-14. PubMed DOI PMC
Lieskovska J, Kopecky J. Effect of tick saliva on signalling pathways activated by TLR-2 ligand and Borrelia afzelii in dendritic cells. Parasite Immunol. 2012;34(8-9):421–429. doi: 10.1111/j.1365-3024.2012.01375.x. PubMed DOI
Behera AK, Hildebrand E, Bronson RT, Perides G, Uematsu S, Akira S, Hu LT. MyD88 deficiency results in tissue-specific changes in cytokine induction and inflammation in interleukin-18-independent mice infected with Borrelia burgdorferi. Infect Immun. 2006;74(3):1462–1470. doi: 10.1128/IAI.74.3.1462-1470.2006. PubMed DOI PMC
Edwards AD, Diebold SS, Slack EM, Tomizawa H, Hemmi H, Kaisho T, Akira S, Reis e Sousa C. Toll-like receptor expression in murine DC subsets: lack of TLR7 expression by CD8 alpha + DC correlates with unresponsiveness to imidazoquinolines. Eur J Immunol. 2003;33(4):827–833. doi: 10.1002/eji.200323797. PubMed DOI
Sun Y, Liu G, Li Z, Chen Y, Liu Y, Liu B, Su Z. Modulation of dendritic cell function and immune response by cysteine protease inhibitor from murine nematode parasite Heligmosomoides polygyrus. Immunology. 2013;138(4):370–381. doi: 10.1111/imm.12049. PubMed DOI PMC
Megjugorac NJ, Young HA, Amrute SB, Olshalsky SL, Fitzgerald-Bocarsly P. Virally stimulated plasmacytoid dendritic cells produce chemokines and induce migration of T and NK cells. J Leukoc Biol. 2004;75(3):504–514. doi: 10.1189/jlb.0603291. PubMed DOI
Sjowall J, Carlsson A, Vaarala O, Bergstrom S, Ernerudh J, Forsberg P, Ekerfelt C. Innate immune responses in Lyme borreliosis: enhanced tumour necrosis factor-alpha and interleukin-12 in asymptomatic individuals in response to live spirochetes. Clin Exp Immunol. 2005;141(1):89–98. doi: 10.1111/j.1365-2249.2005.02820.x. PubMed DOI PMC
Severinova J, Salat J, Krocova Z, Reznickova J, Demova H, Horka H, Kopecky J. Co-inoculation of Borrelia afzelii with tick salivary gland extract influences distribution of immunocompetent cells in the skin and lymph nodes of mice. Folia Microbiol (Praha) 2005;50(5):457–463. doi: 10.1007/BF02931430. PubMed DOI
Kern A, Collin E, Barthel C, Michel C, Jaulhac B, Boulanger N. Tick saliva represses innate immunity and cutaneous inflammation in a murine model of Lyme disease. Vector Borne Zoonotic Dis. 2011;11(10):1343–1350. doi: 10.1089/vbz.2010.0197. PubMed DOI
Re F, Strominger JL. Toll-like receptor 2 (TLR2) and TLR4 differentially activate human dendritic cells. J Biol Chem. 2001;276(40):37692–37699. doi: 10.1074/jbc.M105927200. PubMed DOI
Park OJ, Han JY, Baik JE, Jeon JH, Kang SS, Yun CH, Oh JW, Seo HS, Han SH. Lipoteichoic acid of Enterococcus faecalis induces the expression of chemokines via TLR2 and PAFR signaling pathways. J Leukoc Biol. 2013;94(6):1275–1284. doi: 10.1189/jlb.1012522. PubMed DOI
Gautier G, Humbert M, Deauvieau F, Scuiller M, Hiscott J, Bates EE, Trinchieri G, Caux C, Garrone P. A type I interferon autocrine-paracrine loop is involved in Toll-like receptor-induced interleukin-12p70 secretion by dendritic cells. J Exp Med. 2005;201(9):1435–1446. doi: 10.1084/jem.20041964. PubMed DOI PMC
Leaman DW, Leung S, Li X, Stark GR. Regulation of STAT-dependent pathways by growth factors and cytokines. FASEB J. 1996;10(14):1578–1588. PubMed
Valledor AF, Sanchez-Tillo E, Arpa L, Park JM, Caelles C, Lloberas J, Celada A. Selective roles of MAPKs during the macrophage response to IFN-gamma. J Immunol. 2008;180(7):4523–4529. doi: 10.4049/jimmunol.180.7.4523. PubMed DOI
Lieskovska J, Palenikova J, Sirmarova J, Elsterova J, Kotsyfakis M, Campos-Chagas A, Calvo E, Ruzek D, Kopecky J. Tick salivary cystatin sialostatin L2 suppresses IFN responses in mouse dendritic cells. Parasite Immunol. 2014;37(2):70–8. doi: 10.1111/pim.12162. PubMed DOI
Sadik CD, Hunfeld KP, Bachmann M, Kraiczy P, Eberhardt W, Brade V, Pfeilschifter J, Muhl H. Systematic analysis highlights the key role of TLR2/NF-kappaB/MAP kinase signaling for IL-8 induction by macrophage-like THP-1 cells under influence of Borrelia burgdorferi lysates. Int J Biochem Cell Biol. 2008;40(11):2508–2521. doi: 10.1016/j.biocel.2008.04.014. PubMed DOI
Colonna M, Trinchieri G, Liu YJ. Plasmacytoid dendritic cells in immunity. Nat Immunol. 2004;5(12):1219–1226. doi: 10.1038/ni1141. PubMed DOI
Huber JP, Farrar JD. Regulation of effector and memory T-cell functions by type I interferon. Immunology. 2011;132(4):466–474. doi: 10.1111/j.1365-2567.2011.03412.x. PubMed DOI PMC
Zeidner N, Dreitz M, Belasco D, Fish D. Suppression of acute Ixodes scapularis-induced Borrelia burgdorferi infection using tumor necrosis factor-alpha, interleukin-2, and interferon-gamma. J Infect Dis. 1996;173(1):187–195. doi: 10.1093/infdis/173.1.187. PubMed DOI
Montoya M, Schiavoni G, Mattei F, Gresser I, Belardelli F, Borrow P, Tough DF. Type I interferons produced by dendritic cells promote their phenotypic and functional activation. Blood. 2002;99(9):3263–3271. doi: 10.1182/blood.V99.9.3263. PubMed DOI
Honda K, Sakaguchi S, Nakajima C, Watanabe A, Yanai H, Matsumoto M, Ohteki T, Kaisho T, Takaoka A, Akira S, et al. Selective contribution of IFN-alpha/beta signaling to the maturation of dendritic cells induced by double-stranded RNA or viral infection. Proc Natl Acad Sci U S A. 2003;100(19):10872–10877. doi: 10.1073/pnas.1934678100. PubMed DOI PMC
Ewald SE, Engel A, Lee J, Wang M, Bogyo M, Barton GM. Nucleic acid recognition by Toll-like receptors is coupled to stepwise processing by cathepsins and asparagine endopeptidase. J Exp Med. 2011;208(4):643–651. doi: 10.1084/jem.20100682. PubMed DOI PMC
Riese RJ, Wolf PR, Bromme D, Natkin LR, Villadangos JA, Ploegh HL, Chapman HA. Essential role for cathepsin S in MHC class II-associated invariant chain processing and peptide loading. Immunity. 1996;4(4):357–366. doi: 10.1016/S1074-7613(00)80249-6. PubMed DOI
The structure and function of Iristatin, a novel immunosuppressive tick salivary cystatin
Salivary Tick Cystatin OmC2 Targets Lysosomal Cathepsins S and C in Human Dendritic Cells
All For One and One For All on the Tick-Host Battlefield
Sialomes and Mialomes: A Systems-Biology View of Tick Tissues and Tick-Host Interactions