Tick salivary cystatin Iristatin limits the virus replication in skin of tick-borne encephalitis virus-infected mice

. 2025 Jan 17 ; 124 (1) : 8. [epub] 20250117

Jazyk angličtina Země Německo Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39821815

Grantová podpora
19-15678S Grantová Agentura České Republiky
19-15678S Grantová Agentura České Republiky
19-15678S Grantová Agentura České Republiky
19-15678S Grantová Agentura České Republiky
LX22NPO5103 European Union-Next Generation EU

Odkazy

PubMed 39821815
PubMed Central PMC11739226
DOI 10.1007/s00436-024-08441-5
PII: 10.1007/s00436-024-08441-5
Knihovny.cz E-zdroje

Tick-borne encephalitis virus (TBEV) is flavivirus transmitted to the host via tick saliva which contains various molecules with biological impacts. One of such molecules is Iristatin, a cysteine protease inhibitor from Ixodes ricinus that has been shown to have immunomodulatory properties. To characterize Iristatin in the relation to TBEV, we investigate whether this tick inhibitor has any capacity to influence TBEV infection. Mice were intradermally infected by TBEV with or without Iristatin and the viral multiplication was determined in skin and brain tissues by RT-PCR two and 5 days after infection. The viral RNA was detected in both intervals in skin and increased by time. The application of Iristatin caused a reduction in viral RNA in skin but not in the brain of infected mice 5 days post-infection. Moreover, anti-viral effect of Iristatin on skin was accompanied by a significant decline of interferon-stimulated gene 15 gene expression. The effect of Iristatin on TBEV replication was tested also in vitro in primary macrophages and dendritic cells; however, no changes were observed suggesting no direct interference of Iristatin with virus replication. Still, the Iristatin caused a suppression of Erk1/2 phosphorylation in TBEV-infected dendritic cells and had the anti-apoptotic effect. This is the first report showing that a tick cystatin decreases the viral RNA in the host skin, likely indirectly through creating skin environment that is less supportive for TBEV replication. Assuming, that viral RNA reflects the amount of infectious virus, decline of TBEV in host skin could influence the tick biology or virus transmission during cofeeding.

Zobrazit více v PubMed

Achazi K, Nitsche A, Patel P, Radonic A, Donoso Mantke O, Niedrig M (2011) Detection and differentiation of tick-borne encephalitis virus subtypes by a reverse transcription quantitative real-time PCR and pyrosequencing. J Virol Methods 171(1):34–39. 10.1016/j.jviromet.2010.09.026 PubMed

Albarnaz JD et al (2014) MEK/ERK activation plays a decisive role in yellow fever virus replication: implication as an antiviral therapeutic target. Antiviral Res 111:82–92. 10.1016/j.antiviral.2014.09.004 PubMed

Cargnello M, Roux PP (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 75(1):50–83. 10.1128/MMBR.00031-10 PubMed PMC

Chmelar J, Kotal J, Langhansova H, Kotsyfakis M (2017) Protease inhibitors in tick saliva: the role of serpins and cystatins in tick-host-pathogen interaction. Front Cell Infect Microbiol 7:216. 10.3389/fcimb.2017.00216 PubMed PMC

Conway MJ et al (2014) Mosquito saliva serine protease enhances dissemination of dengue virus into the mammalian host. J Virol 88(1):164–175. 10.1128/JVI.02235-13 PubMed PMC

de Oliveira LC et al (2020a) The small molecule AZD6244 inhibits dengue virus replication in vitro and protects against lethal challenge in a mouse model. Arch Virol 165(3):671–681. 10.1007/s00705-020-04524-7 PubMed

Etna MP et al (2021) Human plasmacytoid dendritic cells at the crossroad of type I interferon-regulated B cell differentiation and antiviral response to tick-borne encephalitis virus. PLoS Pathog 17(4):e1009505. 10.1371/journal.ppat.1009505 PubMed PMC

Francischetti IM, Sa-Nunes A, Mans BJ, Santos IM, Ribeiro JM (2009) The role of saliva in tick feeding. Front Biosci (Landmark Ed) 14(6):2051–2088. 10.2741/3363 PubMed PMC

Hart CE, Ribeiro JM, Kazimirova M, Thangamani S (2020) Tick-borne encephalitis virus infection alters the sialome of Ixodes ricinus ticks during the earliest stages of feeding. Front Cell Infect Microbiol 10:41. 10.3389/fcimb.2020.00041 PubMed PMC

Hermance ME, Thangamani S (2015) Tick saliva enhances Powassan virus transmission to the host, influencing its dissemination and the course of disease. J Virol 89(15):7852–7860. 10.1128/JVI.01056-15 PubMed PMC

Hermance ME, Santos RI, Kelly BC, Valbuena G, Thangamani S (2016) Immune cell targets of infection at the tick-skin interface during Powassan virus transmission. PLoS ONE 11(5):e0155889. 10.1371/journal.pone.0155889 PubMed PMC

Jones LD, Hodgson E, Nuttall PA (1989) Enhancement of virus transmission by tick salivary glands. J Gen Virol 70(Pt 7):1895–1898. 10.1099/0022-1317-70-7-1895 PubMed

Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11(5):373–384. 10.1038/ni.1863 PubMed

Kazimirova M et al (2017) Tick-borne viruses and biological processes at the tick-host-virus interface. Front Cell Infect Microbiol 7:339. 10.3389/fcimb.2017.00339 PubMed PMC

Kotal J et al (2015) Modulation of host immunity by tick saliva. J Proteomics 128:58–68. 10.1016/j.jprot.2015.07.005 PubMed PMC

Kotal J et al (2019) The structure and function of Iristatin, a novel immunosuppressive tick salivary cystatin. Cell Mol Life Sci 76(10):2003–2013. 10.1007/s00018-019-03034-3 PubMed PMC

Kotsyfakis M, Karim S, Andersen JF, Mather TN, Ribeiro JM (2007) Selective cysteine protease inhibition contributes to blood-feeding success of the tick Ixodes scapularis. J Biol Chem 282(40):29256–29263. 10.1074/jbc.M703143200 PubMed

Labuda M, Jones LD, Williams T, Nuttall PA (1993) Enhancement of tick-borne encephalitis virus transmission by tick salivary gland extracts. Med Vet Entomol 7(2):193–196. 10.1111/j.1365-2915.1993.tb00674.x PubMed

Labuda M et al (1996) Importance of localized skin infection in tick-borne encephalitis virus transmission. Virology 219(2):357–366. 10.1006/viro.1996.0261 PubMed

Lennette EHAKH (1944) Influence of age on the susceptibility of mice to infection with certain neurotropic viruses. Journal of Immunology 49(3):175-191

Lieskovska J et al (2015a) Tick sialostatins L and L2 differentially influence dendritic cell responses to Borrelia spirochetes. Parasit Vectors 8:275. 10.1186/s13071-015-0887-1 PubMed PMC

Lieskovska J et al (2015b) Tick salivary cystatin sialostatin L2 suppresses IFN responses in mouse dendritic cells. Parasite Immunol 37(2):70–78. 10.1111/pim.12162 PubMed

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408. 10.1006/meth.2001.1262 PubMed

Nuttall PA (2019) Tick saliva and its role in pathogen transmission. Wien Klin Wochenschr. 10.1007/s00508-019-1500-y PubMed PMC

Oliveira FAA et al (2020b) The first characterization of a cystatin and a cathepsin L-like peptidase from Aedes aegypti and their possible role in DENV infection by the modulation of apoptosis. Int J Biol Macromol 146:141–149. 10.1016/j.ijbiomac.2019.12.010 PubMed

Pingen M et al (2016) Host inflammatory response to mosquito bites enhances the severity of arbovirus infection. Immunity 44(6):1455–1469. 10.1016/j.immuni.2016.06.002 PubMed PMC

Porcelli S, Heckmann A, Lagrée AC, Galon C, Moutailler S, Deshuillers PL (2023) Exploring the susceptibility of C3H mice to tick-borne encephalitis virus infection: implications for co-infection models and understanding of the disease. Viruses-Basel 15(11) ARTN 227010.3390/v15112270 PubMed PMC

Ruzek D et al (2019) Tick-borne encephalitis in Europe and Russia: review of pathogenesis, clinical features, therapy, and vaccines. Antiviral Res 164:23–51. 10.1016/j.antiviral.2019.01.014 PubMed

Shah A, Bano B (2009) Cystatins in health and diseases. Int J Pept Res Ther 15(1):43. 10.1007/s10989-008-9160-1 PubMed PMC

Sim S, Ramirez JL, Dimopoulos G (2012) Dengue virus infection of the Aedes aegypti salivary gland and chemosensory apparatus induces genes that modulate infection and blood-feeding behavior. PLoS Pathog 8(3):e1002631. 10.1371/journal.ppat.1002631 PubMed PMC

Simo L, Kazimirova M, Richardson J, Bonnet SI (2017) The essential role of tick salivary glands and saliva in tick feeding and pathogen transmission. Front Cell Infect Microbiol 7:281. 10.3389/fcimb.2017.00281 PubMed PMC

Sun P et al (2020) A mosquito salivary protein promotes flavivirus transmission by activation of autophagy. Nat Commun 11(1):260. 10.1038/s41467-019-14115-z PubMed PMC

Turk V, Bode W (1991) The cystatins: protein inhibitors of cysteine proteinases. FEBS Lett 285(2):213–219. 10.1016/0014-5793(91)80804-c PubMed

Weber E et al (2014) Type I interferon protects mice from fatal neurotropic infection with Langat virus by systemic and local antiviral responses. J Virol 88(21):12202–12212. 10.1128/JVI.01215-14 PubMed PMC

Wu H et al (2024) Tick cysteine protease inhibitors suppress immune responses in mannan-induced psoriasis-like inflammation. Front Immunol 15:1344878. 10.3389/fimmu.2024.1344878 PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...