Tick cysteine protease inhibitors suppress immune responses in mannan-induced psoriasis-like inflammation

. 2024 ; 15 () : 1344878. [epub] 20240220

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38444844

Protease inhibitors regulate various biological processes and prevent host tissue/organ damage. Specific inhibition/regulation of proteases is clinically valuable for treating several diseases. Psoriasis affects the skin in the limbs and scalp of the body, and the contribution of cysteine and serine proteases to the development of skin inflammation is well documented. Cysteine protease inhibitors from ticks have high specificity, selectivity, and affinity to their target proteases and are efficient immunomodulators. However, their potential therapeutic effect on psoriasis pathogenesis remains to be determined. Therefore, we tested four tick cystatins (Sialostatin L, Sialostatin L2, Iristatin, and Mialostatin) in the recently developed, innate immunity-dependent mannan-induced psoriasis model. We explored the effects of protease inhibitors on clinical symptoms and histological features. In addition, the number and percentage of immune cells (dendritic cells, neutrophils, macrophages, and γδT cells) by flow cytometry, immunofluorescence/immunohistochemistry and, the expression of pro-inflammatory cytokines (TNF-a, IL-6, IL-22, IL-23, and IL-17 family) by qPCR were analyzed using skin, spleen, and lymph node samples. Tick protease inhibitors have significantly decreased psoriasis symptoms and disease manifestations but had differential effects on inflammatory responses and immune cell populations, suggesting different modes of action of these inhibitors on psoriasis-like inflammation. Thus, our study demonstrates, for the first time, the usefulness of tick-derived protease inhibitors for treating skin inflammation in patients.

Zobrazit více v PubMed

Dragin N, Bismuth J, Cizeron-Clairac G, Biferi MG, Berthault C, Serraf A, et al. . Estrogen-mediated downregulation of AIRE influences sexual dimorphism in autoimmune diseases. J Clin Invest (2016) 126(4):1525–37. doi: 10.1172/JCI81894. PubMed DOI PMC

Hayter SM, Cook MC. Updated assessment of the prevalence, spectrum and case definition of autoimmune disease. Autoimmun Rev (2012) 11:754–65. doi: 10.1016/j.autrev.2012.02.001. PubMed DOI

Knight J, Spain SL, Capon F, Hayday A, Nestle FO, Clop A, et al. . Conditional analysis identifies three novel major histocompatibility complex loci associated with psoriasis. Hum Mol Genet (2012) 21(23):5185–92. doi: 10.1093/hmg/dds344. PubMed DOI PMC

Armstrong AW, Read C. Pathophysiology, clinical presentation, and treatment of psoriasis: A review. JAMA (2020) 323:1945–60. doi: 10.1001/jama.2020.4006. PubMed DOI

Griffiths CEM, Armstrong AW, Gudjonsson JE, Barker JNWN. Psoriasis. Lancet (2021) 397(10281):1301–15. doi: 10.1016/S0140-6736(20)32549-6. PubMed DOI

Schafer PH, Parton A, Capone L, Cedzik D, Brady H, Evans JF, et al. . Apremilast is a selective PDE4 inhibitor with regulatory effects on innate immunity. Cell Signalling (2014) 26(9):2016–29. doi: 10.1016/j.cellsig.2014.05.014. PubMed DOI

Mayba JN, Gooderham MJ. Real-world experience with apremilast in treating psoriasis. J Cutan Med Surg (2017) 21:145–51. doi: 10.1177/1203475416676030. PubMed DOI

Papp K, Gordon K, Thaci D, Morita A, Gooderham M, Foley P, et al. . Phase 2 trial of selective tyrosine kinase 2 inhibition in psoriasis. N Engl J Med (2018) 379(14):1313–21. doi: 10.1056/NEJMoa1806382. PubMed DOI

Kotal J, Langhansova H, Lieskovska J, Andersen JF, Francischetti IM, Chavakis T, et al. . Modulation of host immunity by tick saliva. J Proteomics (2015) 128:58–68. doi: 10.1016/j.jprot.2015.07.005. PubMed DOI PMC

Francischetti IM, Sa-Nunes A, Mans BJ, Santos IM, Ribeiro JM. The role of saliva in tick feeding. Front Biosci (Landmark Ed) (2009) 14(6):2051–88. doi: 10.2741/3363. PubMed DOI PMC

Jmel MA, Aounallah H, Bensaoud C, Mekki I, Chmelar J, Faria F, et al. . Insights into the Role of Tick Salivary Protease Inhibitors during Ectoparasite-Host Crosstalk. Int J Mol Sci (2021) 22(2). doi: 10.3390/ijms22020892. PubMed DOI PMC

Valenzuela JG, Francischetti IM, Pham VM, Garfield MK, Mather TN, Ribeiro JM. Exploring the sialome of the tick Ixodes scapularis. J Exp Biol (2002) 205(Pt 18):2843–64. doi: 10.1242/jeb.205.18.2843. PubMed DOI

Medina JM, Jmel MA, Cuveele B, Gomez-Martin C, Aparicio-Puerta E, Mekki I, et al. . Transcriptomic analysis of the tick midgut and salivary gland responses upon repeated blood-feeding on a vertebrate host. Front Cell Infection Microbiol (2022) 12. doi: 10.3389/fcimb.2022.919786. PubMed DOI PMC

Jmel MA, Voet H, Araujo RN, Tirloni L, Sa-Nunes A, Kotsyfakis M. Tick salivary kunitz-type inhibitors: targeting host hemostasis and immunity to mediate successful blood feeding. Int J Mol Sci (2023) 24(2). doi: 10.3390/ijms24021556. PubMed DOI PMC

Sa-Nunes A, Bafica A, Antonelli LR, Choi EY, Francischetti IM, Andersen JF, et al. . The immunomodulatory action of sialostatin L on dendritic cells reveals its potential to interfere with autoimmunity. J Immunol (2009) 182(12):7422–9. doi: 10.4049/jimmunol.0900075. PubMed DOI PMC

Kotsyfakis M, Karim S, Andersen JF, Mather TN, Ribeiro JM. Selective cysteine protease inhibition contributes to blood-feeding success of the tick Ixodes scapularis. J Biol Chem (2007) 282(40):29256–63. doi: 10.1074/jbc.M703143200. PubMed DOI

Chen G, Wang X, Severo MS, Sakhon OS, Sohail M, Brown LJ, et al. . The tick salivary protein sialostatin L2 inhibits caspase-1-mediated inflammation during Anaplasma phagocytophilum infection. Infect Immun (2014) 82(6):2553–64. doi: 10.1128/IAI.01679-14. PubMed DOI PMC

Kotal J, Stergiou N, Busa M, Chlastakova A, Berankova Z, Rezacova P, et al. . The structure and function of Iristatin, a novel immunosuppressive tick salivary cystatin. Cell Mol Life Sci (2019) 76(10):2003–13. doi: 10.1007/s00018-019-03034-3. PubMed DOI PMC

Kotal J, Busa M, Urbanova V, Rezacova P, Chmelar J, Langhansova H, et al. . Mialostatin, a novel midgut cystatin from ixodes ricinus ticks: crystal structure and regulation of host blood digestion. Int J Mol Sci (2021) 22(10). doi: 10.3390/ijms22105371. PubMed DOI PMC

Kotsyfakis M, Horka H, Salat J, Andersen JF. The crystal structures of two salivary cystatins from the tick Ixodes scapularis and the effect of these inhibitors on the establishment of Borrelia burgdorferi infection in a murine model. Mol Microbiol (2010) 77:456–70. doi: 10.1111/j.1365-2958.2010.07220.x. PubMed DOI PMC

Chlastakova A, Kotal J, Berankova Z, Kascakova B, Martins LA, Langhansova H, et al. . Iripin-3, a new salivary protein isolated from ixodes ricinus ticks, displays immunomodulatory and anti-hemostatic properties in vitro. Front Immunol (2021) 12:626200. doi: 10.3389/fimmu.2021.626200. PubMed DOI PMC

Bordier C. Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem (1981) 256:1604–7. doi: 10.1016/S0021-9258(19)69848-0. PubMed DOI

Klein M, Bruhl TJ, Staudt V, Reuter S, Grebe N, Gerlitzki B, et al. . Tick salivary sialostatin L represses the initiation of immune responses by targeting IRF4-dependent transcription in murine mast cells. J Immunol (2015) 195(2):621–31. doi: 10.4049/jimmunol.1401823. PubMed DOI PMC

Wu HM, Zeng LH, Ou JX, Wang TT, Chen Y, Nandakumar KS. Estrogen acts through estrogen receptor-beta to promote mannan-induced psoriasis-like skin inflammation. Front Immunol (2022) 13. doi: 10.3389/fimmu.2022.818173. PubMed DOI PMC

Wu H, Ou J, Li K, Wang T, Nandakumar KS. Comparative studies on mannan and imiquimod induced experimental plaque psoriasis inflammation in inbred mice. Clin Exp Immunol (2023) 211(3):288–300. doi: 10.1093/cei/uxad004. PubMed DOI PMC

Wu H, Nandakumar KS. Epicutaneous application of mannan induces psoriasis-like inflammation in an inbred mouse strain. Bio Protoc (2023) 13:e4845. doi: 10.21769/BioProtoc.4845. PubMed DOI PMC

Baker BS, Brent L, Valdimarsson H, Powles AV, Alimara L, Walker M, et al. . Is epidermal-cell proliferation in psoriatic skin-grafts on nude-mice driven by T-cell derived cytokines. Br J Dermatol (1992) 126(2):105–10. doi: 10.1111/j.1365-2133.1992.tb07805.x. PubMed DOI

Horka H, Staudt V, Klein M, Taube C, Reuter S, Dehzad N, et al. . The tick salivary protein sialostatin L inhibits the th9-derived production of the asthma-promoting cytokine IL-9 and is effective in the prevention of experimental asthma. J Immunol (2012) 188(6):2669–76. doi: 10.4049/jimmunol.1100529. PubMed DOI PMC

Lieskovska J, Palenikova J, Sirmarova J, Elsterova J, Kotsyfakis M, Campos Chagas A, et al. . Tick salivary cystatin sialostatin L2 suppresses IFN responses in mouse dendritic cells. Parasite Immunol (2015) 37(2):70–8. doi: 10.1111/pim.12162 PubMed DOI

Wang X, Shaw DK, Sakhon OS, Snyder GA, Sundberg EJ, Santambrogio L, et al. . The tick protein sialostatin L2 binds to annexin A2 and inhibits NLRC4-mediated inflammasome activation. Infect Immun (2016) 84:1796–805. doi: 10.1128/IAI.01526-15. PubMed DOI PMC

Kotsyfakis M, Sa-Nunes A, Francischetti IM, Mather TN, Andersen JF, Ribeiro JM. Antiinflammatory and immunosuppressive activity of sialostatin L, a salivary cystatin from the tick Ixodes scapularis. J Biol Chem (2006) 281(36):26298–307. doi: 10.1074/jbc.M513010200. PubMed DOI

Ferrari G, Cook BD, Terushkin V, Pintucci G, Mignatti P. Transforming growth factor-beta 1 (TGF-beta 1) induces angiogenesis through vascular endothelial growth factor (VEGF)-mediated apoptosis. J Cell Physiol (2009) 219(2):449–58. doi: 10.1002/jcp.21706. PubMed DOI PMC

Kamata M, Tada Y. Dendritic cells and macrophages in the pathogenesis of psoriasis. Front Immunol (2022) 13:941071. doi: 10.3389/fimmu.2022.941071. PubMed DOI PMC

Stratis A, Pasparakis M, Rupec RA, Markur D, Hartmann K, Scharffetter-Kochanek K, et al. . Pathogenic role for skin macrophages in a mouse model of keratinocyte-induced psoriasis-like skin inflammation. J Clin Invest (2006) 116:2094–104. doi: 10.1172/JCI27179. PubMed DOI PMC

Khmaladze I, Kelkka T, Guerard S, Wing K, Pizzolla A, Saxena A, et al. . Mannan induces ROS-regulated, IL-17A-dependent psoriasis arthritis-like disease in mice. Proc Natl Acad Sci U.S.A (2014) 111:E3669–78. doi: 10.1073/pnas.1405798111. PubMed DOI PMC

Cai Y, Shen X, Ding C, Qi C, Li K, Li X, et al. . Pivotal role of dermal IL-17-producing gammadelta T cells in skin inflammation. Immunity (2011) 35:596–610. doi: 10.1016/j.immuni.2011.08.001. PubMed DOI PMC

Li B, Huang L, Lv P, Li X, Liu G, Chen Y, et al. . The role of Th17 cells in psoriasis. Immunol Res (2020) 68(5):296–309. doi: 10.1007/s12026-020-09149-1. PubMed DOI

Lowes MA, Bowcock AM, Krueger JG. Pathogenesis and therapy of psoriasis. Nature (2007) 445:866–73. doi: 10.1038/nature05663. PubMed DOI

Li H, Yao Q, Mariscal AG, Wu XD, Hulse J, Pedersen E, et al. . Epigenetic control of IL-23 expression in keratinocytes is important for chronic skin inflammation. Nat Commun (2018) 9. doi: 10.1038/s41467-018-03704-z. PubMed DOI PMC

Ma HL, Liang S, Li J, Napierata L, Brown T, Benoit S, et al. . IL-22 is required for Th17 cell-mediated pathology in a mouse model of psoriasis-like skin inflammation. J Clin Invest (2008) 118(2):597–607. doi: 10.1172/JCI33263. PubMed DOI PMC

Pantelyushin S, Haak S, Ingold B, Kulig P, Heppner FL, Navarini AA, et al. . Rorgammat+ innate lymphocytes and gammadelta T cells initiate psoriasiform plaque formation in mice. J Clin Invest (2012) 122(6):2252–6. doi: 10.1172/JCI61862. PubMed DOI PMC

Borowczyk J, Shutova M, Brembilla NC, Boehncke WH. IL-25 (IL-17E) in epithelial immunology and pathophysiology. J Allergy Clin Immunol (2021) 148(1):40–52. doi: 10.1016/j.jaci.2020.12.628. PubMed DOI

Glowacka E, Lewkowicz P, Rotsztejn H, Zalewska A. IL-8, IL-12 and IL-10 cytokines generation by neutrophils, fibroblasts and neutrophils- fibroblasts interaction in psoriasis. Adv Med Sci (2010) 55(2):254–60. doi: 10.2478/v10039-010-0037-0. PubMed DOI

Al-Robaee AA, Al-Zolibani AA, Al-Shobili HA, Kazamel A, Settin A. IL-10 implications in psoriasis. Int J Health Sci (Qassim) (2008) 2(1):53–8. PubMed PMC

Reich K. Response of psoriasis to interleukin-10 is associated with suppression of cutaneous type 1 inflammation, downregulation of the epidermal interleukin-8/CXCR2 pathway and normalization of keratinocyte maturation. J Invest Dermatol (2001) 116:829–9. doi: 10.1046/j.1523-1747.2001.01248.x. PubMed DOI

Hahn M, Ghoreschi K. The role of IL-4 in psoriasis. Expert Rev Clin Immunol (2017) 13:171–3. doi: 10.1080/1744666X.2017.1279054. PubMed DOI

Ghoreschi K, Thomas P, Breit S, Dugas M, Mailhammer R, van Eden W, et al. . Interleukin-4 therapy of psoriasis induces Th2 responses and improves human autoimmune disease. Nat Med (2003) 9(1):40–6. doi: 10.1038/nm804. PubMed DOI

Yang N, Matthew MA, Yao C. Roles of cysteine proteases in biology and pathogenesis of parasites. Microorganisms (2023) 11. doi: 10.3390/microorganisms11061397. PubMed DOI PMC

Schonefuss A, Wendt W, Schattling B, Schulten R, Hoffmann K, Stuecker M, et al. . Upregulation of cathepsin S in psoriatic keratinocytes. Exp Dermatol (2010) 19(8):e80–8. doi: 10.1111/j.1600-0625.2009.00990.x. PubMed DOI

Chmelar J, Kotal J, Kovarikova A, Kotsyfakis M. The use of tick salivary proteins as novel therapeutics. Front Physiol (2019) 10. doi: 10.3389/fphys.2019.00812. PubMed DOI PMC

Ryan C, Sadlier M, De Vol E, Patel M, Lloyd AA, Day A, et al. . Genital psoriasis is associated with significant impairment in quality of life and sexual functioning. J Am Acad Dermatol (2015) 72(6):978–83. doi: 10.1016/j.jaad.2015.02.1127. PubMed DOI

Singh S, Taylor C, Kornmehl H, Armstrong AW. Psoriasis and suicidality: A systematic review and meta-analysis. J Am Acad Dermatol (2017) 77(3):425–+. doi: 10.1016/j.jaad.2017.05.019. PubMed DOI

Hung WK, Tung TH, Wang TY, Liao SC, Chi CC. Risk for incident suicidality among psoriasis patients: a systematic review and meta-analysis. Arch Dermatol Res (2022) 315(3):455–65. doi: 10.1007/s00403-022-02377-5. PubMed DOI

Singh R, Koppu S, Perche PO, Feldman SR. The cytokine mediated molecular pathophysiology of psoriasis and its clinical implications. Int J Mol Sci (2021) 22(23). doi: 10.3390/ijms222312793. PubMed DOI PMC

Glatt S, Baeten D, Baker T, Griffiths M, Ionescu L, Lawson ADG, et al. . Dual IL-17A and IL-17F neutralisation by bimekizumab in psoriatic arthritis: evidence from preclinical experiments and a randomised placebo-controlled clinical trial that IL-17F contributes to human chronic tissue inflammation. Ann Rheum Dis (2018) 77(4):523–32. doi: 10.1136/annrheumdis-2017-212127. PubMed DOI PMC

Brembilla NC, Senra L, Boehncke WH. The IL-17 family of cytokines in psoriasis: IL-17A and beyond. Front Immunol (2018) 9:1682. doi: 10.3389/fimmu.2018.01682. PubMed DOI PMC

Hirai T, Kanda T, Sato K, Takaishi M, Nakajima K, Yamamoto M, et al. . Cathepsin K is involved in development of psoriasis-like skin lesions through TLR-dependent Th17 activation. J Immunol (2013) 190(9):4805–11. doi: 10.4049/jimmunol.1200901. PubMed DOI

Ainscough JS, Macleod T, McGonagle D, Brakefield R, Baron JM, Alase A, et al. . Cathepsin S is the major activator of the psoriasis-associated proinflammatory cytokine IL-36gamma. Proc Natl Acad Sci U.S.A (2017) 114:E2748–57. doi: 10.1073/pnas.1620954114. PubMed DOI PMC

Conrad C, Gilliet M. Psoriasis: from pathogenesis to targeted therapies. Clin Rev Allergy Immunol (2018) 54:102–13. doi: 10.1007/s12016-018-8668-1. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace