The Tick Protein Sialostatin L2 Binds to Annexin A2 and Inhibits NLRC4-Mediated Inflammasome Activation

. 2016 Jun ; 84 (6) : 1796-1805. [epub] 20160524

Jazyk angličtina Země Spojené státy americké Médium electronic-print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27045038

Grantová podpora
R01 AG045223 NIA NIH HHS - United States
R01 AI093653 NIAID NIH HHS - United States
R01 AI116523 NIAID NIH HHS - United States
R01 AI137198 NIAID NIH HHS - United States

Tick saliva contains a number of effector molecules that inhibit host immunity and facilitate pathogen transmission. How tick proteins regulate immune signaling, however, is incompletely understood. Here, we describe that loop 2 of sialostatin L2, an anti-inflammatory tick protein, binds to annexin A2 and impairs the formation of the NLRC4 inflammasome during infection with the rickettsial agent Anaplasma phagocytophilum Macrophages deficient in annexin A2 secreted significantly smaller amounts of interleukin-1β (IL-1β) and IL-18 and had a defect in NLRC4 inflammasome oligomerization and caspase-1 activation. Accordingly, Annexin a2-deficient mice were more susceptible to A. phagocytophilum infection and showed splenomegaly, thrombocytopenia, and monocytopenia. Providing translational support to our findings, better binding of annexin A2 to sialostatin L2 in sera from 21 out of 23 infected patients than in sera from control individuals was also demonstrated. Overall, we establish a unique mode of inflammasome evasion by a pathogen, centered on a blood-feeding arthropod.

Zobrazit více v PubMed

Fontaine A, Diouf I, Bakkali N, Misse D, Pages F, Fusai T, Rogier C, Almeras L. 2011. Implication of haematophagous arthropod salivary proteins in host-vector interactions. Parasit Vectors 4:187. doi:10.1186/1756-3305-4-187. PubMed DOI PMC

Chmelar J, Kotal J, Karim S, Kopacek P, Francischetti IM, Pedra JH, Kotsyfakis M. 2016. Sialomes and mialomes: a systems-biology view of tick tissues and tick-host interactions. Trends Parasitol 32:242–254. doi:10.1016/j.pt.2015.10.002. PubMed DOI PMC

Kotal J, Langhansova H, Lieskovska J, Andersen JF, Francischetti IM, Chavakis T, Kopecky J, Pedra JH, Kotsyfakis M, Chmelar J. 2015. Modulation of host immunity by tick saliva. J Proteomics 128:58–68. doi:10.1016/j.jprot.2015.07.005. PubMed DOI PMC

Sakhon OS, Severo MS, Kotsyfakis M, Pedra JH. 2013. A Nod to disease vectors: mitigation of pathogen sensing by arthropod saliva. Front Microbiol 4:308. doi:10.3389/fmicb.2013.00308. PubMed DOI PMC

Bernard Q, Jaulhac B, Boulanger N. 2014. Smuggling across the border: how arthropod-borne pathogens evade and exploit the host defense system of the skin. J Investig Dermatol 134:1211–1219. doi:10.1038/jid.2014.36. PubMed DOI

Wikel S. 2013. Ticks and tick-borne pathogens at the cutaneous interface: host defenses, tick countermeasures, and a suitable environment for pathogen establishment. Front Microbiol 4:337. doi:10.3389/fmicb.2013.00337. PubMed DOI PMC

Guo H, Callaway JB, Ting JP. 2015. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med 21:677–687. doi:10.1038/nm.3893. PubMed DOI PMC

Lage SL, Longo C, Branco LM, da Costa TB, Buzzo CDL, Bortoluci KR. 2014. Emerging concepts about NAIP/NLRC4 inflammasomes. Front Immunol 5:309. doi:10.3389/fimmu.2014.00309. PubMed DOI PMC

Vance RE. 2015. The NAIP/NLRC4 inflammasomes. Curr Opin Immunol 32:84–89. doi:10.1016/j.coi.2015.01.010. PubMed DOI PMC

Zhang L, Chen S, Ruan J, Wu J, Tong AB, Yin Q, Li Y, David L, Lu A, Wang WL, Marks C, Ouyang Q, Zhang X, Mao Y, Wu H. 2015. Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization. Science 350:404–409. doi:10.1126/science.aac5789. PubMed DOI PMC

Hu Z, Zhou Q, Zhang C, Fan S, Cheng W, Zhao Y, Shao F, Wang HW, Sui SF, Chai J. 2015. Structural and biochemical basis for induced self-propagation of NLRC4. Science 350:399–404. doi:10.1126/science.aac5489. PubMed DOI

Zhao Y, Yang J, Shi J, Gong YN, Lu Q, Xu H, Liu L, Shao F. 2011. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477:596–600. doi:10.1038/nature10510. PubMed DOI

Kofoed EM, Vance RE. 2011. Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477:592–595. doi:10.1038/nature10394. PubMed DOI PMC

Rayamajhi M, Zak DE, Chavarria-Smith J, Vance RE, Miao EA. 2013. Mouse NAIP1 detects the type III secretion system needle protein. J Immunol 191:3986–3989. doi:10.4049/jimmunol.1301549. PubMed DOI PMC

Yang J, Zhao Y, Shi J, Shao F. 2013. Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation. Proc Natl Acad Sci U S A 110:14408–14413. doi:10.1073/pnas.1306376110. PubMed DOI PMC

Chen G, Wang X, Severo MS, Sakhon OS, Sohail M, Brown LJ, Sircar M, Snyder GA, Sundberg EJ, Ulland TK, Olivier AK, Andersen JF, Zhou Y, Shi GP, Sutterwala FS, Kotsyfakis M, Pedra JH. 2014. The tick salivary protein sialostatin L2 inhibits caspase-1-mediated inflammation during Anaplasma phagocytophilum infection. Infect Immun 82:2553–2564. doi:10.1128/IAI.01679-14. PubMed DOI PMC

Pedra JH, Sutterwala FS, Sukumaran B, Ogura Y, Qian F, Montgomery RR, Flavell RA, Fikrig E. 2007. ASC/PYCARD and caspase-1 regulate the IL-18/IFN-γ axis during Anaplasma phagocytophilum infection. J Immunol 179:4783–4791. doi:10.4049/jimmunol.179.7.4783. PubMed DOI

Scharf B, Clement CC, Wu XX, Morozova K, Zanolini D, Follenzi A, Larocca JN, Levon K, Sutterwala FS, Rand J, Cobelli N, Purdue E, Hajjar KA, Santambrogio L. 2012. Annexin A2 binds to endosomes following organelle destabilization by particulate wear debris. Nat Commun 3:755. doi:10.1038/ncomms1754. PubMed DOI PMC

Tennant SM, Wang JY, Galen JE, Simon R, Pasetti MF, Gat O, Levine MM. 2011. Engineering and preclinical evaluation of attenuated nontyphoidal Salmonella strains serving as live oral vaccines and as reagent strains. Infect Immun 79:4175–4185. doi:10.1128/IAI.05278-11. PubMed DOI PMC

Tovchigrechko A, Vakser IA. 2006. GRAMM-X public Web server for protein-protein docking. Nucleic Acids Res 34:W310–W314. doi:10.1093/nar/gkl206. PubMed DOI PMC

Pierce BG, Wiehe K, Hwang H, Kim BH, Vreven T, Weng Z. 2014. ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics 30:1771–1773. doi:10.1093/bioinformatics/btu097. PubMed DOI PMC

Baugh EH, Lyskov S, Weitzner BD, Gray JJ. 2011. Real-time PyMOL visualization for Rosetta and PyRosetta. PLoS One 6:e21931. doi:10.1371/journal.pone.0021931. PubMed DOI PMC

Tenthorey JL, Kofoed EM, Daugherty MD, Malik HS, Vance RE. 2014. Molecular basis for specific recognition of bacterial ligands by NAIP/NLRC4 inflammasomes. Mol Cell 54:17–29. doi:10.1016/j.molcel.2014.02.018. PubMed DOI PMC

Lepidi H, Bunnell JE, Martin ME, Madigan JE, Stuen S, Dumler JS. 2000. Comparative pathology, and immunohistology associated with clinical illness after Ehrlichia phagocytophila-group infections. Am J Trop Med Hyg 62:29–37. PubMed

Dumler JS, Barat NC, Barat CE, Bakken JS. 2007. Human granulocytic anaplasmosis and macrophage activation. Clin Infect Dis 45:199–204. doi:10.1086/518834. PubMed DOI

Choi KS, Scorpio DG, Dumler JS. 2004. Anaplasma phagocytophilum ligation to Toll-like receptor (TLR) 2, but not to TLR4, activates macrophages for nuclear factor-κB nuclear translocation. J Infect Dis 189:1921–1925. doi:10.1086/386284. PubMed DOI

Bakken JS, Dumler JS. 2015. Human granulocytic anaplasmosis. Infect Dis Clin North Am 29:341–355. doi:10.1016/j.idc.2015.02.007. PubMed DOI PMC

Choi KS, Scorpio DG, Dumler JS. 2014. Stat1 negatively regulates immune-mediated injury with Anaplasma phagocytophilum infection. J Immunol 193:5088–5098. doi:10.4049/jimmunol.1401381. PubMed DOI PMC

Dunning Hotopp JC, Lin M, Madupu R, Crabtree J, Angiuoli SV, Eisen JA, Seshadri R, Ren Q, Wu M, Utterback TR, Smith S, Lewis M, Khouri H, Zhang C, Niu H, Lin Q, Ohashi N, Zhi N, Nelson W, Brinkac LM, Dodson RJ, Rosovitz MJ, Sundaram J, Daugherty SC, Davidsen T, Durkin AS, Gwinn M, Haft DH, Selengut JD, Sullivan SA, Zafar N, Zhou L, Benahmed F, Forberger H, Halpin R, Mulligan S, Robinson J, White O, Rikihisa Y, Tettelin H. 2006. Comparative genomics of emerging human ehrlichiosis agents. PLoS Genet 2:e21. doi:10.1371/journal.pgen.0020021. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...