Tick extracellular vesicles enable arthropod feeding and promote distinct outcomes of bacterial infection
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
R01 AI116620
NIAID NIH HHS - United States
UL1 TR001863
NCATS NIH HHS - United States
R01 AI123129
NIAID NIH HHS - United States
R21 AI165520
NIAID NIH HHS - United States
R01 AI116523
NIAID NIH HHS - United States
R01 AI134696
NIAID NIH HHS - United States
R01 AI049424
NIAID NIH HHS - United States
F31 AI152215
NIAID NIH HHS - United States
R01 AR073665
NIAMS NIH HHS - United States
F31 AI138440
NIAID NIH HHS - United States
R01 AR069502
NIAMS NIH HHS - United States
R01 HL141611
NHLBI NIH HHS - United States
P01 AI138949
NIAID NIH HHS - United States
PubMed
34140472
PubMed Central
PMC8211691
DOI
10.1038/s41467-021-23900-8
PII: 10.1038/s41467-021-23900-8
Knihovny.cz E-zdroje
- MeSH
- Anaplasma phagocytophilum patogenita MeSH
- bakteriální infekce imunologie metabolismus MeSH
- buněčné linie MeSH
- členovci metabolismus mikrobiologie fyziologie MeSH
- Dermacentor metabolismus mikrobiologie fyziologie MeSH
- extracelulární vezikuly metabolismus ultrastruktura MeSH
- Francisella tularensis patogenita MeSH
- genová ontologie MeSH
- intravitální mikroskopie MeSH
- klíšťata metabolismus mikrobiologie MeSH
- klíště metabolismus mikrobiologie fyziologie MeSH
- kůže imunologie mikrobiologie parazitologie MeSH
- lidé MeSH
- membránový protein 2 asociovaný s vezikuly metabolismus MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši MeSH
- proteiny R-SNARE metabolismus MeSH
- proteomika MeSH
- T-lymfocyty metabolismus MeSH
- tandemová hmotnostní spektrometrie MeSH
- transmisní elektronová mikroskopie MeSH
- zánět imunologie metabolismus parazitologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- membránový protein 2 asociovaný s vezikuly MeSH
- proteiny R-SNARE MeSH
Extracellular vesicles are thought to facilitate pathogen transmission from arthropods to humans and other animals. Here, we reveal that pathogen spreading from arthropods to the mammalian host is multifaceted. Extracellular vesicles from Ixodes scapularis enable tick feeding and promote infection of the mildly virulent rickettsial agent Anaplasma phagocytophilum through the SNARE proteins Vamp33 and Synaptobrevin 2 and dendritic epidermal T cells. However, extracellular vesicles from the tick Dermacentor andersoni mitigate microbial spreading caused by the lethal pathogen Francisella tularensis. Collectively, we establish that tick extracellular vesicles foster distinct outcomes of bacterial infection and assist in vector feeding by acting on skin immunity. Thus, the biology of arthropods should be taken into consideration when developing strategies to control vector-borne diseases.
Centers for Disease Control and Prevention Atlanta GA USA
Department of Biological Sciences Old Dominion University Norfolk VA USA
Department of Dermatology Johns Hopkins University School of Medicine Baltimore MD USA
Department of Entomology Texas A and M University College Station TX USA
Department of Medicine University of Maryland School of Medicine Baltimore MD USA
Department of Microbiology and Immunology Albert Einstein College of Medicine Bronx NY USA
Department of Microbiology and Immunology University of Maryland School of Medicine Baltimore MD USA
Department of Pathology Albert Einstein College of Medicine Bronx NY USA
Department of Pediatrics University of Maryland School of Medicine Baltimore MD USA
Department of Veterinary Medicine University of Maryland College Park MD USA
Department of Veterinary Microbiology and Pathology Washington State University Pullman WA USA
Excerpta Medica Doylestown PA USA
Fischell Department of Bioengineering University of Maryland College Park MD USA
Immunology Janssen Research and Development Spring House PA USA
USDA ARS Animal Disease Research Unit Washington State University Pullman WA USA
USDA ARS Invasive Insect Biocontrol and Behavior Laboratory Beltsville MD USA
Zobrazit více v PubMed
WHO. Vector-borne Diseases (2017).
Nuttall P. A. Tick saliva and its role in pathogen transmission. Wiener Klinische Wochenschrift10.1007/s00508-019-1500-y (2019). PubMed PMC
Simo L, Kazimirova M, Richardson J, Bonnet SI. The essential role of tick salivary glands and saliva in tick feeding and pathogen transmission. Front. Cell. Infect. Microbiol. 2017;7:281. doi: 10.3389/fcimb.2017.00281. PubMed DOI PMC
Wikel S. Ticks and tick-borne pathogens at the cutaneous interface: host defenses, tick countermeasures, and a suitable environment for pathogen establishment. Front. Microbiol. 2013;4:337. doi: 10.3389/fmicb.2013.00337. PubMed DOI PMC
Titus RG, Ribeiro JM. Salivary gland lysates from the sand fly Lutzomyia longipalpis enhance Leishmania infectivity. Science. 1988;239:1306–1308. doi: 10.1126/science.3344436. PubMed DOI
Limesand KH, Higgs S, Pearson LD, Beaty BJ. Potentiation of vesicular stomatitis New Jersey virus infection in mice by mosquito saliva. Parasite Immunol. 2000;22:461–467. doi: 10.1046/j.1365-3024.2000.00326.x. PubMed DOI
Cox J, Mota J, Sukupolvi-Petty S, Diamond MS, Rico-Hesse R. Mosquito bite delivery of dengue virus enhances immunogenicity and pathogenesis in humanized mice. J. Virol. 2012;86:7637–7649. doi: 10.1128/JVI.00534-12. PubMed DOI PMC
Fialova A, Cimburek Z, Iezzi G, Kopecky J. Ixodes ricinus tick saliva modulates tick-borne encephalitis virus infection of dendritic cells. Microbes Infect. 2010;12:580–585. doi: 10.1016/j.micinf.2010.03.015. PubMed DOI
Wang X, et al. The tick protein Sialostatin L2 binds to Annexin A2 and inhibits NLRC4-mediated inflammasome activation. Infect. Immun. 2016;84:1796–1805. doi: 10.1128/IAI.01526-15. PubMed DOI PMC
Marchal C, et al. Antialarmin effect of tick saliva during the transmission of Lyme disease. Infect. Immun. 2011;79:774–785. doi: 10.1128/IAI.00482-10. PubMed DOI PMC
Ramamoorthi N, et al. The Lyme disease agent exploits a tick protein to infect the mammalian host. Nature. 2005;436:573–577. doi: 10.1038/nature03812. PubMed DOI PMC
Titus RG, Bishop JV, Mejia JS. The immunomodulatory factors of arthropod saliva and the potential for these factors to serve as vaccine targets to prevent pathogen transmission. Parasite Immunol. 2006;28:131–141. PubMed
Pingen M, et al. Host inflammatory response to mosquito bites enhances the severity of arbovirus infection. Immunity. 2016;44:1455–1469. doi: 10.1016/j.immuni.2016.06.002. PubMed DOI PMC
Peters NC, et al. In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science. 2008;321:970–974. doi: 10.1126/science.1159194. PubMed DOI PMC
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367:eaau6977. doi: 10.1126/science.aau6977. PubMed DOI PMC
Pegtel D. M., Gould S. J. Exosomes. Ann. Rev. Biochem.88, 487–514 (2019). PubMed
Mathieu M, Martin-Jaular L, Lavieu G, Thery C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol. 2019;21:9–17. doi: 10.1038/s41556-018-0250-9. PubMed DOI
Zhou W, Woodson M, Sherman MB, Neelakanta G, Sultana H. Exosomes mediate Zika virus transmission through SMPD3 neutral Sphingomyelinase in cortical neurons. Emerg. Microbes Infect. 2019;8:307–326. doi: 10.1080/22221751.2019.1578188. PubMed DOI PMC
Vora A, et al. Arthropod EVs mediate dengue virus transmission through interaction with a tetraspanin domain containing glycoprotein Tsp29Fb. Proc. Natl Acad. Sci. USA. 2018;115:E6604–E6613. doi: 10.1073/pnas.1720125115. PubMed DOI PMC
Regmi P, Khanal S, Neelakanta G, Sultana H. Tick-borne flavivirus inhibits Sphingomyelinase (IsSMase), a venomous spider ortholog to increase sphingomyelin lipid levels for its survival in Ixodes scapularis Ticks. Front. Cell. Infect. Microbiol. 2020;10:244. doi: 10.3389/fcimb.2020.00244. PubMed DOI PMC
Gold AS, et al. Dengue virus infection of Aedes aegypti alters extracellular vesicle protein cargo to enhance virus transmission. Int. J. Mol. Sci. 2020;21:6609. doi: 10.3390/ijms21186609. PubMed DOI PMC
Nawaz M, et al. Proteomic analysis of exosome-like vesicles isolated from saliva of the tick Haemaphysalis longicornis. Front. Cell. Infect. Microbiol. 2020;10:542319. doi: 10.3389/fcimb.2020.542319. PubMed DOI PMC
Nawaz M, et al. miRNA profile of extracellular vesicles isolated from saliva of Haemaphysalis longicornis tick. Acta Tropica. 2020;212:105718. doi: 10.1016/j.actatropica.2020.105718. PubMed DOI
Eisen RJ, Eisen L. The blacklegged tick, Ixodes scapularis: an increasing public health concern. Trends Parasitol. 2018;34:295–309. doi: 10.1016/j.pt.2017.12.006. PubMed DOI PMC
Kendall BL, et al. Characterization of flavivirus infection in salivary gland cultures from male Ixodes scapularis ticks. PLoS Negl. Trop. Dis. 2020;14:e0008683. doi: 10.1371/journal.pntd.0008683. PubMed DOI PMC
Grabowski JM, et al. Dissecting flavivirus biology in salivary gland cultures from fed and unfed Ixodes scapularis (Black-Legged Tick) mBio. 2019;10:e02628–18. doi: 10.1128/mBio.02628-18. PubMed DOI PMC
Grabowski JM, et al. Flavivirus infection of Ixodes scapularis (Black-Legged Tick) Ex Vivo organotypic cultures and applications for disease control. mBio. 2017;8:e01255–17. doi: 10.1128/mBio.01255-17. PubMed DOI PMC
Nielsen MM, Witherden DA, Havran WL. γδ T cells in homeostasis and host defence of epithelial barrier tissues. Nat. Rev. Immunol. 2017;17:733–745. doi: 10.1038/nri.2017.101. PubMed DOI PMC
Havran WL, Jameson JM. Epidermal T cells and wound healing. J. Immunol. 2010;184:5423–5428. doi: 10.4049/jimmunol.0902733. PubMed DOI PMC
Hayday AC. γδ T cell update: adaptate orchestrators of immune surveillance. J. Immunol. 2019;203:311–320. doi: 10.4049/jimmunol.1800934. PubMed DOI
Havran WL. Specialized antitumor functions for skin γδ T cells. J. Immunol. 2018;200:3029–3030. doi: 10.4049/jimmunol.1800356. PubMed DOI
Macleod AS, Havran WL. Functions of skin-resident γδ T cells. Cell. Mol. Life Sci. 2011;68:2399–2408. doi: 10.1007/s00018-011-0702-x. PubMed DOI PMC
Ribot JC, Lopes N, Silva-Santos B. γδ T cells in tissue physiology and surveillance. Nat. Rev. Immunol. 2020;21:221–232. doi: 10.1038/s41577-020-00452-4. PubMed DOI
Jameson J, et al. A role for skin γδ T cells in wound repair. Science. 2002;296:747–749. doi: 10.1126/science.1069639. PubMed DOI
Hayday AC, Vantourout P. The innate biologies of adaptive antigen receptors. Annu. Rev. Immunol. 2020;38:487–510. doi: 10.1146/annurev-immunol-102819-023144. PubMed DOI
Gulia-Nuss M, et al. Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nat. Commun. 2016;7:10507. doi: 10.1038/ncomms10507. PubMed DOI PMC
Jaworski DC, Cheng C, Nair AD, Ganta RR. Amblyomma americanum ticks infected with in vitro cultured wild-type and mutants of Ehrlichia chaffeensis are competent to produce infection in naive deer and dogs. Ticks Tick. Borne Dis. 2017;8:60–64. doi: 10.1016/j.ttbdis.2016.09.017. PubMed DOI PMC
Reif KE, Ujczo JK, Alperin DC, Noh SM. Francisella tularensis novicida infection competence differs in cell lines derived from United States populations of Dermacentor andersoni and Ixodes scapularis. Sci. Rep. 2018;8:12685. doi: 10.1038/s41598-018-30419-4. PubMed DOI PMC
de la Fuente J. Controlling ticks and tick-borne diseases looking forward. Ticks Tick. Borne Dis. 2018;9:1354–1357. doi: 10.1016/j.ttbdis.2018.04.001. PubMed DOI
Zhang H, et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat. Cell Biol. 2018;20:332–343. doi: 10.1038/s41556-018-0040-4. PubMed DOI PMC
Zhou W, et al. Discovery of exosomes from tick saliva and salivary glands reveals therapeutic roles for CXCL12 and IL-8 in wound healing at the tick–human skin interface. Front. Cell Dev. Biol. 2020;8:554. doi: 10.3389/fcell.2020.00554. PubMed DOI PMC
Suzuki YJ. Oxidant-mediated protein amino acid conversion. Antioxidants. 2019;8:50. doi: 10.3390/antiox8020050. PubMed DOI PMC
Sprong H, et al. ANTIDotE: anti-tick vaccines to prevent tick-borne diseases in Europe. Parasit. Vectors. 2014;7:77. doi: 10.1186/1756-3305-7-77. PubMed DOI PMC
Hoshino A, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527:329–335. doi: 10.1038/nature15756. PubMed DOI PMC
Wallace PK, et al. Tracking antigen-driven responses by flow cytometry: monitoring proliferation by dye dilution. Cytometry A. 2008;73:1019–1034. doi: 10.1002/cyto.a.20619. PubMed DOI
Glatz M, Means T, Haas J, Steere AC, Mullegger RR. Characterization of the early local immune response to Ixodes ricinus tick bites in human skin. Exp. Dermatol. 2017;26:263–269. doi: 10.1111/exd.13207. PubMed DOI PMC
McKenzie DR, et al. IL-17-producing γδ T cells switch migratory patterns between resting and activated states. Nat. Commun. 2017;8:15632. doi: 10.1038/ncomms15632. PubMed DOI PMC
Chiba K, et al. FTY720, a novel immunosuppressant, induces sequestration of circulating mature lymphocytes by acceleration of lymphocyte homing in rats. I. FTY720 selectively decreases the number of circulating mature lymphocytes by acceleration of lymphocyte homing. J. Immunol. 1998;160:5037–5044. PubMed
Bernard Q, Grillon A, Lenormand C, Ehret-Sabatier L, Boulanger N. Skin interface, a key player for Borrelia multiplication and persistence in Lyme borreliosis. Trends Parasitol. 2020;36:304–314. doi: 10.1016/j.pt.2019.12.017. PubMed DOI
Gray EE, Suzuki K, Cyster JG. Identification of a motile IL-17-producing γδ T cell population in the dermis. J. Immunol. 2011;186:6091–6095. doi: 10.4049/jimmunol.1100427. PubMed DOI PMC
Heilig JS, Tonegawa S. Diversity of murine gamma genes and expression in fetal and adult T lymphocytes. Nature. 1986;322:836–840. doi: 10.1038/322836a0. PubMed DOI
Boyden LM, et al. Skint1, the prototype of a newly identified immunoglobulin superfamily gene cluster, positively selects epidermal gammadelta T cells. Nat. Genet. 2008;40:656–662. doi: 10.1038/ng.108. PubMed DOI PMC
Baardman J, et al. A defective pentose phosphate pathway reduces inflammatory macrophage responses during hypercholesterolemia. Cell Rep. 2018;25:2044–2052. doi: 10.1016/j.celrep.2018.10.092. PubMed DOI
Chen G, et al. Anaplasma phagocytophilum dihydrolipoamide dehydrogenase 1 affects host-derived immunopathology during microbial colonization. Infect. Immun. 2012;80:3194–3205. doi: 10.1128/IAI.00532-12. PubMed DOI PMC
Cannizzo ES, et al. Age-related oxidative stress compromises endosomal proteostasis. Cell Rep. 2012;2:136–149. doi: 10.1016/j.celrep.2012.06.005. PubMed DOI PMC
Conlan JW, Chen W, Bosio CM, Cowley SC, Elkins KL. Infection of mice with Francisella as an immunological model. Curr. Protoc. Immunol. 2011;Chapter 19:Unit 19 14. PubMed PMC
Coburn J, et al. Reproducible and quantitative model of infection of Dermacentor variabilis with the live vaccine strain of Francisella tularensis. Appl. Environ. Microbiol. 2015;81:386–395. doi: 10.1128/AEM.02917-14. PubMed DOI PMC
Tully BG, Huntley JFA. Francisella tularensis chitinase contributes to bacterial persistence and replication in two major U.S. tick vectors. Pathogens. 2020;9:037. doi: 10.3390/pathogens9121037. PubMed DOI PMC
Goethert HK, Telford SR., 3rd Quantum of infection of Francisella tularensis tularensis in host-seeking Dermacentor variabilis. Ticks Tick-Borne Diseases. 2010;1:66–68. doi: 10.1016/j.ttbdis.2010.01.001. PubMed DOI PMC
Feldman KA, et al. An outbreak of primary pneumonic tularemia on Martha’s Vineyard. N. Engl. J. Med. 2001;345:1601–1606. doi: 10.1056/NEJMoa011374. PubMed DOI
Belkaid Y, Tamoutounour S. The influence of skin microorganisms on cutaneous immunity. Nat. Rev. Immunol. 2016;16:353–366. doi: 10.1038/nri.2016.48. PubMed DOI
Telford SR, 3rd, Goethert HK. Ecology of Francisella tularensis. Annu. Rev. Entomol. 2020;65:351–372. doi: 10.1146/annurev-ento-011019-025134. PubMed DOI PMC
Parker R. R., Spencer R. R., Francis E., United states Public Health Service. Tularaemia infection in ticks of the species Dermacentor andersoni Stiles in the Bitterroot ValleyMont. (Government Printing Office, 1924).
Green RG. The occurrence of Bacterium tularense in the eastern wood tick, Dermacentor variabilis. Am. J. Epidemiol. 1931;14:600–613. doi: 10.1093/oxfordjournals.aje.a117793. DOI
Gong H, et al. Blocking the secretion of saliva by silencing the HlYkt6 gene in the tick Haemaphysalis longicornis. Insect Biochem. Mol. Biol. 2009;39:372–381. doi: 10.1016/j.ibmb.2009.03.002. PubMed DOI
Karim S, et al. Identification of SNARE and cell trafficking regulatory proteins in the salivary glands of the lone star tick, Amblyomma americanum (L.) Insect Biochem. Mol. Biol. 2002;32:1711–1721. doi: 10.1016/S0965-1748(02)00111-X. PubMed DOI
Karim S, Miller NJ, Valenzuela J, Sauer JR, Mather TN. RNAi-mediated gene silencing to assess the role of synaptobrevin and cystatin in tick blood feeding. Biochem. Biophys. Res. Commun. 2005;334:1336–1342. doi: 10.1016/j.bbrc.2005.07.036. PubMed DOI
Karim S, Ramakrishnan VG, Tucker JS, Essenberg RC, Sauer JR. Amblyomma americanum salivary glands: double-stranded RNA-mediated gene silencing of synaptobrevin homologue and inhibition of PGE2 stimulated protein secretion. Insect Biochem. Mol. Biol. 2004;34:407–413. doi: 10.1016/j.ibmb.2004.01.005. PubMed DOI
Lai CP, et al. Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nat. Commun. 2015;6:7029. doi: 10.1038/ncomms8029. PubMed DOI PMC
Verweij FJ, et al. Live tracking of inter-organ communication by endogenous exosomes In Vivo. Dev. Cell. 2019;48:573–589 e574. doi: 10.1016/j.devcel.2019.01.004. PubMed DOI
Daniel E. S. & R. M. Roe. Biology of Ticks, 2nd edn (Oxford University Press, 2014).
Kim TK, et al. Ixodes scapularis tick saliva proteins sequentially secreted every 24 h during blood feeding. PLoS Negl. Trop. Dis. 2016;10:e0004323. doi: 10.1371/journal.pntd.0004323. PubMed DOI PMC
Tirloni L, et al. Tick-host range adaptation: changes in protein profiles in unfed adult Ixodes scapularis and Amblyomma americanum saliva stimulated to feed on different hosts. Front. Cell. Infect. Microbiol. 2017;7:517. doi: 10.3389/fcimb.2017.00517. PubMed DOI PMC
Zamanian M, et al. Release of small RNA-containing exosome-like vesicles from the human filarial parasite Brugia malayi. PLoS Negl. Trop. Dis. 2015;9:e0004069. doi: 10.1371/journal.pntd.0004069. PubMed DOI PMC
Sisquella X, et al. Malaria parasite DNA-harbouring vesicles activate cytosolic immune sensors. Nat. Commun. 2017;8:1985. doi: 10.1038/s41467-017-02083-1. PubMed DOI PMC
Zhou W, et al. Exosomes serve as novel modes of tick-borne flavivirus transmission from arthropod to human cells and facilitates dissemination of viral RNA and proteins to the vertebrate neuronal cells. PLoS Pathog. 2018;14:e1006764. doi: 10.1371/journal.ppat.1006764. PubMed DOI PMC
Allen JR, Khalil HM, Wikel SK. Langerhans cells trap tick salivary gland antigens in tick-resistant guinea pigs. J. Immunol. 1979;122:563–565. PubMed
Lahmers KK, et al. Comparative gene expression by WC1+ γδ and CD4+ αβ T lymphocytes, which respond to Anaplasma marginale, demonstrates higher expression of chemokines and other myeloid cell-associated genes by WC1+ γδ T cells. J. Leukoc. Biol. 2006;80:939–952. doi: 10.1189/jlb.0506353. PubMed DOI
Shi C, et al. Reduced immune response to Borrelia burgdorferi in the absence of γδ T cells. Infect. Immun. 2011;79:3940–3946. doi: 10.1128/IAI.00148-11. PubMed DOI PMC
Boppana DK, et al. In vivo immunomodulatory effects of ixodid ticks on ovine circulating T- and B-lymphocytes. Parasite Immunol. 2004;26:83–93. doi: 10.1111/j.0141-9838.2004.00687.x. PubMed DOI
Chodaczek G, Papanna V, Zal MA, Zal T. Body-barrier surveillance by epidermal γδ TCRs. Nat. Immunol. 2012;13:272–282. doi: 10.1038/ni.2240. PubMed DOI PMC
Sharp LL, Jameson JM, Cauvi G, Havran WL. Dendritic epidermal T cells regulate skin homeostasis through local production of insulin-like growth factor 1. Nat. Immunol. 2005;6:73–79. doi: 10.1038/ni1152. PubMed DOI
Shaw DK, et al. Vector immunity and evolutionary ecology: the harmonious dissonance. Trends Immunol. 2018;39:862–873. doi: 10.1016/j.it.2018.09.003. PubMed DOI PMC
Munderloh UG, Liu Y, Wang M, Chen C, Kurtti TJ. Establishment, maintenance and description of cell lines from the tick Ixodes scapularis. J. Parasitol. 1994;80:533–543. doi: 10.2307/3283188. PubMed DOI
Oliva Chavez AS, et al. An O-methyltransferase is required for infection of tick cells by Anaplasma phagocytophilum. PLoS Pathog. 2015;11:e1005248. doi: 10.1371/journal.ppat.1005248. PubMed DOI PMC
Labandeira-Rey M, Skare JT. Decreased infectivity in Borrelia burgdorferi strain B31 is associated with loss of linear plasmid 25 or 28-1. Infect. Immun. 2001;69:446–455. doi: 10.1128/IAI.69.1.446-455.2001. PubMed DOI PMC
Ganta RR, et al. Differential clearance and immune responses to tick cell-derived versus macrophage culture-derived Ehrlichia chaffeensis in mice. Infect. Immun. 2007;75:135–145. doi: 10.1128/IAI.01127-06. PubMed DOI PMC
Ren G, Champion MM, Huntley JF. Identification of disulfide bond isomerase substrates reveals bacterial virulence factors. Mol. Microbiol. 2014;94:926–944. doi: 10.1111/mmi.12808. PubMed DOI PMC
Hackenberg M, Langenberger D, Schwarz A, Erhart J, Kotsyfakis M. In silico target network analysis of de novo-discovered, tick saliva-specific microRNAs reveals important combinatorial effects in their interference with vertebrate host physiology. RNA. 2017;23:1259–1269. doi: 10.1261/rna.061168.117. PubMed DOI PMC
Michael A, et al. Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis. 2010;16:34–38. doi: 10.1111/j.1601-0825.2009.01604.x. PubMed DOI PMC
Zlotogorski-Hurvitz A, et al. Human saliva-derived exosomes: comparing methods of isolation. J. Histochem. Cytochem. 2015;63:181–189. doi: 10.1369/0022155414564219. PubMed DOI PMC
Nesvizhskii AI, Keller A, Kolker E, Aebersold R. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 2003;75:4646–4658. doi: 10.1021/ac0341261. PubMed DOI
Noel G, et al. A primary human macrophage-enteroid co-culture model to investigate mucosal gut physiology and host-pathogen interactions. Sci. Rep. 2017;7:45270. doi: 10.1038/srep45270. PubMed DOI PMC
van der Vlist EJ, Nolte-‘t Hoen EN, Stoorvogel W, Arkesteijn GJ, Wauben MH. Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry. Nat. Protoc. 2012;7:1311–1326. doi: 10.1038/nprot.2012.065. PubMed DOI
Heinze DM, Wikel SK, Thangamani S, Alarcon-Chaidez FJ. Transcriptional profiling of the murine cutaneous response during initial and subsequent infestations with Ixodes scapularis nymphs. Parasit. Vectors. 2012;5:26. doi: 10.1186/1756-3305-5-26. PubMed DOI PMC
Mallick-Wood CA, et al. Conservation of T cell receptor conformation in epidermal γδ cells with disrupted primary Vγ gene usage. Science. 1998;279:1729–1733. doi: 10.1126/science.279.5357.1729. PubMed DOI
Grasperge BJ, Morgan TW, Paddock CD, Peterson KE, Macaluso KR. Feeding by Amblyomma maculatum (Acari: Ixodidae) enhances Rickettsia parkeri (Rickettsiales: Rickettsiaceae) infection in the skin. J. Med. Entomol. 2014;51:855–863. doi: 10.1603/ME13248. PubMed DOI PMC
Niu H, Xiong Q, Yamamoto A, Hayashi-Nishino M, Rikihisa Y. Autophagosomes induced by a bacterial Beclin 1 binding protein facilitate obligatory intracellular infection. Proc. Natl Acad. Sci. USA. 2012;109:20800–20807. doi: 10.1073/pnas.1218674109. PubMed DOI PMC
Perez-Riverol Y, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D450. doi: 10.1093/nar/gky1106. PubMed DOI PMC