Tick extracellular vesicles enable arthropod feeding and promote distinct outcomes of bacterial infection

. 2021 Jun 17 ; 12 (1) : 3696. [epub] 20210617

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid34140472

Grantová podpora
R01 AI116620 NIAID NIH HHS - United States
UL1 TR001863 NCATS NIH HHS - United States
R01 AI123129 NIAID NIH HHS - United States
R21 AI165520 NIAID NIH HHS - United States
R01 AI116523 NIAID NIH HHS - United States
R01 AI134696 NIAID NIH HHS - United States
R01 AI049424 NIAID NIH HHS - United States
F31 AI152215 NIAID NIH HHS - United States
R01 AR073665 NIAMS NIH HHS - United States
F31 AI138440 NIAID NIH HHS - United States
R01 AR069502 NIAMS NIH HHS - United States
R01 HL141611 NHLBI NIH HHS - United States
P01 AI138949 NIAID NIH HHS - United States

Odkazy

PubMed 34140472
PubMed Central PMC8211691
DOI 10.1038/s41467-021-23900-8
PII: 10.1038/s41467-021-23900-8
Knihovny.cz E-zdroje

Extracellular vesicles are thought to facilitate pathogen transmission from arthropods to humans and other animals. Here, we reveal that pathogen spreading from arthropods to the mammalian host is multifaceted. Extracellular vesicles from Ixodes scapularis enable tick feeding and promote infection of the mildly virulent rickettsial agent Anaplasma phagocytophilum through the SNARE proteins Vamp33 and Synaptobrevin 2 and dendritic epidermal T cells. However, extracellular vesicles from the tick Dermacentor andersoni mitigate microbial spreading caused by the lethal pathogen Francisella tularensis. Collectively, we establish that tick extracellular vesicles foster distinct outcomes of bacterial infection and assist in vector feeding by acting on skin immunity. Thus, the biology of arthropods should be taken into consideration when developing strategies to control vector-borne diseases.

Center for Drug Evaluation and Research Office of Pharmaceutical Quality Office of Process and Facilities Division of Microbiology Assessment Microbiology Assessment Branch 3 U S Food and Drug Administration Silver Spring MD USA

Center for Vaccine Development and Global Health University of Maryland School of Medicine Baltimore MD USA

Centers for Disease Control and Prevention Atlanta GA USA

Department of Biological Sciences Old Dominion University Norfolk VA USA

Department of Dermatology Johns Hopkins University School of Medicine Baltimore MD USA

Department of Entomology Texas A and M University College Station TX USA

Department of Medical Microbiology and Immunology University of Toledo College of Medicine and Life Sciences Toledo OH USA

Department of Medicine University of Maryland School of Medicine Baltimore MD USA

Department of Microbiology and Immunology Albert Einstein College of Medicine Bronx NY USA

Department of Microbiology and Immunology University of Maryland School of Medicine Baltimore MD USA

Department of Pathology Albert Einstein College of Medicine Bronx NY USA

Department of Pediatrics University of Maryland School of Medicine Baltimore MD USA

Department of Radiation Oncology and Physiology and Biophysics Englander Institute for Precision Medicine Weill Cornell Medicine New York NY USA

Department of Veterinary Medicine University of Maryland College Park MD USA

Department of Veterinary Microbiology and Pathology Washington State University Pullman WA USA

Excerpta Medica Doylestown PA USA

Fischell Department of Bioengineering University of Maryland College Park MD USA

Immunology Janssen Research and Development Spring House PA USA

Institute of Parasitology Biology Center of the Czech Academy of Sciences Ceske Budejovice Czech Republic

Section of Infectious Diseases Department of Internal Medicine Yale University School of Medicine New Haven CT USA

USDA ARS Animal Disease Research Unit Washington State University Pullman WA USA

USDA ARS Invasive Insect Biocontrol and Behavior Laboratory Beltsville MD USA

Vector Molecular Biology Section Laboratory of Malaria and Vector Research National Institute of Allergy and Infectious Diseases National Institutes of Health Rockville MD USA

Zobrazit více v PubMed

WHO. Vector-borne Diseases (2017).

Nuttall P. A. Tick saliva and its role in pathogen transmission. Wiener Klinische Wochenschrift10.1007/s00508-019-1500-y (2019). PubMed PMC

Simo L, Kazimirova M, Richardson J, Bonnet SI. The essential role of tick salivary glands and saliva in tick feeding and pathogen transmission. Front. Cell. Infect. Microbiol. 2017;7:281. doi: 10.3389/fcimb.2017.00281. PubMed DOI PMC

Wikel S. Ticks and tick-borne pathogens at the cutaneous interface: host defenses, tick countermeasures, and a suitable environment for pathogen establishment. Front. Microbiol. 2013;4:337. doi: 10.3389/fmicb.2013.00337. PubMed DOI PMC

Titus RG, Ribeiro JM. Salivary gland lysates from the sand fly Lutzomyia longipalpis enhance Leishmania infectivity. Science. 1988;239:1306–1308. doi: 10.1126/science.3344436. PubMed DOI

Limesand KH, Higgs S, Pearson LD, Beaty BJ. Potentiation of vesicular stomatitis New Jersey virus infection in mice by mosquito saliva. Parasite Immunol. 2000;22:461–467. doi: 10.1046/j.1365-3024.2000.00326.x. PubMed DOI

Cox J, Mota J, Sukupolvi-Petty S, Diamond MS, Rico-Hesse R. Mosquito bite delivery of dengue virus enhances immunogenicity and pathogenesis in humanized mice. J. Virol. 2012;86:7637–7649. doi: 10.1128/JVI.00534-12. PubMed DOI PMC

Fialova A, Cimburek Z, Iezzi G, Kopecky J. Ixodes ricinus tick saliva modulates tick-borne encephalitis virus infection of dendritic cells. Microbes Infect. 2010;12:580–585. doi: 10.1016/j.micinf.2010.03.015. PubMed DOI

Wang X, et al. The tick protein Sialostatin L2 binds to Annexin A2 and inhibits NLRC4-mediated inflammasome activation. Infect. Immun. 2016;84:1796–1805. doi: 10.1128/IAI.01526-15. PubMed DOI PMC

Marchal C, et al. Antialarmin effect of tick saliva during the transmission of Lyme disease. Infect. Immun. 2011;79:774–785. doi: 10.1128/IAI.00482-10. PubMed DOI PMC

Ramamoorthi N, et al. The Lyme disease agent exploits a tick protein to infect the mammalian host. Nature. 2005;436:573–577. doi: 10.1038/nature03812. PubMed DOI PMC

Titus RG, Bishop JV, Mejia JS. The immunomodulatory factors of arthropod saliva and the potential for these factors to serve as vaccine targets to prevent pathogen transmission. Parasite Immunol. 2006;28:131–141. PubMed

Pingen M, et al. Host inflammatory response to mosquito bites enhances the severity of arbovirus infection. Immunity. 2016;44:1455–1469. doi: 10.1016/j.immuni.2016.06.002. PubMed DOI PMC

Peters NC, et al. In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science. 2008;321:970–974. doi: 10.1126/science.1159194. PubMed DOI PMC

Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367:eaau6977. doi: 10.1126/science.aau6977. PubMed DOI PMC

Pegtel D. M., Gould S. J. Exosomes. Ann. Rev. Biochem.88, 487–514 (2019). PubMed

Mathieu M, Martin-Jaular L, Lavieu G, Thery C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol. 2019;21:9–17. doi: 10.1038/s41556-018-0250-9. PubMed DOI

Zhou W, Woodson M, Sherman MB, Neelakanta G, Sultana H. Exosomes mediate Zika virus transmission through SMPD3 neutral Sphingomyelinase in cortical neurons. Emerg. Microbes Infect. 2019;8:307–326. doi: 10.1080/22221751.2019.1578188. PubMed DOI PMC

Vora A, et al. Arthropod EVs mediate dengue virus transmission through interaction with a tetraspanin domain containing glycoprotein Tsp29Fb. Proc. Natl Acad. Sci. USA. 2018;115:E6604–E6613. doi: 10.1073/pnas.1720125115. PubMed DOI PMC

Regmi P, Khanal S, Neelakanta G, Sultana H. Tick-borne flavivirus inhibits Sphingomyelinase (IsSMase), a venomous spider ortholog to increase sphingomyelin lipid levels for its survival in Ixodes scapularis Ticks. Front. Cell. Infect. Microbiol. 2020;10:244. doi: 10.3389/fcimb.2020.00244. PubMed DOI PMC

Gold AS, et al. Dengue virus infection of Aedes aegypti alters extracellular vesicle protein cargo to enhance virus transmission. Int. J. Mol. Sci. 2020;21:6609. doi: 10.3390/ijms21186609. PubMed DOI PMC

Nawaz M, et al. Proteomic analysis of exosome-like vesicles isolated from saliva of the tick Haemaphysalis longicornis. Front. Cell. Infect. Microbiol. 2020;10:542319. doi: 10.3389/fcimb.2020.542319. PubMed DOI PMC

Nawaz M, et al. miRNA profile of extracellular vesicles isolated from saliva of Haemaphysalis longicornis tick. Acta Tropica. 2020;212:105718. doi: 10.1016/j.actatropica.2020.105718. PubMed DOI

Eisen RJ, Eisen L. The blacklegged tick, Ixodes scapularis: an increasing public health concern. Trends Parasitol. 2018;34:295–309. doi: 10.1016/j.pt.2017.12.006. PubMed DOI PMC

Kendall BL, et al. Characterization of flavivirus infection in salivary gland cultures from male Ixodes scapularis ticks. PLoS Negl. Trop. Dis. 2020;14:e0008683. doi: 10.1371/journal.pntd.0008683. PubMed DOI PMC

Grabowski JM, et al. Dissecting flavivirus biology in salivary gland cultures from fed and unfed Ixodes scapularis (Black-Legged Tick) mBio. 2019;10:e02628–18. doi: 10.1128/mBio.02628-18. PubMed DOI PMC

Grabowski JM, et al. Flavivirus infection of Ixodes scapularis (Black-Legged Tick) Ex Vivo organotypic cultures and applications for disease control. mBio. 2017;8:e01255–17. doi: 10.1128/mBio.01255-17. PubMed DOI PMC

Nielsen MM, Witherden DA, Havran WL. γδ T cells in homeostasis and host defence of epithelial barrier tissues. Nat. Rev. Immunol. 2017;17:733–745. doi: 10.1038/nri.2017.101. PubMed DOI PMC

Havran WL, Jameson JM. Epidermal T cells and wound healing. J. Immunol. 2010;184:5423–5428. doi: 10.4049/jimmunol.0902733. PubMed DOI PMC

Hayday AC. γδ T cell update: adaptate orchestrators of immune surveillance. J. Immunol. 2019;203:311–320. doi: 10.4049/jimmunol.1800934. PubMed DOI

Havran WL. Specialized antitumor functions for skin γδ T cells. J. Immunol. 2018;200:3029–3030. doi: 10.4049/jimmunol.1800356. PubMed DOI

Macleod AS, Havran WL. Functions of skin-resident γδ T cells. Cell. Mol. Life Sci. 2011;68:2399–2408. doi: 10.1007/s00018-011-0702-x. PubMed DOI PMC

Ribot JC, Lopes N, Silva-Santos B. γδ T cells in tissue physiology and surveillance. Nat. Rev. Immunol. 2020;21:221–232. doi: 10.1038/s41577-020-00452-4. PubMed DOI

Jameson J, et al. A role for skin γδ T cells in wound repair. Science. 2002;296:747–749. doi: 10.1126/science.1069639. PubMed DOI

Hayday AC, Vantourout P. The innate biologies of adaptive antigen receptors. Annu. Rev. Immunol. 2020;38:487–510. doi: 10.1146/annurev-immunol-102819-023144. PubMed DOI

Gulia-Nuss M, et al. Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nat. Commun. 2016;7:10507. doi: 10.1038/ncomms10507. PubMed DOI PMC

Jaworski DC, Cheng C, Nair AD, Ganta RR. Amblyomma americanum ticks infected with in vitro cultured wild-type and mutants of Ehrlichia chaffeensis are competent to produce infection in naive deer and dogs. Ticks Tick. Borne Dis. 2017;8:60–64. doi: 10.1016/j.ttbdis.2016.09.017. PubMed DOI PMC

Reif KE, Ujczo JK, Alperin DC, Noh SM. Francisella tularensis novicida infection competence differs in cell lines derived from United States populations of Dermacentor andersoni and Ixodes scapularis. Sci. Rep. 2018;8:12685. doi: 10.1038/s41598-018-30419-4. PubMed DOI PMC

de la Fuente J. Controlling ticks and tick-borne diseases looking forward. Ticks Tick. Borne Dis. 2018;9:1354–1357. doi: 10.1016/j.ttbdis.2018.04.001. PubMed DOI

Zhang H, et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat. Cell Biol. 2018;20:332–343. doi: 10.1038/s41556-018-0040-4. PubMed DOI PMC

Zhou W, et al. Discovery of exosomes from tick saliva and salivary glands reveals therapeutic roles for CXCL12 and IL-8 in wound healing at the tick–human skin interface. Front. Cell Dev. Biol. 2020;8:554. doi: 10.3389/fcell.2020.00554. PubMed DOI PMC

Suzuki YJ. Oxidant-mediated protein amino acid conversion. Antioxidants. 2019;8:50. doi: 10.3390/antiox8020050. PubMed DOI PMC

Sprong H, et al. ANTIDotE: anti-tick vaccines to prevent tick-borne diseases in Europe. Parasit. Vectors. 2014;7:77. doi: 10.1186/1756-3305-7-77. PubMed DOI PMC

Hoshino A, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527:329–335. doi: 10.1038/nature15756. PubMed DOI PMC

Wallace PK, et al. Tracking antigen-driven responses by flow cytometry: monitoring proliferation by dye dilution. Cytometry A. 2008;73:1019–1034. doi: 10.1002/cyto.a.20619. PubMed DOI

Glatz M, Means T, Haas J, Steere AC, Mullegger RR. Characterization of the early local immune response to Ixodes ricinus tick bites in human skin. Exp. Dermatol. 2017;26:263–269. doi: 10.1111/exd.13207. PubMed DOI PMC

McKenzie DR, et al. IL-17-producing γδ T cells switch migratory patterns between resting and activated states. Nat. Commun. 2017;8:15632. doi: 10.1038/ncomms15632. PubMed DOI PMC

Chiba K, et al. FTY720, a novel immunosuppressant, induces sequestration of circulating mature lymphocytes by acceleration of lymphocyte homing in rats. I. FTY720 selectively decreases the number of circulating mature lymphocytes by acceleration of lymphocyte homing. J. Immunol. 1998;160:5037–5044. PubMed

Bernard Q, Grillon A, Lenormand C, Ehret-Sabatier L, Boulanger N. Skin interface, a key player for Borrelia multiplication and persistence in Lyme borreliosis. Trends Parasitol. 2020;36:304–314. doi: 10.1016/j.pt.2019.12.017. PubMed DOI

Gray EE, Suzuki K, Cyster JG. Identification of a motile IL-17-producing γδ T cell population in the dermis. J. Immunol. 2011;186:6091–6095. doi: 10.4049/jimmunol.1100427. PubMed DOI PMC

Heilig JS, Tonegawa S. Diversity of murine gamma genes and expression in fetal and adult T lymphocytes. Nature. 1986;322:836–840. doi: 10.1038/322836a0. PubMed DOI

Boyden LM, et al. Skint1, the prototype of a newly identified immunoglobulin superfamily gene cluster, positively selects epidermal gammadelta T cells. Nat. Genet. 2008;40:656–662. doi: 10.1038/ng.108. PubMed DOI PMC

Baardman J, et al. A defective pentose phosphate pathway reduces inflammatory macrophage responses during hypercholesterolemia. Cell Rep. 2018;25:2044–2052. doi: 10.1016/j.celrep.2018.10.092. PubMed DOI

Chen G, et al. Anaplasma phagocytophilum dihydrolipoamide dehydrogenase 1 affects host-derived immunopathology during microbial colonization. Infect. Immun. 2012;80:3194–3205. doi: 10.1128/IAI.00532-12. PubMed DOI PMC

Cannizzo ES, et al. Age-related oxidative stress compromises endosomal proteostasis. Cell Rep. 2012;2:136–149. doi: 10.1016/j.celrep.2012.06.005. PubMed DOI PMC

Conlan JW, Chen W, Bosio CM, Cowley SC, Elkins KL. Infection of mice with Francisella as an immunological model. Curr. Protoc. Immunol. 2011;Chapter 19:Unit 19 14. PubMed PMC

Coburn J, et al. Reproducible and quantitative model of infection of Dermacentor variabilis with the live vaccine strain of Francisella tularensis. Appl. Environ. Microbiol. 2015;81:386–395. doi: 10.1128/AEM.02917-14. PubMed DOI PMC

Tully BG, Huntley JFA. Francisella tularensis chitinase contributes to bacterial persistence and replication in two major U.S. tick vectors. Pathogens. 2020;9:037. doi: 10.3390/pathogens9121037. PubMed DOI PMC

Goethert HK, Telford SR., 3rd Quantum of infection of Francisella tularensis tularensis in host-seeking Dermacentor variabilis. Ticks Tick-Borne Diseases. 2010;1:66–68. doi: 10.1016/j.ttbdis.2010.01.001. PubMed DOI PMC

Feldman KA, et al. An outbreak of primary pneumonic tularemia on Martha’s Vineyard. N. Engl. J. Med. 2001;345:1601–1606. doi: 10.1056/NEJMoa011374. PubMed DOI

Belkaid Y, Tamoutounour S. The influence of skin microorganisms on cutaneous immunity. Nat. Rev. Immunol. 2016;16:353–366. doi: 10.1038/nri.2016.48. PubMed DOI

Telford SR, 3rd, Goethert HK. Ecology of Francisella tularensis. Annu. Rev. Entomol. 2020;65:351–372. doi: 10.1146/annurev-ento-011019-025134. PubMed DOI PMC

Parker R. R., Spencer R. R., Francis E., United states Public Health Service. Tularaemia infection in ticks of the species Dermacentor andersoni Stiles in the Bitterroot ValleyMont. (Government Printing Office, 1924).

Green RG. The occurrence of Bacterium tularense in the eastern wood tick, Dermacentor variabilis. Am. J. Epidemiol. 1931;14:600–613. doi: 10.1093/oxfordjournals.aje.a117793. DOI

Gong H, et al. Blocking the secretion of saliva by silencing the HlYkt6 gene in the tick Haemaphysalis longicornis. Insect Biochem. Mol. Biol. 2009;39:372–381. doi: 10.1016/j.ibmb.2009.03.002. PubMed DOI

Karim S, et al. Identification of SNARE and cell trafficking regulatory proteins in the salivary glands of the lone star tick, Amblyomma americanum (L.) Insect Biochem. Mol. Biol. 2002;32:1711–1721. doi: 10.1016/S0965-1748(02)00111-X. PubMed DOI

Karim S, Miller NJ, Valenzuela J, Sauer JR, Mather TN. RNAi-mediated gene silencing to assess the role of synaptobrevin and cystatin in tick blood feeding. Biochem. Biophys. Res. Commun. 2005;334:1336–1342. doi: 10.1016/j.bbrc.2005.07.036. PubMed DOI

Karim S, Ramakrishnan VG, Tucker JS, Essenberg RC, Sauer JR. Amblyomma americanum salivary glands: double-stranded RNA-mediated gene silencing of synaptobrevin homologue and inhibition of PGE2 stimulated protein secretion. Insect Biochem. Mol. Biol. 2004;34:407–413. doi: 10.1016/j.ibmb.2004.01.005. PubMed DOI

Lai CP, et al. Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nat. Commun. 2015;6:7029. doi: 10.1038/ncomms8029. PubMed DOI PMC

Verweij FJ, et al. Live tracking of inter-organ communication by endogenous exosomes In Vivo. Dev. Cell. 2019;48:573–589 e574. doi: 10.1016/j.devcel.2019.01.004. PubMed DOI

Daniel E. S. & R. M. Roe. Biology of Ticks, 2nd edn (Oxford University Press, 2014).

Kim TK, et al. Ixodes scapularis tick saliva proteins sequentially secreted every 24 h during blood feeding. PLoS Negl. Trop. Dis. 2016;10:e0004323. doi: 10.1371/journal.pntd.0004323. PubMed DOI PMC

Tirloni L, et al. Tick-host range adaptation: changes in protein profiles in unfed adult Ixodes scapularis and Amblyomma americanum saliva stimulated to feed on different hosts. Front. Cell. Infect. Microbiol. 2017;7:517. doi: 10.3389/fcimb.2017.00517. PubMed DOI PMC

Zamanian M, et al. Release of small RNA-containing exosome-like vesicles from the human filarial parasite Brugia malayi. PLoS Negl. Trop. Dis. 2015;9:e0004069. doi: 10.1371/journal.pntd.0004069. PubMed DOI PMC

Sisquella X, et al. Malaria parasite DNA-harbouring vesicles activate cytosolic immune sensors. Nat. Commun. 2017;8:1985. doi: 10.1038/s41467-017-02083-1. PubMed DOI PMC

Zhou W, et al. Exosomes serve as novel modes of tick-borne flavivirus transmission from arthropod to human cells and facilitates dissemination of viral RNA and proteins to the vertebrate neuronal cells. PLoS Pathog. 2018;14:e1006764. doi: 10.1371/journal.ppat.1006764. PubMed DOI PMC

Allen JR, Khalil HM, Wikel SK. Langerhans cells trap tick salivary gland antigens in tick-resistant guinea pigs. J. Immunol. 1979;122:563–565. PubMed

Lahmers KK, et al. Comparative gene expression by WC1+ γδ and CD4+ αβ T lymphocytes, which respond to Anaplasma marginale, demonstrates higher expression of chemokines and other myeloid cell-associated genes by WC1+ γδ T cells. J. Leukoc. Biol. 2006;80:939–952. doi: 10.1189/jlb.0506353. PubMed DOI

Shi C, et al. Reduced immune response to Borrelia burgdorferi in the absence of γδ T cells. Infect. Immun. 2011;79:3940–3946. doi: 10.1128/IAI.00148-11. PubMed DOI PMC

Boppana DK, et al. In vivo immunomodulatory effects of ixodid ticks on ovine circulating T- and B-lymphocytes. Parasite Immunol. 2004;26:83–93. doi: 10.1111/j.0141-9838.2004.00687.x. PubMed DOI

Chodaczek G, Papanna V, Zal MA, Zal T. Body-barrier surveillance by epidermal γδ TCRs. Nat. Immunol. 2012;13:272–282. doi: 10.1038/ni.2240. PubMed DOI PMC

Sharp LL, Jameson JM, Cauvi G, Havran WL. Dendritic epidermal T cells regulate skin homeostasis through local production of insulin-like growth factor 1. Nat. Immunol. 2005;6:73–79. doi: 10.1038/ni1152. PubMed DOI

Shaw DK, et al. Vector immunity and evolutionary ecology: the harmonious dissonance. Trends Immunol. 2018;39:862–873. doi: 10.1016/j.it.2018.09.003. PubMed DOI PMC

Munderloh UG, Liu Y, Wang M, Chen C, Kurtti TJ. Establishment, maintenance and description of cell lines from the tick Ixodes scapularis. J. Parasitol. 1994;80:533–543. doi: 10.2307/3283188. PubMed DOI

Oliva Chavez AS, et al. An O-methyltransferase is required for infection of tick cells by Anaplasma phagocytophilum. PLoS Pathog. 2015;11:e1005248. doi: 10.1371/journal.ppat.1005248. PubMed DOI PMC

Labandeira-Rey M, Skare JT. Decreased infectivity in Borrelia burgdorferi strain B31 is associated with loss of linear plasmid 25 or 28-1. Infect. Immun. 2001;69:446–455. doi: 10.1128/IAI.69.1.446-455.2001. PubMed DOI PMC

Ganta RR, et al. Differential clearance and immune responses to tick cell-derived versus macrophage culture-derived Ehrlichia chaffeensis in mice. Infect. Immun. 2007;75:135–145. doi: 10.1128/IAI.01127-06. PubMed DOI PMC

Ren G, Champion MM, Huntley JF. Identification of disulfide bond isomerase substrates reveals bacterial virulence factors. Mol. Microbiol. 2014;94:926–944. doi: 10.1111/mmi.12808. PubMed DOI PMC

Hackenberg M, Langenberger D, Schwarz A, Erhart J, Kotsyfakis M. In silico target network analysis of de novo-discovered, tick saliva-specific microRNAs reveals important combinatorial effects in their interference with vertebrate host physiology. RNA. 2017;23:1259–1269. doi: 10.1261/rna.061168.117. PubMed DOI PMC

Michael A, et al. Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis. 2010;16:34–38. doi: 10.1111/j.1601-0825.2009.01604.x. PubMed DOI PMC

Zlotogorski-Hurvitz A, et al. Human saliva-derived exosomes: comparing methods of isolation. J. Histochem. Cytochem. 2015;63:181–189. doi: 10.1369/0022155414564219. PubMed DOI PMC

Nesvizhskii AI, Keller A, Kolker E, Aebersold R. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 2003;75:4646–4658. doi: 10.1021/ac0341261. PubMed DOI

Noel G, et al. A primary human macrophage-enteroid co-culture model to investigate mucosal gut physiology and host-pathogen interactions. Sci. Rep. 2017;7:45270. doi: 10.1038/srep45270. PubMed DOI PMC

van der Vlist EJ, Nolte-‘t Hoen EN, Stoorvogel W, Arkesteijn GJ, Wauben MH. Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry. Nat. Protoc. 2012;7:1311–1326. doi: 10.1038/nprot.2012.065. PubMed DOI

Heinze DM, Wikel SK, Thangamani S, Alarcon-Chaidez FJ. Transcriptional profiling of the murine cutaneous response during initial and subsequent infestations with Ixodes scapularis nymphs. Parasit. Vectors. 2012;5:26. doi: 10.1186/1756-3305-5-26. PubMed DOI PMC

Mallick-Wood CA, et al. Conservation of T cell receptor conformation in epidermal γδ cells with disrupted primary Vγ gene usage. Science. 1998;279:1729–1733. doi: 10.1126/science.279.5357.1729. PubMed DOI

Grasperge BJ, Morgan TW, Paddock CD, Peterson KE, Macaluso KR. Feeding by Amblyomma maculatum (Acari: Ixodidae) enhances Rickettsia parkeri (Rickettsiales: Rickettsiaceae) infection in the skin. J. Med. Entomol. 2014;51:855–863. doi: 10.1603/ME13248. PubMed DOI PMC

Niu H, Xiong Q, Yamamoto A, Hayashi-Nishino M, Rikihisa Y. Autophagosomes induced by a bacterial Beclin 1 binding protein facilitate obligatory intracellular infection. Proc. Natl Acad. Sci. USA. 2012;109:20800–20807. doi: 10.1073/pnas.1218674109. PubMed DOI PMC

Perez-Riverol Y, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D450. doi: 10.1093/nar/gky1106. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace