Water Structures Reveal Local Hydrophobicity on the In2O3(111) Surface
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36449748
PubMed Central
PMC9798908
DOI
10.1021/acsnano.2c09115
Knihovny.cz E-zdroje
- Klíčová slova
- ab initio molecular dynamics simulations, atomic force microscopy, density functional theory, indium oxide, temperature-programmed desorption, water adsorption, water on oxides,
- Publikační typ
- časopisecké články MeSH
Clean oxide surfaces are generally hydrophilic. Water molecules anchor at undercoordinated surface metal atoms that act as Lewis acid sites, and they are stabilized by H bonds to undercoordinated surface oxygens. The large unit cell of In2O3(111) provides surface atoms in various configurations, which leads to chemical heterogeneity and a local deviation from this general rule. Experiments (TPD, XPS, nc-AFM) agree quantitatively with DFT calculations and show a series of distinct phases. The first three water molecules dissociate at one specific area of the unit cell and desorb above room temperature. The next three adsorb as molecules in the adjacent region. Three more water molecules rearrange this structure and an additional nine pile up above the OH groups. Despite offering undercoordinated In and O sites, the rest of the unit cell is unfavorable for adsorption and remains water-free. The first water layer thus shows ordering into nanoscopic 3D water clusters separated by hydrophobic pockets.
Central European Institute of Technology Brno University of Technology 61200Brno Czech Republic
Institute of Applied Physics TU Wien 1040Vienna Austria
Interdisciplinary Center for Molecular Materials 91052Erlangen Germany
University of the Chinese Academy of Sciences Beijing100049 China
Zobrazit více v PubMed
Björneholm O.; Hansen M. H.; Hodgson A.; Liu L.-M.; Limmer D. T.; Michaelides A.; Pedevilla P.; Rossmeisl J.; Shen H.; Tocci G.; Tyrode E.; Walz M.-M.; Werner J.; Bluhm H. Water at Interfaces. Chem. Rev. 2016, 116, 7698–7726. 10.1021/acs.chemrev.6b00045. PubMed DOI
Thiel P. A.; Madey T. E. The Interaction of Water with Solid Surfaces: Fundamental Aspects. Surf. Sci. Rep. 1987, 7, 211–385. 10.1016/0167-5729(87)90001-X. DOI
Henderson M. A. The Interaction of Water with Solid Surfaces: Fundamental Aspects Revisited. Surf. Sci. Rep. 2002, 46, 1–308. 10.1016/S0167-5729(01)00020-6. DOI
Carrasco J.; Hodgson A.; Michaelides A. A Molecular Perspective of Water at Metal Interfaces. Nat. Mater. 2012, 11, 667–674. 10.1038/nmat3354. PubMed DOI
Nie S.; Feibelman P. J.; Bartelt N. C.; Thürmer K. Pentagons and Heptagons in the First Water Layer on Pt(111). Phys. Rev. Lett. 2010, 105, 026102.10.1103/PhysRevLett.105.026102. PubMed DOI
Mehlhorn M.; Morgenstern K. Faceting During the Transformation of Amorphous to Crystalline Ice. Phys. Rev. Lett. 2007, 99, 24610.10.1103/PhysRevLett.99.246101. PubMed DOI
Giessibl F. J. The qPlus Sensor, a Powerful Core for the Atomic Force Microscope. Rev. Sci. Instrum. 2019, 90, 011101.10.1063/1.5052264. PubMed DOI
Peng J.; Guo J.; Hapala P.; Cao D.; Ma R.; Cheng B.; Xu L.; Ondráček M.; Jelínek P.; Wang E.; Jiang Y. Weakly Perturbative Imaging of Interfacial Water with Submolecular Resolution by Atomic Force Microscopy. Nat. Commun. 2018, 9, 122.10.1038/s41467-017-02635-5. PubMed DOI PMC
Meyer B.; Marx D.; Dulub O.; Diebold U.; Kunat M.; Langenberg D.; Wöll C. Partial Dissociation of Water Leads to Stable Superstructures on the Surface of Zinc Oxide. Angew. Chemie Int. Ed. 2004, 43, 6641–6645. 10.1002/anie.200461696. PubMed DOI
Meier M.; Hulva J.; Jakub Z.; Pavelec J.; Setvin M.; Bliem R.; Schmid M.; Diebold U.; Franchini D.; Parkinson G. S. Water Agglomerates on Fe3O4(001). Proc. Natl. Acad. Sci. U. S. A. 2018, 115, E5642–E5650. 10.1073/pnas.1801661115. PubMed DOI PMC
Yu X.; Schwarz P.; Nefedov A.; Meyer B.; Wang Y.; Wöll C. Structural Evolution of Water on ZnO(101̅0): From Isolated Monomers via Anisotropic H-Bonded 2D and 3D Structures to Isotropic Multilayers. Angew. Chem., Int. Ed. 2019, 58, 17751–17757. 10.1002/anie.201910191. PubMed DOI PMC
Yamamoto S.; Bluhm H.; Andersson K.; Ketteler G.; Ogasawara H.; Salmeron M.; Nilsson A. In Situ X-ray Photoelectron Spectroscopy Studies of Water on Metals and Oxides at Ambient Conditions. J. Phys.: Condens. Matter 2008, 20, 184025.10.1088/0953-8984/20/18/184025. DOI
Starr D. E.; Liu Z.; Hävecker M.; Knop-Gericke A.; Bluhm H. Investigation of Solid/vapor Interfaces Using Ambient Pressure X-ray Photoelectron Spectroscopy. Chem. Soc. Rev. 2013, 42, 5833–5857. 10.1039/c3cs60057b. PubMed DOI
Balajka J.; Hines M. A.; DeBenedetti W. J. I.; Komora M.; Pavelec J.; Schmid M.; Diebold U. High-affinity Adsorption Leads to Molecularly Ordered Interfaces on TiO2 in Air and Solution. Science 2018, 361, 786–789. 10.1126/science.aat6752. PubMed DOI
Zubkov T.; Stahl D.; Thompson T. L.; Panayotov D.; Diwald O.; Yates J. Y. Ultraviolet Light-Induced Hydrophilicity Effect on TiO2(110)(1×1). Dominant Role of the Photooxidation of Adsorbed Hydrocarbons Causing Wetting by Water Droplets. J. Phys. Chem. B 2005, 109, 15454–15462. 10.1021/jp058101c. PubMed DOI
Head A. R.; Gattinoni C.; Trotochaud L.; Yu Y.; Karslıoğlu O.; Pletincx S.; Eichhorn B.; Bluhm H. Water (Non-)Interaction with MoO3. J. Phys. Chem. C 2019, 123, 16836–16842. 10.1021/acs.jpcc.9b03822. PubMed DOI PMC
Mu R.; Cantu D. C.; Glezakou V.-A.; Lyubinetsky I.; Rousseau R.; Dohnálek Z. Deprotonated Water Dimers: The Building Blocks of Segmented Water Chains on Rutile RuO2 (110). J. Phys. Chem. C 2015, 119, 23552–23558. 10.1021/acs.jpcc.5b07158. DOI
Wagner M.; Seiler S.; Meyer B.; Boatner L. A.; Schmid M.; Diebold U. Reducing the In2O3(111) Surface Results in Ordered Indium Adatoms. Adv. Mater. Interfaces 2014, 1, 1400289.10.1002/admi.201400289. DOI
Klein A.; Körber C.; Wachau A.; Säuberlich F.; Gassenbauer Y.; Harvey S. P.; Proffit D. E.; Mason T. O. Transparent Conducting Oxides for Photovoltaics: Manipulation of Fermi Level, Work Function and Energy Band Alignment. Materials (Basel) 2010, 3, 4892–4914. 10.3390/ma3114892. PubMed DOI PMC
Martin O.; Martín A. J.; Mondelli C.; Mitchell S.; Segawa T. F.; Hauert R.; Drouilly C.; Curulla-Ferré D.; Pérez-Ramírez J. Indium Oxide as a Superior Catalyst for Methanol Synthesis by CO2 Hydrogenation. Angew. Chemie Int. Ed. 2016, 55, 6261–6265. 10.1002/anie.201600943. PubMed DOI
Frei M. S.; Mondelli C.; García-Muelas R.; Kley K. S.; Puértolas B.; López N.; Safonova O. V.; Stewart J. A.; Curulla Ferré D.; Pérez-Ramírez J. Atomic-scale Engineering of Indium Oxide Promotion by Palladium for Methanol Production via CO2 Hydrogenation. Nat. Commun. 2019, 10, 3377.10.1038/s41467-019-11349-9. PubMed DOI PMC
Albani D.; Capdevila-Cortada M.; Vilé G.; Mitchell S.; Martin O.; López N.; Pérez-Ramírez J. Semihydrogenation of Acetylene on Indium Oxide: Proposed Single-ensemble Catalysis. Angew. Chemie Int. Ed. 2017, 56, 10755–10760. 10.1002/anie.201704999. PubMed DOI
Sun Q.; Ye J.; Liu C. J.; Ge Q. In2O3 as a Promising Catalyst for CO2 Utilization: A Case Study with Reverse Water Gas Shift over In2O3. Greenh. Gases Sci. Technol. 2014, 4, 140–144. 10.1002/ghg.1401. DOI
Hoch L. B.; He L.; Qiao Q.; Liao K.; Reyes L. M.; Zhu Y.; Ozin G. A. Carrier Dynamics and the Role of Surface Defects: Designing a Photocatalyst for Gas-phase CO2 Reduction. Chem. Mater. 2016, 28, 4160–4168. 10.1021/acs.chemmater.6b00301. PubMed DOI PMC
He L.; Wood T. E.; Wu B.; Dong Y.; Hoch L. B.; Reyes L. M.; Wang D.; Kübel C.; Qian C.; Jia J.; Liao K.; O’Brien P. G.; Sandhel A.; Loh J. Y. Y.; Szymanski P.; Kherani N. P.; Sum T. C.; Mims C. A.; Ozin G. A. Spatial Separation of Charge Carriers in In2O3–x(OH)y Nanocrystal Superstructures for Enhanced Gas-phase Photocatalytic Activity. ACS Nano 2016, 10, 5578–5586. 10.1021/acsnano.6b02346. PubMed DOI
Wagner M.; Meyer B.; Setvín M.; Schmid M.; Diebold U. Direct Assessment of the Acidity of Individual Surface Hydroxyls. Nature 2021, 592, 722–725. 10.1038/s41586-021-03432-3. PubMed DOI
Wagner M.; Lackner P.; Seiler S.; Brunsch A.; Bliem R.; Gerhold S.; Wang Z.; Osiecki J.; Schulte K.; Boatner L. A.; Schmid M.; Meyer B.; Diebold U. Resolving the Structure of a Well-Ordered Hydroxyl Overlayer on In2O3(111): Nanomanipulation and Theory. ACS Nano 2017, 11, 11531–11541. 10.1021/acsnano.7b06387. PubMed DOI PMC
Tait S. L.; Dohnálek Z.; Campbell C. T.; Kay B. D. n-alkanes on MgO(100). I. Coverage-dependent Desorption Kinetics of n-butane. J. Chem. Phys. 2005, 122, 164707.10.1063/1.1883629. PubMed DOI
Weaver J. F. Entropies of Adsorbed Molecules Exceed Expectations. Science 2013, 339 (6115), 39–40. 10.1126/science.1231552. PubMed DOI
Campbell C. T.; Sellers J. R. V. The Entropies of Adsorbed Molecules. J. Am. Chem. Soc. 2012, 134, 18109–18115. 10.1021/ja3080117. PubMed DOI
Campbell C. T.; Sellers J. R. V. Enthalpies and entropies of adsorption on well-defined oxide surfaces: Experimental measurements. Chem. Rev. 2013, 113, 4106–4135. 10.1021/cr300329s. PubMed DOI
Schmid M.; Parkinson G. S.; Diebold U. Analysis of temperature-programmed desorption via equilibrium thermodynamics. accepted ACS Phys. Chem. Au 2022, 10.1021/acsphyschemau.2c00031. PubMed DOI PMC
Silber D.; Kowalski P. M.; Traeger F.; Buchholz M.; Bebensee F.; Meyer B.; Wöll C. Adsorbate-induced Lifting of Substrate Relaxation is a General Mechanism Governing Titania Surface Chemistry. Nat. Commun. 2016, 7, 12888.10.1038/ncomms12888. PubMed DOI PMC
Meyer B.; Rabaa H.; Marx D. Water adsorption on ZnO(101̅0): From Single Molecules to Partially Dissociated Monolayers. Phys. Chem. Chem. Phys. 2006, 8, 1513–1520. 10.1039/b515604a. PubMed DOI
Pavelec J.; Hulva J.; Halwidl D.; Bliem R.; Gamba O.; Jakub Z.; Brunbauer F.; Schmid M.; Diebold U.; Parkinson G. S. A Multi-technique Study of CO2 Adsorption on Fe3O4 Magnetite. J. Chem. Phys. 2017, 146, 014701.10.1063/1.4973241. PubMed DOI
Hapala P.; Kichin G.; Wagner C.; Tautz F. S.; Temirov R.; Jelinek P. Mechanism of High-Resolution STM/AFM Imaging with Functionalized Tips. Phys. Rev. B 2014, 90, 085421.10.1103/PhysRevB.90.085421. PubMed DOI
Hapala P.; Švec M.; Stetsovych O.; Van Der Heijden N. J.; Ondráček M.; Van Der Lit J.; Mutombo P.; Swart I.; Jelínek P. Mapping the Electrostatic Force Field of Single Molecules from High-resolution Scanning Probe Images. Nat. Commun. 2016, 7, 11560.10.1038/ncomms11560. PubMed DOI PMC
Franceschi G.; Wagner M.; Hofinger J.; Krajňák T.; Schmid M.; Diebold U.; Riva M. Growth of In2O3(111) Thin Films with Optimized Surfaces. Phys. Rev. Materials 2019, 3, 103403.10.1103/PhysRevMaterials.3.103403. DOI
Giannozzi P.; Baroni S.; Bonini N.; Calandra M.; Car R.; Cavazzoni C.; Ceresoli D.; Chiarotti G. L.; Cococcioni M.; Dabo I.; Dal Corso A.; de Gironcoli S.; Fabris S.; Fratesi G.; Gebauer R.; Gerstmann U.; Gougoussis C.; Kokalj A.; Lazzeri M.; Martin-Samos L.; Marzari M.; Mauri F.; Mazzarello R.; Paolini S.; Pasquarello A.; Paulatto L.; Sbraccia C.; Scandolo S.; Sclauzero G.; Seitsonen A. P.; Smogunov A.; Umari P.; Wentzcovitch R. M. QUANTUM ESPRESSO: a Modular and Open-source Software Project for Quantum Simulations of Materials. J. Phys.: Condens. Matter. 2009, 21, 395502.10.1088/0953-8984/21/39/395502. PubMed DOI
Perdew J. P.; Burke K.; Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. 10.1103/PhysRevLett.77.3865. PubMed DOI
Vanderbilt D. Soft Self-consistent Pseudopotentials in a Generalized Eigenvalue Formalism. Phys. Rev. B 1990, 41, 7892–7895. 10.1103/PhysRevB.41.7892. PubMed DOI
Grimme S.; Antony J.; Ehrlich S.; Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H Pu. J. Chem. Phys. 2010, 132, 154104.10.1063/1.3382344. PubMed DOI
Bernal J. D.; Fowler R. H. A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen and Hydroxyl Ions. J. Chem. Phys. 1933, 1, 515–548. 10.1063/1.1749327. DOI
Hamann D. R. H2O Hydrogen Bonding in Density-functional Theory. Phys. Rev. B 1997, 55, R10157–10600. 10.1103/PhysRevB.55.R10157. DOI
Feibelman P. J. Lattice Match in Density Functional Calculations: ice Ih vs. β-AgI. Phys. Chem. Chem. Phys. 2008, 10, 4688–4691. 10.1039/b808482n. PubMed DOI
Whalley E. Energies of the Phases of Ice at Zero Temperature and Pressure. J. Chem. Phys. 1984, 81, 4087–4092. 10.1063/1.448153. DOI
CPMD: Car-Parrinello Molecular Dynamics, version 4.3; IBM Corp. and Max Planck Institute for Solid State Research: Stuttgart, Germany, 2000–2019; http://www.cpmd.org.
Klöffel T.; Mathias G.; Meyer B. Integrating State of the Art Computer, Communication, and Autotuning Atrategies to Multiply the Performance of ab initio Molecular Dynamics on Massively Parallel Multi-core Supercomputers. Comput. Phys. Commun. 2021, 260, 107745.10.1016/j.cpc.2020.107745. DOI
Although the experiments were conducted with D2O, we refer to the resulting hydroxyl groups as OH for simplicity.